creators_name: Hu, Huping
creators_name: Wu, Maoxin
type: preprint
datestamp: 2005-10-20
lastmod: 2011-03-11 08:56:12
metadata_visibility: show
title: Thinking Outside the Box: The Essence and Implications of Quantum Entanglement
subjects: bio-phys
subjects: phil-mind
full_text_status: public
keywords: spin, mind pixel, quantum entanglement, interconnectedness, inseparableness
abstract: Many experiments have shown that quantum entanglement is physically real. In this paper, we will discuss its ontological origin, implications and applications by thinking outside the standard interpretations of quantum mechanics. We argue that quantum entanglement originates from the primordial spin processes in non-spatial and non-temporal pre-spacetime, implies genuine interconnectedness and inseparableness of once interacting quantum entities, plays vital roles in biology and consciousness and, once better understood and harnessed, has far-reaching consequences and applications in many fields such as medicine and neuroscience. We further argue that quantum computation power also originates from the primordial spin processes in pre-spacetime. Finally, we discuss the roles of quantum entanglement in spin-mediated consciousness theory.
date: 2005-10
date_type: published
refereed: FALSE
referencetext: Aerts, D. & Aerts, S. Towards a general operational and realistic framework for quantum mechanics and relativity theory. In Quo Vadis Quantum Mechanics? ed. A. C. Elitzur et al. (Berlin: Springer, 2004).
Arnesen, M. C., Bose, S. & Vedral, V. Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901/1-4 (2001).
Bohm, D. & Hiley, B. J. The Undivided Universe (London: Routledge, 1993).
Bogan, J. R. Spin: the classical to quantum connection. arXiv quant-ph/0212110 (2002).
Brooks, M. Entanglement: weirdest link. New Scientist 818: 32 (2005).
Budinich, P. From the geometry of pure spinors with their division algebra to fermions’s physics. arXiv hep-th/0102049 (2001).
Clarke, C. Quantum mechanics, consciousness and the self. in Science, Consciousness and Ultimate Reality, ed. D. Lorimer (Exeter: Imprint Academic, 2004).
Deutsch, D. and Hayden, P. Information flow in entangled quantum systems. Proc. Royal. Soc. A456: 1759-1774 (2000).
Deutsch, D. The structure of the multiverse. Proc. Royal. Soc. A458: 2911-2923 (2002).
Davenas, E. et al. Human basophil degranulation triggered by very dilute antiserum against IgE. Nature 333:816-818 (1988).
Dirac, P. A. M. The quantum theory of the electron. Proc. R. Soc. A 117: 610-624 (1928).
Durt, T. Quantum entanglement, interaction, and the classical limit. quant-ph/0401121 (2004).
Eberhard, P. Bell's theorem and the different concepts of locality. Nuovo Cimento 46B: 392-419 (1978).
Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47: 777-780 (1935).
Esposito, S. On the role of spin in quantum mechanics. Found. Phys. Lett. 12: 165 (1999).
Gershenfeld, N. & Chuang, I. L. Bulk spin resonance quantum computation. Science 275: 350–356 (1997).
Ghosh, S., Rosenbaum, T. F., Aeppli, G. & Coppersmith, S. N. Entangled quantum state of magnetic dipoles. Nature 425:48-51 (2003).
Grinberg-Zylberbaum, J. & Ramos, J. Patterns of interhemispheric correlation during human communication. Int’l J. Neurosci. 36: 41–53 (1987).
Grinberg-Zylberbaum,J. et al The Einstein-Podolsky-Rosen paradox in the brain: The transferred potential. Phys. Essays 7: 422–427 (1994).
Hameroff, S. & Penrose, R. Conscious events as orchestrated spacetime selections. J. Conscious Stud., 3: 36-53 (1996).
Hagan, S, Hameroff, S. R. & Tuszynski, J. A. Quantum computation in brain microtubules: Decoherence and biological feasibility. Phys. Rev. E65, 061901 (2002).
Hestenes, D. Quantum mechanics from self-interaction. Found. Physics 15: 63-87 (1983).
Hu, H. & Wu, M. Mechanism of anesthetic action: oxygen pathway perturbation hypothesis. Med. Hypotheses 57: 619-627 (2001).
Hu, H. & Wu, M. Spin-mediated consciousness theory: possible roles of oxygen unpaired electronic spins and neural membrane nuclear spin ensemble in memory and consciousness. arXiv quant-ph/0208068 (2002).
Hu, H. & Wu, M. Spin as primordial self-referential process driving quantum mechanics, spacetime dynamics and consciousness Cogprints ID3544 (2003); NeuroQuantology 2:41-49 (2004a).
Hu, H. & Wu, M. Spin-mediated consciousness theory: possible roles of neural membrane nuclear spin ensembles and paramagnetic oxygen. Med. Hypotheses 63: 633-646 (2004b).
Hu, H. & Wu, M. Action potential modulation of neural spin networks suggests possible role of spin in memory and consciousness NeuroQuantology 2:309-317 (2004c).
Hu, H. & Wu, M. Possible roles of neural electron spin networks in memory and consciousness. Cogprints ID3544 (2004d).
Jahn, R. G. & Dunne, B. J. The PEAR proposition. J. Sci. Exploration 19: 195–245 (2005).
Josephson, B. D. & Pallikari-Viras, F. Biological utilisation of quantum nonlocality. Found. Phys. 21: 197-207 (1991).
Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimentally long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).
Kiehn, R. M. An extension to Bohm’s quantum theory to include non-gradient potentials and the production of nanometer vortices. http://www22.pair.com/csdc/pdf/bohmplus.pdf (1999).
Khitrin, A. K., Ermakov, V. L. & Fung, B. M. NMR molecular photography. J. Chem. Phys. 117: 6903-6906 (2002).
Milgrom, L. R. Patient-practitioner-remedy (PPR) entanglement. Homeophathy 91: 239-248 (2002).
Pauli, W. Zur quantenmechanik des magnetischen electrons. Z. Phys., 43: 601-623 (1927).
Penrose, R. A spinor approach to general relativity. Ann. Phys. 10: 171 (1960).
Penrose, R. Twistor algebra. J. Math. Phys., 8: 345 (1967).
Radin, D. Entangled minds Shift, 5: 10–14 (2004).
Rey, L. Thermoluminescence of ultra-high dilutions of lithium chloride and sodium chloride. Physica A 323: 67-74 (2003).
Salesi, G. & Recami, E. Hydrodynamics of spinning particles. Phys. Rev. A 57: 98 (1998).
Schrödinger, E. Discussion of probability relations between separated systems, Proc. Cambridge Philos. Soc. 31: 555 (1935).
Stapp, H. E. Mind, Matter and Quantum Mechanics. Found. Phys. 12: 363-99 (1982).
Tegmark, M. The importance of quantum decoherence in brain processes. Phys. Rev., 61E: 4194 (2000).
Tomonaga, S. The Story of Spin (Chicago: The Univ. Press of Chicago 1997).
Wackermann, J. Dyadic correlations between brain functional states: present facts and future perspectives. Mind and Matter 2: 105-122 (2005).
Walach, H. Magic of signs: a non-local interpretation of homeopathy. Homeopathy 89: 127-140 (2000).
Walker, E. H. Consciousness and Quantum Theory. Psychic Exploration, ed. J. White, 544-68 (Putnam's, New York, 1974).
Warren, W. S. et al. Generation of impossible correlation peaks between bulk water and biomolecules in solution NMR. Science 262: 2005 (1993).
Weingärtner, O. What is the therapeutically active ingredient of homeopathic potencies? Homeopathy 92: 145-151 (2003).
citation: Hu, Huping and Wu, Maoxin (2005) Thinking Outside the Box: The Essence and Implications of Quantum Entanglement. [Preprint]
document_url: http://cogprints.org/4581/1/Entanglement.pdf