Complex problem solving — More than reasoning?

Wüstenberg, Dr. Sascha and Greiff, Dr. Samuel and Funke, Dr. Joachim (2012) Complex problem solving — More than reasoning? [Journal (Paginated)]

Full text available as:



This study investigates the internal structure and construct validity of Complex Problem Solving (CPS), which is measured by a Multiple-Item-Approach.It is tested, if(a) three facets of CPS – rule identification (adequateness of strategies), rule knowledge (generated knowledge) and rule application (ability to control a system) – can be empirically distinguished, how (b) reasoning is related to these CPS-facets and if (c) CPS shows incremental validity in predicting school grade point average (GPA) beyond reasoning. N=222 university students completed MicroDYN, a computer-based CPS test and Ravens Advanced Progressive Matrices. Analysis including structural equation models showed that a 2-dimensionsal model of CPS including rule knowledge and rule application fitted the data best. Furthermore, reasoning predicted performance in rule application only indirectly through its influence on rule knowledge indicating that learning during system exploration is a prerequisite for controlling a system successfully. Finally, CPS explained variance in GPA even beyond reasoning, showing incremental validity of CPS. Thus, CPS measures important aspects of academic performance not assessed by reasoning and should be considered when predicting real life criteria such as GPA.

Item Type:Journal (Paginated)
Keywords:Complex problem solving; Intelligence; Dynamic problem solving MicroDYN; Linear structural equations; Measurement
Subjects:Psychology > Cognitive Psychology
ID Code:9044
Deposited By: Funke, Dr. Joachim
Deposited On:17 Sep 2013 14:34
Last Modified:17 Sep 2013 14:34

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

Amthauer, R., Brocke, B., Liepmann, D., & Beauducel, A. (2001). Intelligenz-Struktur-Test 2000 R [Intelligence-Structure-Test 2000 R]. Göttingen: Hogrefe.

Babcock, R. L. (2002). Analysis of age differences in types of errors on the Raven’s advanced progressive matrices. Intelligence, 30, 485–503.

Beckmann, J. F. (1994). Lernen und komplexes Problemlösen: Ein Beitrag zur Konstruktvalidierung von Lerntests [Learning and complex problem solving: A contribution to the construct validation of tests of learning potential].

Bonn, Germany: Holos.

Beckmann, J. F., & Guthke, J. (1995). Complex problem solving, intelligence, and learning ability. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 177-200). Hillsdale, NJ: Erlbaum.

Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.

Bond, T. G., & Fox, C. M. (2001). Applying the Rasch model: Fundamental measurement in the human sciences. Mahwah, NJ: Erlbaum.

Brennan, R. L. (1983). Elements of generalizability theory. Iowa City, IA: American College Testing.

Buchner, A. (1995). Basic topics and approaches to the study of complex problem

solving. In P. A. Frensch & J. Funke (Eds.), Complex problem solving: The European perspective (pp. 27-63). Hillsdale, NJ: Erlbaum.

Bühner, M., Kröner, S., & Ziegler, M. (2008). Working memory, visual–spatial intelligence and their relationship to problem-solving. Intelligence, 36(4), 672-680.

Carroll, J. B. (1993). Human cognitive abilities: a survey of factor-analytic studies. Cambridge University Press: Cambridge.

Danner, D., Hagemann, D., Holt, D. V., Hager, M., Schankin, A., Wüstenberg, S., & Funke, J. (2011). Measuring performance in a complex problem solving task: Reliability and validity of the Tailorshop simulation. Journal of Individual Differences, 32, 225-233.

Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. Mahwah, NJ: Erlbaum.

Eysenck, H.J. (2000). Intelligence: A new look. New Brunswick, NJ, USA: Transaction.

Funke, J. (1992). Dealing with dynamic systems: Research strategy, diagnostic approach and experimental results. German Journal of Psychology, 16(1), 24−43.

Funke, J. (2001). Dynamic systems as tools for analysing human judgement. Thinking and Reasoning, 7, 69-89.

Funke, J., & Frensch, P. A. (2007). Complex problem solving: The European perspective - 10 years after. In D. H. Jonassen (Ed.), Learning to solve complex scientific problems (pp. 25-47). New York: Lawrence Erlbaum.

Gonzalez, C., Thomas, R. P., & Vanyukov, P. (2005). The relationships between cognitive ability and dynamic decision making. Intelligence, 33(2), 169-186.

Gonzalez, C., Vanyukov, P., & Martin, M. K. (2005). The use of microworlds to study dynamic decision making. Computers in Human Behavior, 21(2), 273-286.

Goode, N., & Beckmann, J. (2011). You need to know: There is a causal relationship between structural knowledge and control performance in complex problem solving tasks. Intelligence, 38, 345–552.

Greiff, S. (2012). Individualdiagnostik der Problemlösefähigkeit. Münster: Waxmann.

Greiff, S. & Funke, J. (2010). Systematische Erforschung komplexer Problemlösefähigkeit anhand minimal komplexer Systeme. [Some systematic research on complex problem solving ability by means of minimal complex systems.] Zeitschrift für Pädagogik, 56, 216-227.

Greiff, S., Wüstenberg, S. & Funke, J. (2012). Dynamic Problem Solving: A new measurement perspective. Applied Psychological Measurement, 36(3), 189-213.

Hu, L., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling (pp. 76-99). London: Sage.

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.

Jäger, A. O., Süß, H. M., & Beauducel, A. (1997). Berliner Intelligenzstruktur-Test, Form 4. Göttingen, Germany: Hogrefe.

Jensen, A. R. (1998a). The g factor: The science of mental ability. Westport, CT, US: Praeger Publishers/Greenwood Publishing Group.

Jensen, A. R. (1998b). The g factor and the design of education. In R.J. Sternberg & W.M. Williams (Eds.). Intelligence, instruction, and assessment. Theory into practice (pp. 111-131). Mahwah, NJ, USA: Erlbaum

Joslyn, S., & Hunt, E. (1998). Evaluating individual differences in response to time–pressure situations. Journal of Experimental Psychology, 4, 16–43.

Klieme, E., Funke, J., Leutner, D., Reimann, P., & Wirth, J. (2001). Problemlösen als fächerübergreifende Kompetenz. Konzeption und erste Resultate aus einer Schulleistungsstudie [Problem solving as crosscurricular competency. Conception and first results out of a school performance study]. Zeitschrift für Pädagogik, 47, 179-200.

Kluge, A. (2008). Performance assessment with microworlds and their difficulty. Applied Psychological Measurement, 32, 156-180.

Kröner, S., Plass, J. L., & Leutner, D. (2005). Intelligence assessment with computer simulations. Intelligence, 33(4), 347-368.

Leighton, J. P. (2004). Defining and describing reason. In J.P. Leighton & R. J. Sternberg (Ed.), The Nature of Reasoning (pp. 3-11). Cambridge University Press.

Lienert, G. A., & Raatz, U. (1994). Testaufbau und Testanalyse [Test development and test analysis]. Weinheim: PVU.

Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F. (2002). To parcel or not to parcel: Exploring the question, weighing the merits. Structural Equation Modeling, 9(2), 151-173.

Leutner, D., Wirth, J., Klieme, E., & Funke, J. (2005). Ansätze zur Operationalisierung und deren Erprobung im Feldtest zu PISA 2000. In E. Klieme, D. Leutner & J. Wirth (Eds.), Problemlösekompetenz von Schülerinnen und Schülern (pp. 21-36) [Problem solving competence for pupils]. Wiesbaden: VS Verlag für Sozialwissenschaften.

Marshalek, B., Lohman, D. F., & Snow, R. E. (1983). The complexity continuum in the radex and hierarchical models of intelligence. Intelligence, 7, 107–127.

Muthén, B. O., & Muthén, L. K. (2007). MPlus. Los Angeles, CA: Muthén & Muthén.

Muthén, L. K., & Muthén, B. O. (2007). MPlus User's Guide. Los Angeles, CA: Muthén & Muthén.

Oberauer, K., Schulze, R., Wilhelm, O., & Süß, H. M. (2005). Working memory and Intelligence - Their correlation and their relation: Comment on Ackerman, Beier, and Boyle (2005). Psychological Bulletin, 131, 61−65.

Putz-Osterloh, W. (1981). Über die Beziehung zwischen Testintelligenz und Problemlöseerfolg [On the relationship between test intelligence and success in problem solving]. Zeitschrift für Psychologie, 189, 79−100.

Raven, J. C. (1958). Advanced progressive matrices (2nd ed.). London: Lewis.

Raven, J. (2000). Psychometrics, cognitive ability, and occupational performance, Review of Psychology, 7, 51-74.

Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for Raven’s Progressive Matrices and Vocabulary Scales: Section 4. The Advanced Progressive Matrices. San Antonio, TX: Harcourt Assessment.

Rigas, G., & Brehmer, B. (1999). Mental processes in intelligence tests and dynamics decision making tasks. London: Lawrence Erlbaum Associates.

Rost, D. H. (2009). Intelligenz: Fakten und Mythen (1. Aufl. ed.) [Intelligence: Facts

and myths]. Weinheim; Basel: Beltz PVU.

Salgado, J. F., Anderson, N., Moscoso, S., Bertua, C., de Fruyt, F., & Rolland, J. P. (2003). A meta-analytic study of general mental ability validity for different occupations in the European community. Journal of Applied Psychology, 88, 1068-1081.

Schmidt, F. L., & Hunter, J. (2004). General Mental Ability in the World of Work: Occupational Attainment and Job Performance. Journal of Personality and Social Psychology, 86(1), 162-173.

Sternberg, R. J., Conway, B. E., Ketron, J. L., & Bernstein, M. (1981). People's conceptions of intelligence. Journal of Personality and Social Psychology, 41(1), 37-55.

Sternberg, R. J., Grigorenko, E. L., & Bundy, D. A. (2001). The predictive value of IQ.

Merrill-Palmer Quarterly: Journal of Developmental Psychology, 47(1), 1-41.

Süß, H. -M. (1996). Intelligenz, Wissen und Problemlösen: Kognitive Voraussetzungen für erfolgreiches Handeln bei computersimulierten Problemen [Intelligence, knowledge, and problem solving: Cognitive prerequisites for success in problem solving with computer-simulated problems]. Göttingen: Hogrefe.

Süß, H.-M., Kersting, M., & Oberauer, K. (1993). Zur Vorhersage von Steuerungsleistungen an computersimulierten Systemen durch Wissen und Intelligenz. [The prediction of control performance in computer based systems by knowledge and intelligence]. Zeitschrift für Differentielle und Diagnostische Psychologie, 14, 189-203.

Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics, 4th ed. Boston: Allyn and Bacon.

Tschirgi, J. E. (1980). Sensible reasoning: A hypothesis about hypotheses. Child Development, 51, 1-10.

Vollmeyer, R., & Rheinberg, F. (1999). Motivation and metacognition when learning a complex system. European Journal of Psychology of Education, 14, 541-554.

Weiß, R. H. (2006). Grundintelligenztest Skala 2-Revision CFT 20-R. Göttingen: Hogrefe.

Wiley, J., Jarosz, A. F., Cushen, P. J., & Colflesh, G. J. H. (2011). New rule use drives the relation between working memory capacity and Raven's Advanced Progressive Matrices. Journal of Experimental Psychology: Learning, Memory, and Cognition, 37(1), 256-263.

Wittmann, W., & Hattrup, K. (2004). The relationship between performance in dynamic systems and intelligence. Systems Research and Behavioral Science, 21, 393-40.

Wittmann, W. W., & Süß, H. -M. (1999). Investigating the paths between working memory, intelligence, knowledge, and complex problem-solving performances via Brunswik symmetry. In P. L. Ackerman, P. C. Kyllonen, & R. D. Roberts (Eds.), Learning and individual differences: Process, traits, and content determinants (pp. 77–108). Washington, DC: APA.

Wirth, J., & Klieme, E. (2003). Computer-based Assessment of Problem Solving Competence. Assessment in Education, 10 (3), 329-345.

Wirth, J., Leutner, D., Klieme, E. (2005). Problemlösekompetenz – Ökonomisch und zugleich differenziert erfassbar? In E. Klieme, D. Leutner & J. Wirth (Eds.), Problemlösekompetenz von Schülerinnen und Schülern (pp. 7-20). [Problem solving competence for pupils]. Wiesbaden: VS Verlag für Sozialwissenschaften.

Wu, M.L., Adams, R.J., Wilson, M.R. & Haldane, S. (2007). ACER ConQuest 2.0: General item response modelling software [computer program manual]. Camberwell, Australia: Australian Council for Educational Research.

Yu, C.-Y. (2002). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes. Los Angeles, CA: University of California.


Repository Staff Only: item control page