

LEADER ELECTION ALGORITHM IN HYPERCUBE

NETWOK WHEN THE ID NUMBER IS NOT DISTINGUISHED

Abstract

One of the most critical problems in distributed systems is Leader Failure. Distributed network becomes

unstable without leadership. To solve this problem Leader Election algorithm is executed to give the

leadership to other processor. The election process starts when one or more processor discovers that

leader has failed, and it terminates when the remaining processors know who the new leader is. Election

process use ID number to choose the new leader.

 In this study we propose distributed leader election algorithm to solve leader failure in hypercube

network when ID number is not distinguished. Performance is evaluated and analyzed. In a network of N

nodes connected by a Hypercube network the proposed algorithm uses O(N) messages to elect a new

leader in O(log N) time steps.

Key Words: Leader Election, Hypercube Network, ID Number, Time Complexity.

1. Introduction

One of the most fundamental problems in

distributed systems is the leader failure.

This problem can be solved by Leader election

Algorithms (LEAs). These algorithms moves the

system from an initial state, where all the nodes are

in the same computation state, into a new state

where only one node is distinguished

computationally (called leader).

Distributed systems are used to increase the

computational speed of problem solving. These

systems use a number of computers which

cooperate with each other to execute some task.

Control of distributed algorithms requires one

process to act as a controller (leader). Leader is

responsible to maintain the stability all time overall

the network. If the Leader fail for any reason, new

leader should be elected directly to recover from

instability.

 Leader election process is a program distributed

over all nodes, it starts when one or more

processors discover leader has failure, it terminates

when remaining processors know who the new

leader is.

 LEAs are widely used in centralized systems to

solve single point failure problem. For example, in

client-server, LEAs are used when the server fails

and the system needs to transfer the leadership to

another station. The LEAs are also used in token

ring. When the node that has the token fails, the

system should select a new node to have the token.

 In distributed systems, there are many network

topologies like hypercube, meshes, ring, bus,…etc.

These topologies may be either hardware

processors, or the software processes embedded

over other hardware topology. This study focuses

on hypercube topology. This paper proposes a new

election algorithm to solve leader failure

automatically.

 Election algorithms start when the leader failure is

detected by one process or all processes at worst

case. It terminates when all processes elect the new

leader.

The organization of this paper will be as follows:

Next Section presents Previous work. Section 3

describes the hypercube model structure and

properties. Section 4 describes the proposed leader

election algorithm. Mathematical proof for the time

steps complexity is presented in section 5. Results

conclusion and suggest future work in Section 6.

2 Previous Work.

 Leader election algorithms have been studied

by a number of researchers ([1], [2], [3], [5], [6],

[9],[10], [11], [12], [13], [16], [17], [19], [21],

[22], [24], [25], [26], [27], and [33]). In these

studies, the researchers presented different methods

to deal with the leader election algorithms. In

distributed systems, a major problem is the leader

failure and the relevant leader election algorithm.

The election algorithms were varied based on the

following:

- The nature of the algorithms (Dynamic vs.

Static) ([6], [11], [21], and [22]).

- Node Identity (ID) (unique identity vs.

anonymous ID) (Distinguished vs not

distinguished) [33].

- Topology Type (ring, tree, complete graph,

meshes, torus, hypercube …etc) ([1], [8], [21],

and [22]).

- Communication mechanism used (synchronous

vs. asynchronous) ([21], [22]).

- Transmission media (wired vs. wireless or radio)

[12].

- Some of the previous work dealt with the link

failure ([1], [25]).

 The leader election solution was first thought

of at the end of the seventies, it was started by the

ring and complete networks ([1], [17], [26]) . In the

nineties meshes, hypercube and tree were studied.

To date, these topologies and wireless networks are

still being studied ([12], [16]).

 This section will look over some previous

work in election algorithms and focus on the most

relevant researches.

In [25], Singh G. proposed a protocol for leader

election tolerant to intermittent link failure in the

complete graph network. He assumes that up to

N/2 – 1 links incident on each node may fail. So,

up to N
2
/4 – N/2 links overall the system may fail.

Nodes represent the processors and edges represent

bi-directional communication channels between the

processors. In leader election problems, all nodes

are initially passive. An arbitrary subset of nodes,

called the candidate nodes, wake up spontaneously

and start the protocol. On the termination of the

protocol, exactly one node must announce itself as

a leader. The protocol depends on the fact that for

any pair(i,j) of nodes, there exists a node k such

that both i and j have no faulty link to k . The

protocol is composed of iterations. Each iteration is

composed of phases. When the iterations reach

(log N + 2) the node is the leader. The message

complexity of the protocol is O(N
2
) [25].

In [17] Molina-G. Presented an algorithm to solve

the leader failure for a complete network. When a

process notices that the leader is no longer

responding to requests, it initiates an election. A

process P, holds an election as follows:

1- P sends an election message to every

process with the higher number.

2- If no one responds, P wins the election

and becomes the leader.

3- If one of the higher numbers answers, it

takes over P’s job.

4- At any time the old leader recovers it

takes over the leadership so this algorithm

is called Bully.

In [10] Fredrickson and Lynch, the study assumes

the processes are physically or logically ordered,

So that each process knows who its successor is.

The election message is built when any process

notices that the leader is not functioning. The

process sends messages containing its number to

the successor. If the successor is down, the sender

will skip over it and go on to the next number

along the ring. During each step the sender adds its

own number to the list in the message. Eventually,

the message gets back to the process that started it

all. That process recognizes this event when it

receives an incoming message containing its own

process number. At that point, the process sends a

leader message to inform all the processes about

the new leader.

In [11] Gerard, proposed an election algorithm for

oriented hypercube, where each edge is assumed to

be labeled with its dimension in the hypercube.

When N represents the size of the cube, the

algorithm exchanges O(N) messages and uses

O(Log2N)time steps to solve the problem in the

simple case, when one process detects the leader

failure. In more complicated cases when the failure

is detected by subset of the processes, the time

complexity is linear, and the algorithm terminates

in O(N) time steps .

Abu-Amara and Loker, [1] consider the problem

of ,fault tolerant, leader election in asynchronous

complete (fully connected) distributed networks.

They assume that the processors are reliable, but

some of communication channels may fail

intermittently before or during the execution of the

algorithm. Channel failures are undetectable due to

asynchronous nature. When N represents the

number of processors in the network, and F

represents the maximum number of faulty channels

on each processor, where F <= (N-1)/2, this

algorithm uses at most O(N
2
+NF

2
) messages to

elect a unique leader .

In [8] the election problem in hypercube networks

was studied, by using two models with sense of

direction, the dimensional and the distance models.

The proposed algorithm needs (log
3
N) time steps

using (N) messages.

Antonoiu and Srimani [3] a self-stabilizing

algorithm for leader election in a tree graph was

proposed. Nodes are assigned unique identification

3

3

3

3

3

3

3

3

1 1

1 1

1 1

1 1

2
2

2
2

2

2

2

2

110 111

100 101

010 011

000 001

Figure -1 3 Dimensional hypercube

numbers. Each node maintains an ordered list of its

neighbors and the predecessor pointer to point to

one of its neighbors or null. When the algorithm

terminates (in finite time), there is a unique node

with a level value that is strictly greater than the

levels of all other nodes; this is the elected leader

node and each of the rest of the nodes has a unique

way to reach that leader. The nodes in the tree are

treated uniformly in the sense that each node

executes a single uniform rule. Each node has only

a partial view of the global state. It knows its own

state and the states of its neighbors. Starting from

any illegitimate state, the algorithm can elect an

arbitrary internal node to be the new leader; but no

leaf node will ever be selected as the leader of the

tree (a leaf node in a tree is a node with exactly one

neighbor).

 In [18] Navneet M., Jennifer L., Welch, Nitin and

V. presented two new leader election algorithms

for mobile ad-hoc networks. The algorithms ensure

that eventually each connected component of the

topology graph has exactly one leader. The

algorithms are based on routing algorithms called

TORA. The algorithms require nodes to

communicate with only their current neighbors,

making it well suited to the ad hoc environment.

 In [28] Sudarshan V., Decleene B., Immerman N.

, Kurose J.,Towsley D., proposed two cheat-proof

election algorithms: Secure Extreme Finding

Algorithm (SEFA), and Secure Preference-based

Leader Election Algorithm (SPLEA). Both

algorithms assume asynchronous distributed

system in which the various rounds of election

proceed in a lock-step fashion. The SEFA assumes

that all elector-nodes share a single common

evaluation function that returns the same value at

any elector-node when applied to a given

candidate-node. When elector-nodes can have

different preferences for a candidate-node, the

scenario becomes more complicated. The SPLEA

deals with this case. Here, individual utility

functions at each elector-node determine an

elector-node’s preference for a given candidate-

node.

 Most of the previous researchers depended

on mathematical proof to verify their algorithms.

They used the big O notation to obtain the

complexity [15] of the number of messages and

time steps, which represent the domain factors of

the algorithm complexity ([8], [10]). Other

researchers used simulation to validate their

algorithms [24].

3 Model Descriptions.

 Three-dimensional torus interconnection

networks have been used in recent research and

commercial distributed memory parallel

computers. Examples of such multicomputers are

the IBM BlueGene/L [33], the Cray T3D [36], the

Cray XT3. An important advantage of the 3D torus

over the 2D torus is its lower diameter and higher

bisection width, which means that it can achieve

reductions in communication delays given the same

number of processors.

 In 3D Torus network, interconnection topology is

a torus graph with N = X * Y * Z nodes (X is the

number of nodes in the X dimension, and Y is the

number of nodes in the Y dimension, and Z is the

number of nodes in the Z dimension of the torus

network). This section explains the model

description, properties and design assumptions for

this research ([31],[32]).

 The 3D torus network does is similar to 3D mesh,

except in the connection between the first and the

last nodes (boundaries) in each dimension. These

connections make all nodes connected with six

neighbors (Left, Right, Front, Back, Up and Down)

to present more flexible topology ([31],[32]).

Figure-1 shows three dimensional torus network (7,

4 ,4).

3 Model descriptions:

A d-dimensional hypercube network is represented

by N-nodes labeled by d binary bits from (0 to 2
d
)

(d equivalent to Log N). These nodes are connected

by (NlogN)/2 bidirectional links. Node is identifies

by binary number composed of d bits called node

label. The difference between any two neighbor

nodes is only in one bit in the labels. Distance

between any two nodes equal the hamming

distance between their canonical labels. The

diameter and radius of the hypercube equal (Log

N).

The shortest path between any two nodes is less

than or equal (Log N). This path can be found by

using Exclusive OR (XOR) operation between the

source label and destination label. Hypercube

topology has elegant recursive structure. To

construct labeled (d+1) dimensional hypercube, we

take two d dimensional hypercube and extend all

labels in the first dimension with 0 in the left and

all labels in the second hypercube with 1. Then, for

each node in the first hypercube, add an edge (of

direction d) to connect it with associated node in

the Second hypercube. Degree of hypercube is

equal d. Degree defined by the number of links

connect one node by its neighbors. links between

nodes are labeled by using nodes labels. Each link

connects two nodes derives its label from the order

of different bit in two nodes labels. This order is

from 1 to d. Figure 1 shows the 3-dimensional

hypercube with labeled nodes and links.

This study assumes the following:

 No link failure occurs during algorithm

execution.

 All communication links are bidirectional.

 Routers should work all the time even with

fault node; because the fault is in leader

properties.

 Leader node could fail due to different reasons

which will lead to loss of the leadership

property. Other nodes can detect this failure

when the time out exceeds without

acknowledgement. Nodes which detect this

failure start the election algorithm.

 To solve leader failure problem, each node

calculates a weight number that defines its

relative importance. Then, compares it with

the weight of other nodes that it has received

and propagate the maximum weight. This

weight is represented by identification number

(ID) for each node. The election algorithm

depends on this ID. This research solves the

problem when ID number is not distinguished.

 When the leader node crashes, its ID degrades

to 0. So, it can not win the election.

 Leader failure may be detected by a subset of

nodes (concurrent failure). This case becomes

complicated when the failure is detected by N-

1 nodes (worst case).

 Each node has the following variables:

o ID: weight number that defines node

relative importance in election process.

o Position: The label indicates its position.

o Leader ID , Leader position.

o Phase and step.

o State: leader or normal or candidate.

4 Proposed Leader Election algorithms:

Proposed algorithm consists of three phases. Phase

one is started, when one or more nodes detect

leader failure. After logN time steps, phase one

reduces the count of participated nodes in the

election process to N/2 nodes aware of the election

process. In second phase our algorithm uses the

reduction all-to-one communication operation to

have the result in one node with address

(X10203…0d) (X means 1 or 0). Finally, in the

third phase node (X10203…0d) broadcasts the

leader message to all nodes in the network. During

each step in phases one and two, received ID is

compared with the local ID and Greater ID is

passed to the next step. Detail description for all

phases is as follow:

Phase One starts when one or more nodes detect

the leader failure. Each node detects leader failure

initiates election process in step one by sending

election message to neighbor node that differs in

the right most bit. Election message composed of

(phase, step, winner ID, and winner position)

through link 1.

Step2: the sender and receiver in the previous step

send an election messages to the two associated

nodes, which differ in the second bit from left,

through link 2.

Step3: the senders and receivers from the previous

step send an election messages to associated nodes,

which differ in the third bit from left, through link

3.

Step Log N: N/2 nodes (the senders and receivers

from the Log N –1 step) send an election messages

to the nodes, which differ in the Log N bit from

left, through link Log N.

During the execution of phase one, if the receiver is

aware of the failure and is in progress with its own

initiated election step, it will complete the greater

step and terminate the smaller one. Each node

receives the election message, it compare its own

ID with received ID then complete the next step

with the greater ID. If the received ID equal the

local ID, algorithm select the ID with greater

position to complete with.

Phase one ends after Log N steps, reducing the

participant nodes to N/2. The leader ID and its

position for the whole hypercube becoming inside

(Log N –1) dimension hypercube.

Phase Two: The second phase uses the reduction

all-to-one communication operation to guide the

result towards the process that have the address

X10…0d. As follows:

Step1: nodes with the second left bit = 1 X1X…Xd

send election message to nodes with the second left

bit = 0 (X0X…Xd) through link Log N - step.

Step2: the receivers in the previous step with third

bits = 1, (XX1…Xd) send election messages to the

nodes differ in third bits (XX0..Xd) through LogN

- step.

Step (Log N – 1): the receiver in the previous step

with Log N bit in its label= 1 (X00…1d) , sends an

election message to the process that differ in the

right most bit (X00…0d) through log N - step.

After the end of phase 2 the last node (X00…0d)

has all information about new leader. This node

broadcast leader information in phase 3.

Phase3: In this phase node(X00…0d) broadcasts a

message containing the result of the election using

one-to-all broadcast operation, the broadcasted

message (leader message) contains new leader ID.

5 Abstract Algorithm

This section presents the pseudo code for the

election algorithm. Assumptions and variables are

assumed here, to use in pseudo code as follow:

 Each node has the following variables:

a. Local ID: node ID use to participate in

election process.

b. Local Pos: The node Position.

c. Curr_Step: Last step in the election process.

d. Ph1_finish_flag: if true it indicates that the

Phase 1 was finished.

 The algorithm uses two types of messages:

1. Election message: contains Phase (1, 2 OR 3),

step, ID (winner ID), Pos (winner position).

2. Leader message: contains the new Leader

position.

 Nodes are in one of following states:

1.Normal: when the node is unaware of any

failure and the network is stable.

2. Candidate: when the node is aware of leader

failure and participates in election process.

3. Leader: one node must have this state in a

stable network.

1. Case state = normal

Upon detect failure

{

State = Candidate

Phase = 1

Step = 1

ID = Local_ID

Pos = Local_Pos

Curr_Step = Step

Send Election(Phase, Step ,ID, Pos) on Link 1.

}

Upon received election message on link r if (Phase

== 2)

Store the message and wait until the state becomes

candidate and Phase 1 finish. else

{

State = Candidate

 if (ID < Local ID)

{

ID = Local ID

Pos = Local Pos

}

if (ID = Local ID)

{

ID = ID of node with greater position

}

if (r < Log N)

{

Step = Step+1

r = r+1

Curr_Step = Step

Send Election(Phase, Step ,ID, Pos) on Link r .

}

if (r = Log N)

{

Ph1_finish_flag = true

if (node label = (XX…1X))

{

Phase = 2

Step = 1

r = Log N – Step

Curr_Step = Step

Send Election(Phase, Step ,ID, Pos) on Link r .

}

}

}

2. Case state = Candidate

Upon Receive Election message

If (Phase = =1)

{

If (Curr_Step > Step)

Ignore the message

If (Curr_Step == Step) and (the r bit in the node

label = =1)

Ignore the message

If (Step > Curr_Step) OR ((Curr_Step == Step)

and (the r bit in

the node label ==0)) and (r < Log N)

{

Step = Step+1

r = r+1

Curr_Step = Step

Send Election(Phase, Step ,ID, Pos) on Link r .

}

if (Step > Curr_Step) OR ((Curr_Step == Step)

and (r == Log

N)) and (node_ label == (XX…1X))

{

Phase = 2

Step = 1

r = Log N – Step

Curr_Step = Step

Send Election (Phase, Step, ID, Pos) on Link r.

}

}

if (Phase == 2) and (Ph1_finish_flag = True)

{

if (Step< LogN –1)

{

Step = Step +1

r = Log N – Step

Send Election(Phase, Step ,ID, Pos) on Link r

}

if (Step == LogN –1)

BROADCAST LEADER(ID, Pos)

}

6 Performance Evaluations

 Proposed algorithm is analyzed by computing

number of messages and time steps overall

execution of the algorithm. Analyses process is

carried out for two cases. Simple case when leader

failure is detected by one node, and when leader

failure is detected by subset of nodes reach to all

nodes in the worst case.

 In the following sub-section number of

messages and time steps are computed for all cases.

6-1 Number of Messages:

Theorem 1: Assume that we have N number of

nodes in hypercube network. Then, leader election

algorithm needs O(N) messages to complete.

Proof

To find number of messages overall leader election

algorithm in the simple case, we compute this

number for each phase, then summation of all

numbers is calculated.

Phase One:

During this phase each node receives one message

except the initiator. So the number of messages is

equal (N-1). Another way to compute the messages

during phase one is as follow:

Step 1: Needs one message from the initiator to the

node that differ in the most right bit

Step 2: Needs two messages from the participated

nodes in step1 and so on to log N step. This is

shown in formula (1) bellow

2
0
 + 2

1
+ 2

2
 + 2

3
+ … + 2

log(N-1)
= N –1 (1)

Phase Two: each node sends one message during

the second phase (reduction phase)

Except the last node, so the number of messages is

equal to (N/2 – 1). By other way we compute the

messages during phase as follow: In step1 N/4

election messages are sent, in step2 N/8 is sent

until the last step which needs N/N message as

shown in formula (2)

N/4 + N/8 + ….+N/N = (N/2 - 1) (2)

Phase Three: Broadcast needs N-1 messages,

since each node receives one leader message

except the initiator, as in formula (3)

1 + 2 +4 +8 +…+ N/2 = N – 1 (3)

Total number of messages overall leader election

algorithm is given by formula (4)

 (N-1) + (N/2 –1) + (N –1) = 5N/2 –3 (4)

This result can be expressed in big O notation as

follow: O(N) messages which proof theorem 1

Theorem 2 Assume that we have N number of

nodes in hypercube network. Then, leader election

algorithm needs at most O(N log N) messages to

complete.

Proof.

To find number of messages overall leader election

algorithm in the worst case, we compute this

number for each phase, then summation of all

numbers is calculated.

Phase One: Each node sends one message during

each step in the first phase. The total is N Log N

messages.

Phase Two Three are running in same way as in

the simple case. Proof of these phases is covered

in theorem 1.

Total number of messages for leader election

algorithm in hypercube in the worst case is as in

formula (6):

N(Log N) + (N/2 –1) + (N –1) (6)

When using big O notation the algorithm needs:

 O (N log N) messages

6-2 number of Time Steps:

Theorem 3 Assume that we have N number of

nodes in hypercube network. Then, leader election

algorithm needs O(Log N) steps to complete in all

cases.

Proof:

Number of time steps is computed for each phase.

Then add these numbers to get the total number of

time steps overall the algorithm. We apply the

computations at the simple case and then at the

worst case as follow:

Phase One Reduces nodes to one half of the N that

contain the leader ID and position required Log N

time steps as in the following steps:

Step 1: node detects the failure sends the election

message to node that differ in the first right bit.

Step 2: nodes aware of election process send

election messages to nodes that differ in the second

right bit.

Step Log N: nodes aware of election process send

the election messages to nodes that differ in the

Log N right bit.

In phase 2 election algorithm continues with d-1

dimensional hypercube. All nodes inside this half

are aware of the election process. Nodes in this

phase are aware of election results from the first

phase. Reduction algorithm is used to guide the

result of election to one node in (Log N –1) Steps.

In phase three Broadcast leader message use (One-

To-All) algorithm hypercube; which needs Log N

time steps.

Total steps overall leader election algorithm as in

formula 7

Log N + Log N -1 +Log N = 3 Log N – 1 (7)

When use big O notation the algorithm needs :

 O (Log N) steps

8. Results and Conclusions

Results in this paper shows that the proposed

algorithm presents a distributed leader election

algorithm hypercube network. The algorithm

solves the problem when ID number is not

distinguished. Contention and synchronization

issues were considered in designing the algorithm.

Performance evaluation is calculated and proofed.

For network of N nodes connected as a hypercube

network we need only O (N) messages in simple

case and O(Nlog N) in the worst case . For both

cases the algorithm is completed in O (log N) time

steps

References

[1] Abu-Amara, H. and Lokre, J.(1994) Election in

Asynchronous Complete Networks with

Intermittent Link Failures, IEEE Transactions on

Computers, Vol. 34 No. 7, July 1994, pp. 778-788.

[2] Akbar B., and Effatparvar Mohammed., and

Effatparvar Mahdi, (2006), Bully Election

Algorithm Improvement with New Methods

and Fault Tolerant Mechanism, Symposium

Proceedings Volume II Computer Science &

Engineering and Electrical & Electronics

Engineering, European University of Lefke, North

Cyprus, PP 501-506.

[3] Antonoiu, G. and Srimani, K.(1996)A Self-

Stabilizing Leader Election Algorithm for Tree

Graphs, Journal of Parallel and Distributed

Computing, 34, Article No. 0059, 1996, pp. 227-

232.

[4] Coulouris G., Dollimore J., and Kindberg T. ,

(2005), Distributed Systems Concept and

Design, Fourth Edition, Addison-Wesley, USA

[5] Devillers M., Griffioen D., Romijn J. and

Vaandrager F., (2004) , Verification of Leader

Election Protocol, Formal Method Applied to

IEEE 1394, Springer International journal on

Software Tools for Tecknology Transfer(STTT),

December 2004.

[6] Dolev S., Israeli A. and Moran S., (1997),

Uniform Dynamic Self-Stabilizing Leader

Election, IEEE Transaction on Parallel and

Distributed Systems, VOL 8,NO.4, April .PP

424-440.

[7] Duato, J. Yalamanchili, S. and Ni, L. , (1997)

Interconnection Networks an Engineering

Approach, IEEE Computer Society, The Institute

of Electronic Engineers, Inc, Los Alamitos,

California.

[8] Flocchini, P. and Mans, B. (1996).Optimal

Elections in Labeled Hypercube, Journal of

Parallel and Distributed Computing 33, Article No.

0026, pp. 76-83.

[9] Foster I.(1994).Designing and Building

Parallel Programs, Addison-Wesley Publishing

Company, USA.

[10] Fredrickson, N., and Lynch ,

N.(1987).Election a Leader in Asynchronous

Ring, Journal of the ACM, Vol.34, PP. 98-115.

 [11] Gerard ,T.,(1993). Linear Election for

Oriented Hypercube, Technical Report TR-RUU-

CS-93-39, Department of computer Science,

Utrecht University, The Netherlands.

[12] Jean-Franqois Marckert (2005), Quasi-

Optimal Leader Election Algorithms in Radio

Network with Log-Logarithmic Awake Time

Slots, F.chyzak(ed.),INRIA,pp.97-100.

[13] Junguk L. and Geneva G., (1996), A

Distributed Election Protocol for Unreliable

Networks, Journal of Parallel and Distributed

Computing, 35, PP 35-42.

[14] Kumar V. , Grama A. , Gupta A. and Karypis

G. (2003).Introduction to Parallel Computing,

The Benjamin/Cumminy Publishing Company, Inc,

Redwood City, California.

[15] Levitin A., (2003), Introduction to The

Design and Analysis of Algorithms, Addison

Wesley Company, USA.

[16] Miroslav K., and Wojciech R., 2004,

Adversary Immune Leader Election in Ad Hoc

Radio Networks [Online]. Available at

cs.huji.ac.il/labs/.../adhoc/kutylowski_2003adversd

aryimmuneleader.pdf, (verified 2 Mar. 2007).

[17] Molina G, H., (1982).Elections in A

Distributed Computing systems, IEEE

Transactions on Computers, Vol. 31 Jan 1982, pp.

48-59.

[18] Navneet M., Jennifer L., Welch, Nitin V.,

(2001), Leader Election Algorithms for Mobile

Ad Hoc Networks, by NSF grant CCR-9972235.

[19] Ostrovsky, R., Rajagoplan, S., and Vazirani,

U.,(1994), Simple and Efficient Leader Election

in the Full Information Model. In Proceedings of

the Twenty-Sixth Annual ACM Syposium on

Theory of Computing.

[20] Power H.., (1999), Algorithms and

Application in Parallel Computing, WIT

Press/Computational Mechanics Publications,

USA.

[21] Refai M. and Ababneh E., (2002) Leader

Election Algorithm in 3D Torus Networks,

Master Theses, not published, Al-Albayet

University – Jordan.

[22] Refai, M. and Ajlouni, N., A new leader

Election Algorithm in Hypercube Networks,

Symposium Proceedings Volume II Computer

Science & Engineering and Electrical &

Electronics Engineering, European University of

Lefke, North Cyprus, PP 497-501, 2006.

[23] Richard E. and Kumarss N.,(2004),

Foundations of Algorithms Using Java

PseudoCode, Jones and Bartlett

Publishers,Canada.

[24] Russell, A., Saks, M., and Zuckerman,

D.,(1999) Lower Bounds For Leader Election

And Collective Coin-Flipping In The Perfect

Information Model. In Proceedings of the

Symposium on the Theory of Computing (STOC).

[25] Singh G., (1996). Leader Election in the

Presence of Link Failures, IEEE Transactions on

Parallel and Distributed Systems, VOL 7,No

3,March.

[26] Singh, G., (1991), Efficient Distributed

Algorithms for Leader Election in Complete

Networks, 11
th

 IEEE Int. Conf. on Distributed

Computing Systems, PP 472-479.

[27] Singh G., (1997), Efficient Leader Election

Using Sense of Direction, Department of

Computing and Information Sciences, Kansas State

University, Manhatten, KS66506.

[28] Sudarshan V., DeCleene B., Immerman N.,

Kurose J. and Towsley D. Leader Election

Algorithms for Wireless Ad Hoc Networks. In

Proc. Of IEEE DISCEX III, 2003.

[29] Tanenbaum, A., (2002). Distributed Systems,

Prentice-Hall International, Inc, New Jersey.

[30 Tanenbaum, A., (1995). Distributed

Operating Systems, Prentice-Hall

International, Inc, New Jersey.

[31] William K., Nellson d., and Ryan S., 2001,

Drawing Graph on the Torus [Online]. Available

at

http://bkocay.cs.umanitoba.ca/g&g/articles/Torus.p

df , (verified 15 Mar. 2007).

[32] William K., and Winnipeg M., 2001,

Embidings of Small Grapg on the Torus
[Online]. Available at:

http://bkocay.cs.umanitoba.ca/g&g/articles/Embed

dings.pdf, (verified 16 Mar. 2007).

[33] Yamshita M. and Kammeda T.,(1999),

Leader Election Problem on Networks in which

Processor Identity Numbers are not Distinct,

IEEE Transactions on Parallel and Distributed

Systems, VOL 10,No 9,September.

[34] Abhinav B. and Laxmikant V. Kal ,Scalable

Topology Aware Object Mapping for Large

Supercomputers, PHD Dissertation, Department

of Computer Science, University of Illinois at

Urbana-Champaign, 2009.
[35] IBM Blue Gene Team. Overview of the IBM Blue

Gene/P project. IBM Journal of Research and

Development, 52(1/2), 2008.

[36] Kessler, R., and Schwarzmeier, J. “CRAY

T3D: A New Dimension for Cray Research,”

Proc. COMPCON, pp.176-182, 1993.

2. Dr. Mohammed Al Refai received his PHD in computer

science(CS) from Amman Arab University for Graduated

studies, Jordan, 2/2007, M.S degree in CS from Alalbayet

university, Jordan, 3/2002. he received his undergraduate

studies in CS from mutah university, Jordan, 6/1992. He is

currently work as lecturer in computer science in KASIT in

university fo Jordan. His main research interests include

many aspects in parallel and distributed systems,

Simulation and Data Mining.

Author:

