
Contextual Geometric Structures: modeling the fundamental components  

of cultural behavior 

Bradly Alicea
 

Department of Animal Science, Michigan State University, East Lansing, MI 48823 

bradly.alicea@ieee.org 

Keywords: Hybrid Models, Collective Behavior, Synthetic Culture 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 

 

Abstract 

 

The structural complexity of culture cannot be characterized by simply modeling cultural 

beliefs or inherited ideas. Formal computational and algorithmic models of culture have focused 

on the inheritance of discrete cultural units, which can be hard to define and map to practical 

contexts. In cultural anthropology, research involving structuralist and post-structuralist 

perspectives have helped us better understand culturally-dependent classification systems and 

oppositional phenomena (e.g. light-dark, hot-cold, good-evil). Contemporary research in 

cognitive neuroscience suggests that complementary sets may be represented dynamically in the 

brain, but no model for the evolution of these sets has of yet been proposed. To fill this void, a 

method for simulating cultural or other highly symbolic behaviors called contextual geometric 

structures will be introduced. The contextual geometric structures approach is based on a hybrid 

model that approximates both individual/group cultural practice and a fluctuating environment. 

The hybrid model consists of two components. The first is a set of discrete automata with a soft 

classificatory structure. These automata are then embedded in a Lagrangian-inspired particle 

simulation that defines phase space relations and environmental inputs. The concept of 

conditional features and equations related to diversity, learning, and forgetting are used to 

approximate the goal-directed and open-ended features of cultural-related emergent behavior. 

This allows cultural patterns to be approximated in the context of both stochastic and 

deterministic evolutionary dynamics. This model can yield important information about multiple 

structures and social relationships, in addition to phenomena related to sensory function and 

higher-order cognition observed in neural systems. 

 

 

 

Introduction 

 

Why is cultural change so complicated? Intuitively speaking, it seems as though cultural change 

should be easy to predict.  Given the adaptable nature of culture, changes in the environment 

should be quickly matched by corresponding changes in cultural representations. However, the 

need for cultural change often does not result in an adaptive response. In some cases, culture 

often seems to be maladaptive in the face of adaptive pressures. These anecdotal observations 

demonstrate that cultural change is highly complex. How can we represent this complexity using 

a computational framework? The patterns that define cultural behaviors across generations and 

contexts are most likely created via emergent and evolutionary processes. Unlike goal-directed 

behaviors such as reaching for a cup of water or following a scent, there is often no clear 

outcome to pursue. Cultural representations should “make sense” of procedural knowledge in a 

way that is not only flexible but also constrained by conceptual interlinkage.  

 

Cultural systems have been understood using a number of theoretical perspectives. 

Structural [1] and post-structural [2] perspectives are based on the notion that cultural life is 

based on a set of structures orthogonal to human cognition. These structures ostensibly emerge 

from common patterns of behavior over multiple generations, and represent the outcomes of 

cultural evolution. One signature of these ephemeral structures is the cognitive representation of 

oppositional sets, which are bounded by extreme concepts for each category. For example, there 

may be a phenomenological and objective category shared across cultures bounded by maximal 
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luminance (light) and absolute lack of luminance (dark). The extremes of this category are 

bounded by human perceptual abilities, so that experience of each culture can be contained 

within. 

 

A "structure" can be defined as sets of relationships between objects in the environment, 

or experiences that can vary from person to person but are grounded in the same underlying 

concepts. These structures, which are a critical and implicit component of human cultural 

practice, have an underappreciated computational potential. This is particularly useful since 

many of these features are essential to understanding the evolution of culture across multiple 

generations [3]. Even more importantly, these structures might be an essential feature of how 

cultural practices are represented in a neural architecture. In recent years, brain scientists have 

applied this idea to a system of oppositional sets called complementary pairs [4]. In this 

approach, oppositional sets are contingent upon coupling, oscillatory, and heterogeneity in the 

dynamics of neural circuits. While these approaches hold much promise for the study of culture 

and symbolic systems, there remains a need to more fully integrate dynamical and structural 

approaches. I propose that by combining the structural features of cultural practice with a quasi-

evolutionary perspective will result in a model of cultural evolution that maps to both social 

phenomenology and physiological function. 

 

In addition, cultural and symbolic behavioral systems share many features with physical 

systems that exhibit chaotic behavior. It is this combination of quasi-evolutionary and chaotic 

dynamics that makes my approach unique. The approach presented here, called Contextual 

Geometric Structures (CGS), is a Lagrangian-inspired approach that focuses on the structural 

complexity of cultural and other symbolic behavioral phenomena. In this paper, I will introduce a 

hybrid soft classification/hydrodynamics model in the context of cultural phenomena. Initially, 

basic features of the contextual geometric structure model will be introduced. It will then be 

demonstrate how this model fits into the milieu of cultural diversity and evolution. This includes 

features that approximate complex and diverse phenomena. Finally, we will consider this model 

in the context of neuronal processes. 

 

Contextual Geometric Structures 

Prior approaches to modeling culture have included forays into population genetics and 

game theory [5-7], memetic representations [8, 9], specialized genetic algorithms [10, 11], and 

conceptual blending models [12, 13]. In this paper, a computational approach focusing on the 

structural complexity of culture will be introduced. While the CGS approach incorporates some 

elements of these prior approaches, this is a fundamentally new approach to the problem. 

 

 Contextual geometric structures provide advantages that previous models do not. Models 

inspired by population genetics and game theory are explicitly discrete and focus on inheritance, 

and so do not produce many of the nonlinear behaviors that culture embodies. While memetic 

and conceptual blending models may provide insights into the combinatoral potential of cultural 

change, neither are explicitly dynamical. While computationally efficient, specialized genetic 

algorithms do not express the fluid output of cultural behaviors not explicitly associated with 

beliefs. Perhaps greatest advantage of this approach is the mapping of both these properties to a 

set of formal, computable structures.  
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Model Components 

 

The CGS approach consists of a hybrid model: a “soft” computational structure 

representing the individual automata and a dynamical system representing the environment. Each 

automaton represents an individual with a brain that houses multiple conceptual spaces we call 

kernels. The automata then interact in a flow field. The dynamics of this flow field reinforce 

evolutionary behaviors and complex structural patterns. 

 

Single automata 

The cultural repertoire of each automaton (or particle) uses a soft classification scheme to 

represent the elements of culture. Soft classification [10], a fuzzy logic-inspired methodology, 

provides several advantages. One of these advantages involves the capacity to represent different 

cultural contexts in the same model. Another advantage involves the capacity to represent 

degrees of specific cultural and symbolic behaviors rather than merely its presence or absence.  

 

All natural phenomena classified by any single cultural group has a membership function 

on a membership kernel (Figure 1), bounded by the capacity of a sensory system. The resulting 

cultural representation of a phenomena will sit somewhere on this scale. Unlike probabilistic or 

likelihood models, soft classification does not require related objects and categories to be 

transitive, distributive, or symmetrical. This allows for the generation of context, which is central 

to many existing theories of culture. 

 

n-dimensional “Soft” Kernels 

Figure 1 shows one- and two-dimensional examples of cultural representations of "hot" to 

"cold". Figure 2 demonstrates the membership kernel for three different cultures. The logical 

structure consists of various membership kernels which serve to classify the experience of each 

automaton into a common, objective scale. This graded scale acts to link together related 

concepts as shown in Figure 1. In this sense, they can be high-dimensional structures. One- and 

two-dimensional structures tend to represent concepts related to practice, while higher-

dimensional structures represent a mapping from neurobiology to the cultural domain (see 

equations 1-5). 

 

In Figure 2, the objective scale for hot and cold stimuli has been mapped to a 2-tuple 

surface for three cultures (A-C) and their overlap. There will be variability between individuals 

and cultures, which can be evaluated using a common scale. To map physiological function to 

cultural and symbolic representations, contextual anchors will be used (see 3-tuple surface, 

Figures 1 and 2). In context, contextual anchors provide a means to mediate the membership 

between hot and cold with procedural knowledge. 

 

When different cultural categories overlap, it may be indicative of previous contact.  

However, separation between categories may also be indicative of cultural diversity in the form 

of distinction. Cultural distinction is a common feature of cultural evolution which can 

sometimes be imposed by its practitioners. In our context, we will assume that cultural 

distinction is an emergent feature, and is specified by the segregation factor (see Equation 6). 

Segregation or distinction is characterized by the non-overlapping region between B and C in 

Figure 2. 
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Figure 1. One- and Two-dimensional kernels embedded with n-tuple encodings. 

 

 
Figure 2. A soft classification kernel populated with the space for three different cultures. In this 

case, the same automaton is a carrier for three sets of cultural knowledge simultaneously. 

 

Environment 

The environmental component of contextual geometric structures involves a second-order 

Lagrangian system with dynamics that produce solutions analogous to Lagrangian Coherent 

Structures (LCS) [14]. LCS structures are defined as “ridges” of particles that aggregate in 

different portions of the flow field. Quantitatively, comparisons between particle positions can be 

made using either the Finite Time Lyapunov Exponent (FTLE - solved with regard to temporal 

divergence) or the Finite Space Lyapunov Exponent (FSLE - solved with regard to spatial 

divergence) [15-16]. Characterization of these features can be encapsulated in a measure called 

the iterated temporal divergence (see Equation 7). This methodology has previously been 

applied as a generalized analogy for evolvability in biological evolution [17]. This work is an 

extension of this application, the schematic of which is shown in Figure 3.  
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Figure 3. Cartoon depicting a typical contextual geometric structure simulation over the course 

of cultural evolution. TOP: initial condition, MIDDLE: active diffusion of the automata 

population, BOTTOM: final volume features contextual geometric structures. 

 

As can be seen in Figure 3, the automata are initialized in the same location and then get 

diffused by the force field environment. The automata also have properties of replicator vehicles 

that reproduce according to specified parameters. While the selective component of the model 
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has yet to be specified completely, LCS-like models should produce outcomes dominated by 

evolutionary neutrality [18]. In addition, our goal is to observe cultural diversity, which involves 

far-from-equilibrium and sub-optimal behaviors obscured by strong selective pressures. 

 

When applied to cultural systems, the LCS approach [19] typically involves observing 

the diffusion of particles in a hydrodynamic force field and tracking the structures that result 

(Figure 3). These structures are observed to collide, pull apart, and intermingle over time. Yet 

external forces introduced by the flow field can influence diffusion, and so the particles will still 

aggregate into recognizable and orderly structures. Contextual geometric structures show form as 

a consequence of evolutionary constraints and interactions between agents over time. 

 

Structures, Diversity, and Evolution 

 

In order to better understand the role of evolution in the emergence of contextual 

geometric structures, it is important to take a closer look at the outcome of interactions between 

three distinct automata populations. Figure 4 shows an example run using automata from three 

distinct cultures (red, blue, and black). This 2-D LCS volume features 165 automata present at 

the following frequencies: black (0.35), blue (0.35), and red = (0.30). This allows us to observe a 

number of purely physical outcomes after the evolution of an initial population. The first of these 

are loosely-organized vortices, which can either be homogeneous (all automata of the same 

color) or heterogeneous (automata of multiple colors). The second physical feature is a cluster 

often found along edges of the volume. These aggregates can be either homogeneous or 

heterogeneous, and can be considered products of pure diffusion. The third physical feature is a 

ridge, which can be either homogeneous or heterogeneous and often leads to the formation of 

vortices. The fourth physical feature is a vortex, which is a tightly packed aggregation of 

automata which is usually homogeneous.  

 

Yet how exactly do these formations map to the evolution of culture? Using a mixed 

initial population can lead to competition, selection, and other quasi-evolutionary dynamics. The 

soft classifications inherent to each automaton must be coordinated using a series of features 

based on principles of attraction and repulsion to allow the diffusion of automata within a flow 

field to exhibit behaviors relevant to cultural structures and practice. Three features are expected 

to produce a broad range of highly-complex and realistic cultural scenarios. 

 

Initial condition of model 

The choice of a hybrid soft classificatory/hydrodynamics model may allow us to observe 

evolution enforced by self-organization. The tracking of particle populations allows for complex 

dynamics to emerge out of interactions between automata and the environment. In the model 

presented here, a forcing mechanism more complex than uniform diffusion may be required to 

produce quasi-evolutionary dynamics (see Supplemental Information). I propose the use of 

virtual flow jets (embodied in rulesets), which can mimic the uniform diffusive properties of 

neutral evolution [20]. Likewise, we can approximate natural selection by adding 1/f noise to the 

flow field. This and other forms of asymmetric perturbation can mimic the directional properties 

of selection [21]. 

 

http://syntheticdaisies.blogspot.com/p/fluid-models-of-evolutionary-dynamics.html
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Figure 4. A 2-dimensional space representing an evolved population of automata representing 

three distinct cultures (Black, 58 automata; Blue, 58 automata; Red, 49 automata). Each 

subpopulation has a multifaceted set of relationships with regard to the other two. 

 

Depending on force parameters that constrain the simulation environment, the simulation 

can yield vastly different behaviors. Yet the relational structure between concepts can remain 

quite similar across contexts. One feature of evolutionary systems is that they are often 

constrained to a particular evolutionary trajectory by past trajectories and current features [22]. 

These constraints combined with environmental fluctuations simulated by the addition of 

systematic noise produce quasi-evolutionary dynamics. 

 

Features that shape evolution 

As previously mentioned, systematic noise can be used to perturb the flow field. This 

perturbation can approximate different evolutionary dynamics. In a like manner, conditional 

features are top-down, deterministic perturbations of the flow field that act like selective 

mechanisms. Three conditional features are proposed: purity, associativity, and syncretism. These 

features are predicted to produce a wide range of contextual geometric structures that may be 

identified as complex cultural dynamics (see Figure 5). Each conditional feature operates on the 
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n-dimensional kernels of each automaton. While a lack of selection can produce evolutionary 

dynamics, higher- level organizational features can also increase the adaptive capacity of an 

evolutionary system [23, 24]. In this model, this is realized via simple interaction rules which 

lead to complex and highly-ordered outcomes. 

 

Purity is successfully enforced when two or more distinct structures are formed. These 

structures are distinct in that all automata flow inward towards discrete vortices (Figure 5, 

Scenario #1). Over time, automata of different subpopulations exhibit total separation from one 

another. Associativity is successfully enforced when automata flow outward from established 

vortices along several trajectories towards one another (Figure 5, Scenario #2). Associativity 

often results in heterogeneous structures, and may lead to interactions between subpopulations. 

 

The effectiveness of the purity and associativity sorting mechanisms can be detected 

using the conditional diversity measure, shown in Equation 8. This measure provides a profile 

of all automata within a certain level of Lagrangian divergence in the flow field by using a single 

parameter D. When the value converges upon 0.5, the collection of automata that compose a 

loosely-associated structure or ridge is highly homogeneous. When the value approaches 0.0, the 

collection of automata is highly heterogeneous. 

 

Syncretism involves the dispersion of automata towards automata of a competing 

population. This generally involves automata that are aggregated around two or more vortices. 

Based on this conditional feature, automata spiral outward from these aggregation centers 

towards each other in overlapping patterns (Figure 5, Scenario #3). The particles (automata) are 

freely interchanged in the resulting vortex and trailing flow (Figure 5, Scenario #3).  

 

The predicted features shown in Figure 4 are approximations of what could be referred to 

as cultural practice space. In this sense, structures represent the aggregation of different cultures, 

which are distinct from individual automata holding representations for multiple cultures. This 

may allow us to make complex cross-cultural comparisons.   

 

Intermittent and transient dynamics 

 

One of our main assumptions is that variation in a flow field of variable turbulence might 

contribute to local changes in the rate of evolution. Indeed, actively manipulating the flow 

parameters is another way to observe the “churn” of cultural evolution. Yet the relationship 

between the two model components might also allow us to observe selective conservation across 

cultural structures and practices. 

 

What is the evolutionary relationship between the kernel values housed by individual 

automata and the Lagrangian unfolding in environmental space? To address this, we constructed 

a rate measure for learning and forgetting (see Equation 9). This measure bridges the gap 

between model components by tying kernel value segregation between populations to their 

distance in the Lagrangian flow field. These distances between concepts of practice and the 

evolutionary trajectory of individual automata (respectively) can be thought of as gaps that are 

translated between the two models. Learning occurs in cases where the gap between kernel 

values for different populations of automata is transferred to the evolutionary space (e.g. where 
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the ITD value becomes larger over time). Forgetting occurs when the gap between kernel values 

for different populations of automata is transferred to the evolutionary space (e.g. where the ITD 

value becomes smaller over time).  

 

 
Figure 5. Three types of enforcing selection (conditional features) for the evolution of contextual 

geometric structures. Cartoon illustrates the general shape and mode of action characterized by 

each flow field modification. 

 

Applying this measure when comparing subpopulations refines the model’s ability to 

simulate the navigation of culturally-specific structures, which result in more coherent structures 

and life-like behavior. When very large rLF values occur, learning predominates. When very 

small rLF values occur, forgetting predominates. As in real culture, we expect representations of 
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practice to fluctuate between extremes when the environment is unpredictable. In our model, this 

could be accomplished when the flow parameters produce a turbulent regime. 

 

Conclusions 

 

In this paper, I have proposed both an architecture and set of testable predictions for a 

model of cultural evolution focused on approximating the structures of practice. There are also 

several conclusions regarding the applicability of this model to real-world settings. The ultimate 

goal is to model the diversity and evolutionary dynamics of context. The common features and 

shortcomings of this model can tell us something about the cultural structures related to practice.  

 

Why choose this particular model? The soft classificatory structures were chosen as a 

way to map cultural practices to both a quantitative scheme and perceptual mechanisms in the 

brain. The fuzziness of this model is particularly useful in capturing the nuance that cultural 

representations tend to exhibit. Coupling this to a LCS-inspired model is done to extend the static 

nature of the classification scheme to an evolutionary context. It is my contention [see 17] that 

LCS-inspired models capture evolutionary phenomena that fitness landscapes cannot. In the 

model presented here, flow fields can help us better understand the dynamics of intermingling 

during cultural contact and intentional segregation based on cultural content. This can lead us to 

better theories about cultural universals and perhaps even the neural bases of culture. 

 

The take-home message from this work is twofold. One part of the message is that the 

inability of culture to adapt to rapidly-changing environments is not simply inertia. The other 

part of this message is to suggest that the ability of culture to adapt rapidly to environmental 

challenges is not free of constraints. Given these conclusions, this method is not meant to be a 

general-purpose model for understanding every cultural phenomenon. Rather, the focus is on 

cultural practices and the structures that underlie descriptive structures.  

 

To better understand the adaptive capacity of cultural systems, our ultimate goal is to 

characterize the labyrinthine features of a practice or ritual. This might explain why some 

practices are resistant to change (such as religious rites), while others can be highly 

improvisational (such as a jazz score). Notably, this model does not account for hierarchical and 

ecological relationships between cultural and social groups. Our focus is more on the origins of 

cultural complexity and the spontaneous nature of cross-cultural interplay.  

 

Idiosyncrasies observed in the adaptive capacity of culture can be seen in behaviors 

unique to our approach. The supplemental information section provides a link to an Animation 

that demonstrates how automata and even entire structures can exhibit recursive behaviors such 

as local cycling and clustering by automata type. These are essential ingredients for determining 

cultural context, but need further development. 

 

One key advantage of this model over previous approaches to modeling culture is its 

relevance to neurobiological processes. Objective categories that incorporate information about 

cultural context can be placed explicitly in the context of integrative mechanisms in the brain. 

Similar to a typical model of brain function, the fine-grained biological details are implicit in our 

http://syntheticdaisies.blogspot.com/p/fluid-models-of-evolutionary-dynamics.html
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soft classification model. Yet unlike a typical model of brain function, the evolution of collective 

behavior and shared cultural information over time are simulated using a physics-based model. 

 

One example of dynamic, nonlinear neuronal processing related to symbolic behavior is 

multisensory integration. Multisensory integration involves the integration of visual, auditory, 

and somatosensory information at selective sites in the brain [25]. In mammals, the superior 

colliculus integrates visual and auditory sensory information for further processing relevant to 

the orienting function of attention [26]. This combination of senses is not linear, and the 

coincidence of stimuli in space and time results in a superadditive electrophysiological response 

[27]. 

 

However, neural integration may not be limited solely to combining information from 

sensory systems [28]. In this model, the soft classification schemes form the basis of cultural 

practice structures as they might be represented in the brain. For example, a group membership 

ritual or political campaign can involve many procedures, classifications, and judgements about 

the natural world that make no sense in isolation or outside the context of a specific ritual. As a 

neural mechanism, integration may also play a critical role in switching between the logic of 

cultural structures and active cognition, and may be particularly important when approximating 

diverse responses to common stimuli that due to context. 

 

Future work should also focus on several common phenomena in cultural systems. One 

example of this is when selected dimensions of a kernel (such as the light-dark or good-bad 

oppositions) are treated as the entire practice. This often occurs in fundamentalist religions. 

Another target for future research involves understanding seemingly illogical behaviors, such as 

reinforced ritualized behaviors, despite the need for cultural change. Placing the evolution and 

information processing of these phenomena within a logical framework may lead to further 

advances in understanding behavior and ultimately human nature. 

 

Supplementary Information 

Please visit http://syntheticdaisies.blogspot.com/p/fluid-models-of-evolutionary-dynamics.html 

for supplemental materials (graphs, animations, and practical examples). 

 

 

Methods and Equations 

 

Particle structures. The number of potential structures that can interface with cognitive and 

neural processes can be quite large. We constructed five distinct particle structures, which can be 

defined as combination of dimensions representing both the fundamental limits of a neural 

subsystem (e.g. vision, touch, auditory, gustatory) and the centroid of a contextual variable (e.g. 

fluctuation, umami, modulation). The contextual variable has cultural meaning, and site in 

relation to these perceptual limits. 

 

Soft classification allows for an n-tuple representational scheme which is not mutually 

exclusive. Phenomena can belong to two or more categories simultaneously, differing only in 

terms of degree. For example, changes in “light” do not result in corresponding changes to the 

“dark” classification. The use of contextual anchors (which also employ soft classification 

http://syntheticdaisies.blogspot.com/p/fluid-models-of-evolutionary-dynamics.html
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schemes) concurrent with the neural mechanism dimensions allows for non-additive cultural 

representations that approximate the sub- and super-additivity common in neural mechanisms of 

sensory integration.  

 

2-tuple without a contextual anchor. The first (and simplest) kernel design is the 2-tuple 

without a contextual anchor based on light sensing and visual perception. The example in [5] 

shows a binary opposition representing the transition between light and dark, an exemplar of 

which can be stated as [0.6, 0.2].  

 

 

 

 

[1] 

 

5-tuple with a contextual anchor. The second kernel design is a 5-tuple with a contextual 

anchor, and maps to the human gustatory system. The example in [6] shows a discrete set of 

tastes, an exemplar of which can be stated as [0.2, 0.2, 0.4, 0.8, 0.2]. 

 

 

 

 

 

 

 

[2] 

 

3-tuple with contextual anchor. The third kernel design is a 3-tuple with a contextual anchor, 

and maps to the function of thermoreceptors in the haptic system. The example in [7] shows a 

discrete set of tastes, an exemplar of which can be stated as [0.6, 0.2, 0.9].  

 

 

 

 

 

 

 

[3] 

 

3-tuple without contextual anchor. The fourth kernel design is a 3-tuple without a contextual 

anchor, and maps to the functions of arousal and emotion. The example in [8] shows a discrete 

set of emotional states, an exemplar of which can be stated as [0.1, 0.5, 0.3].  

 

 

 

 

 

 

[4] 
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2-tuple with contextual anchor. The fifth kernel design is a 2-tuple with a contextual anchor, 

and maps to the function of nociceptors in human tissues. The example in [9] shows the degrees 

between the pain state and modulation of pain (a highly parallel process but represented here as a 

point), an exemplar of which can be stated as [0.6, 0.8].  

 

 

 

 

 

 

[5] 

 

Iterated Temporal Divergence (ITD). Iterated Temporal Divergence is defined using the 

following equation 

 

 Lt(X0) =           
        

   

 
 [6] 

 

where the divergence between two particles subject to the same flow field is integrated over a 

finite time period, t: → t + 1. 

 

Segregation Factor. The segregation factor is used to understand changes in the distribution of 

values for a particular soft classification kernel. Sets that define the structure of a certain cultural 

feature can become segregated over time, resulting from interactions with other particles in the 

flow field. This can be defined as 

 

 S =                     [7] 

  

where a value of S  1.0 results in a maximization of movement towards discrete positions on 

the particle.  

 

Conditional Diversity. To measure the distribution of automata within a given ridge or vortex, 

we can use a measure of conditional diversity. This measure provides us with a distribution of 

automata in the flow field for all automata within a certain value of the ITD measure (see equ. 

[6]). This measure can be stated as  

              ……,  ) 

 

    
  

    
 

 

    
      

  
              

 

 

 

[8] 

 

where σ equals the variance of set pn, Ai equals all automata for a specific subpopulation below 

the threshold value for the ITD measure, pi is the number of automata in a specific 

subpopulation, Atot is the total number of automata, and pn is the number of subpopulations in the 

simulation. 
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Rate of learning and forgetting. To measure the relationship between the kernel representing 

the structure of practice and the Lagrangian model representing evolution, a rate can be used to 

characterize a cultural distance between populations based on distinctions in practice. The can be 

expressed as 

 

     = 
      

   
     

 

 

 

[9] 

where Lt(X0) is the iterated temporal divergence, and Spi and Spj are segregation factors for 

different automata populations housing a particular kernel.  
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