--- abstract: "The coding mechanism of sensory memory on the neuron scale is one of the most\r\nimportant questions in neuroscience. We have put forward a quantitative neural network model,\r\nwhich is self-organized, self-similar, and self-adaptive, just like an ecosystem following\r\nDarwin's theory. According to this model, neural coding is a “mult-to-one”mapping from\r\nobjects to neurons. And the whole cerebrum is a real-time statistical Turing Machine, with\r\npowerful representing and learning ability. This model can reconcile some important disputations,\r\nsuch as: temporal coding versus rate-based coding, grandmother cell versus population coding,\r\nand decay theory versus interference theory. And it has also provided explanations for some key\r\nquestions such as memory consolidation, episodic memory, consciousness, and sentiment.\r\nPhilosophical significance is indicated at last.\r\n" altloc: [] chapter: ~ commentary: ~ commref: ~ confdates: ~ conference: ~ confloc: ~ contact_email: ~ creators_id: - lpl1520@163.com - tingwang1970@163.com creators_name: - family: Liu given: Peilei honourific: PHD lineage: '' - family: Wang given: Ting honourific: Professor lineage: '' date: 2014-06-30 date_type: completed datestamp: 2014-08-24 21:08:27 department: ~ dir: disk0/00/00/97/53 edit_lock_since: ~ edit_lock_until: 0 edit_lock_user: ~ editors_id: [] editors_name: [] eprint_status: archive eprintid: 9753 fileinfo: /9753/1.hassmallThumbnailVersion/liutextfigs.pdf;/9753/1/liutextfigs.pdf full_text_status: public importid: ~ institution: ~ isbn: ~ ispublished: ~ issn: ~ item_issues_comment: [] item_issues_count: ~ item_issues_description: [] item_issues_id: [] item_issues_reported_by: [] item_issues_resolved_by: [] item_issues_status: [] item_issues_timestamp: [] item_issues_type: [] keywords: "neural coding, sensory memory, synaptic plasticity, lateral competition\r\n" lastmod: 2015-04-20 11:40:52 latitude: ~ longitude: ~ metadata_visibility: show note: ~ number: ~ pagerange: ~ pubdom: TRUE publication: ~ publisher: ~ refereed: FALSE referencetext: "1.\tF. Crick, The Astonishing Hypothesis: The Scientific Search for the Soul (Charles Scribner's Sons, New York, 1994). \r\n2.\tG. Edelman, The Theory of Neuronal Group Selection (Basic Books, New York 1987).\r\n3.\tC. Koch, K. Hepp, Quantum mechanics in the brain. Nature 440, 611-612 (2006).\r\n4.\tT. Poggio, E. Bizzi, Generalization in vision and motor control. Nature 43, 768-774 (2004).\r\n5.\tG. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313, 504-507 (2006).\r\n6.\tS. Grossberg, Adaptive resonance theory: how a brain learns to consciously attend, learn, and recognize a changing world. Neural Networks 37, 1-47 (2013).\r\n7.\tD. E. Rumelhart, J. L. McClelland. Parallel Distributed Processing (The MIT Press, London, 1986).\r\n8.\tJ. Hawkins, S. Blakeslee, On Intelligence (Times Books, New York, 2004).\r\n9.\tG. Miller, How are memories stored and retrieved. Science 309, 92 (2005).\r\n10.\tA. L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286, 509-512 (1999).\r\n11.\tC. W. Reynolds, Flocks, herds, and schools: a distributed behavioral model. Comput. Graphics 21, 25-34 (1987).\r\n12.\tW. S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5: 115-133 (1943).\r\n13.\tA. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500-544 (1952).\r\n14.\tW. Gerstner, R. Kempter, J. L. Hemmen, H. Wagner, A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76-78 (1996).\r\n15.\tH. Markram, J. Lübke, M. Frotscher, B. Sakmann, Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213-215 (1997).\r\n16.\tC. R. Bramham, B. Srebro, Induction of long-term depression and potentiation by low- and high-frequency stimulation in the dentate area of the anesthetized rat: Magnitude, time course and EEG. Brain Res. 405:100-107 (1987).\r\n17.\tD. O. Hebb, The Organization of Behavior: A Neuropsychological Approach (Jhon & Sons, New York, 1949).\r\n18.\tE. Schrödinger, What Is Life? (Cambridge University Press, Cambridge, 1944).\r\n19.\tJ. V. Neumann, The Computer and the Brain (Yale University Press, New Haven, CT, 2000).\r\n20.\tE. L. Bienenstock, L. N. Cooper, P. W. Munro, Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 28-32 (1982).\r\n21.\tM. Schonewille et al., Reevaluating the role of LTD in cerebellar motor learning. Neuron 70, 43-50 (2011).\r\n22.\tW. G. Regehr, M. R. Carey, A. R. Best, Activity-dependent regulation of synapses by retrograde messengers. Neuron 63, 154-170 (2009).\r\n23.\tB. A. Olshausen, Sparse codes and spikes. R.P.N. Rao, B. A. Olshausen and M. S. Lewicki Eds. MIT press, 257-272 (2002). \r\n24.\tC. G. Gross, Genealogy of the \"grandmother cell\". Neuroscientist 8, 512-518 (2002).M. \r\n25.\tMinsky, S. Papert, Perceptrons: An Introduction to Computational Geometry (MIT Press, London, 1972).\r\n26.\tR. B. Tootell, M. S. Silverman, R. L. De Valois, Spatial frequency columns in primary visual cortex. Science 214, 813-815 (1981).\r\n27.\tG. B. Ermentrout, R. F. Galán, N. N. Urban, Relating neural dynamics to neural coding. Phys. Rev. 99, 248103 (2007).\r\n28.\tM. J. Frank, L. C. Seeberger, R. C. O’Reilly, By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306, 1940-1943 (2004).\r\n29.\tD. H. Ackley, G. E. Hinton, T. J. Sejnowski, A learning algorithm for Boltzmann machine. Cognit. Sci. 9, 147-169 (1985).\r\n30.\tC. G. Gross, Neurogenesis in the adult brain: death of a dogma. Nature Rev. Neurosci. 1, 67-73 (2000).\r\n31.\tJ. T. Wixted, On common ground: Jost’s (1897) law of forgetting and Ribot’s (1881) law of retrograde amnesia. Psychol. Rev. 111, 864-879 (2004).\r\n32.\tT. D. Tomlinson, D. E. Huber, C. A. Rieth, E. J. Davelaar, An interference account of cue-independent forgetting in the no-think paradigm. Proc. Natl. Acad. Sci. U.S.A. 106, 15588-15593 (2009).\r\n33.\tK. Oberauer, S. Lewandowsky, Forgetting in immediate serial recall: decay, temporal distinctiveness, or interference? Psychol. Rev. 115, 544-576 (2008).\r\n34.\tJ. V. Stone, P. E. Jupp, Falling towards forgetfulness: synaptic decay prevents spontaneous recovery of memory. PLoS Comput. Biol. 4, (2008). doi:10.1371/journal.pcbi.1000143.\r\n35.\tR. Stickgold, Sleep-dependent memory consolidation. Nature 437, 1272-1278 (2005).\r\n36.\tE. Tulving, H. J. Markowitsch, Episodic and declarative memory: Role of the hippocampus. Hippocampus 8, 198-204(1998).\r\n37.\tP. W. Frankland, B. Bontempi, The organization of recent and remote memories. Nature Rev. 6, 119-130 (2005).\r\n38.\tH. Lövheim, A new three-dimensional model for emotions and monoamine neurotransmitters. Med. Hypotheses 78, 341-348 (2012).\r\n" relation_type: [] relation_uri: [] reportno: ~ rev_number: 19 series: ~ source: ~ status_changed: 2014-08-24 21:08:27 subjects: - cog-psy - comp-neuro-sci - comp-sci-mach-dynam-sys - comp-sci-mach-learn - comp-sci-neural-nets - comp-sci-stat-model - neuro-mod - phil-logic - phil-mind succeeds: ~ suggestions: ~ sword_depositor: ~ sword_slug: ~ thesistype: ~ title: "A Quantitative Neural Coding Model of Sensory Memory\r\n" type: preprint userid: 23739 volume: ~