
HIGH LEVEL 3D OBJECT SELECTION FOR THE UNICON LANGUAGE

Jafar Al-Gharaibeh and Clinton Jeffery Iyad Abu Doush

University of Idaho Yarmouk University

Computer Science Department

Moscow, Idaho 83843, USA

Computer Science Department

Irbid, Jordan
jafara@vandals.uidaho.edu

jeffery@cs.uidaho.edu
Iyad.doush@yu.edu.jo

ABSTRACT

Most computer graphics applications depend heavily on user

input. Within many games and virtual environments, for example,

user input is essential to create and/or direct actions within a

virtual world. Much of this input comes through direct interaction

with the virtual world’s content, usually using a mouse. Most

programming languages' graphics libraries provide low level

APIs for 3D object selection, which makes the process of

building interactive 3D graphics applications a challenge for

programmers, especially beginners. This paper describes a high

level 3D object selection model which greatly simplifies that

process. The model is realized within a very high level

programming language called Unicon. In this work, Unicon's

high level API for 3D graphics programming is extended to

support 3D object selection with very minimal addition to the

language level so most of the implementation details are hidden

from the programmer. The model adds a layer of abstraction to

3D object selection making it similar to common GUI

environments, where the programmer doesn’t have to worry

about how to make object selection work. The programmer

writes event handlers and assigns them to 3D objects in the scene;

the language automatically calls these handlers when an

interaction happens with these objects.

Keywords: 3D Object Selection, Picking, 3D Interface,

Language Design, Unicon.

1. INTRODUCTION

Most 3D applications such as collaborative virtual environments

and games are interactive in nature. The user clicks on the 3D

scene and picks objects. 3D selection plays a main role in some

applications so that it is impossible to build such applications,

without 3D selection support. Despite its importance, writing 3D

selection code is not always easy. In OpenGL for example, it

involves a lot of function calls and low level programming.

The Unicon language has a powerful set of built-in 3D facilities

that help programmers rapidly develop 3D applications [1], but it

did not initially support 3D object selection. The relatively

complicated and low-level object selection mechanisms used in

OpenGL were inappropriate for a very high level language.

Building the 3D selection mechanism into the VM runtime

system makes it possible to hide all of the low level semantics

from programs written in Unicon programming language. This

paper describes the design, implementation and use of high level

3D selection facilities that were introduced to the Unicon

language.

Different programming languages and graphics libraries have

various mechanisms to implement 3D object selection. These

include, but are not limited to:

 Color-coding

 Ray tracing

 Special rendering modes.

Color-coding involves rendering each primitive in a unique color

in an off-screen window buffer so that the user does not notice

this process, and then reading the pixel under the current cursor

location. The color value of the pixel determines the primitive that

the user selected. This technique provides good performance,

especially with a small number of selectable objects. The

drawbacks of this technique are:

 There is no depth information with the selected object.

 Only the closest objects to the cursor (camera) can be

selected. Objects that hide under other objects cannot be

selected.

 The system cannot support more selectable objects than

there are unique colors. This limitation has grown less

onerous over time since most systems support millions

of colors.

 The unique color must be the same when it was

rendered and when it was read back; lighting, dithering

or any other setting that might affect how the system

interprets the color could affect selection.

Ray tracing selection works by generating a pick ray from the

mouse location to the far z-plane and testing if this ray intersects

with objects in the scene.

Special rendering modes like the OpenGL selection mode work by

making a separate rendering pass over the scene and restricting the

viewing volume to a small area around the cursor. Objects that

happen to fall within this viewing volume are considered to be

selected.

2. RELATED WORK

Most of the programming languages that have 3D graphics APIs

support mouse interactions and 3D object selection. Some of

these languages provide very low level APIs that directly reflect

functionalities in the underlying graphics libraries. A popular

example is the C API for OpenGL. In OpenGL it is up to the

programmer to make numerous calls and prepare buffers to

collect and process all of the results. Other languages hide some

or all of these underlying implementation details to provide a

higher level API at the language level.

2.1. OpenGL Selection Mode

OpenGL provides a mechanism for object selection through a

special rendering mode. In selection rendering mode, instead of

rendering the scene as color values to the color buffer, only

“names” are rendered to a selection buffer. In this special mode

the programmer supplies storage for results and sets up a special

“pick” matrix with a view volume centered around the mouse

cursor (Figure 1). Objects that are rendered into this selection

viewing volume are reported to the user as selection hits [2].

Picking is a special case of selection in which clipping is set up

such that only a small region of the screen is visible: whatever is

visible is then deemed to have been “picked”. The programming

steps are:

 Restrict rendering to a small region near pointer

 Use gluPickMatrix() on projection matrix

 Enter selection mode; re-render scene and give 3D

objects unique integer identifiers

 Primitives drawn near cursor cause hits

 Exit selection; analyze hit records

When using OpenGL selection, the programmer has to work with

6 functions dedicated to selection plus several other functions that

must be used with selection to make it work, for a total of 11

functions. In addition, the programmer must also setup a data

structure to hold the selection results.

2.2. Java3D API

Java3D provides a rich class library for 3D graphics which

include picking utility classes [3]. Two basic approaches can be

used to achieve picking in Java3D: use objects of built-in special

purpose picking classes, or use instances of more general custom

picking classes. The picking package includes classes for

pick/rotate, pick/translate, and pick/zoom. The user can press the

mouse button over an object and drag to achieve one of the

functionalities of rotate, translate or zoom based on the class type.

The picking classes can be setup to use different mouse buttons to

give access to the different functionalities simultaneously [3].

The following steps summarize the process of making a selectable

object in Java3D [3]:

 Create a scene graph

 Create a picking behavior object with root, canvas, and

bounds specification

 Add the behavior object to the scene graph

 Enable the appropriate capabilities for scene graph

objects

Adding user-defined actions requires creating custom behavior

with custom picking classes and enabling/disabling many

attributes for the required objects and their corresponding

behavior objects. In summary, Java3D has a high level object

selection mechanism compared to the C OpenGL API. But using

it still requires a substantial amount of work from the programmer

[4]. There are many packages and classes to keep track of and

more attributes to remember and object capabilities to turn on or

off. That is not to mention the inherent complexity in using the

whole graphics library with more than 150 classes, which dictates

how to setup the selectable objects, how to add them to a specific

canvas and where to insert them in the scene graph before the

whole selection process can be made possible.

3. LANGUAGE INTERFACE

3D graphics facilities in Unicon are designed to provide a simple

programming interface. Instead of requiring programmers to learn

hundreds of functions or methods in OpenGL or Java3D, Unicon,

which is built on top of OpenGL, hides most of the underlying

details yet preserves a lot of powerful 3D functionality. Basic

functionality includes primitives, transformations, lighting, and

texturing [5].

In 3D selection, the same principle was followed; hiding all of the

unnecessary details and minimizing the language interface. In

Unicon, one existing function was extended for selection, plus a

keyword and a window attribute were introduced. A keyword in

Unicon is a predefined global symbol, distinguished from ordinary

variables by a leading ampersand, whose value is governed by the

language control structures and built-in functions. Keywords are

key components in both Icon and Unicon programming languages

[6] [7].
Working with 3D selection in Unicon is easy and straight forward.

The new keyword (&pick) provides access to 3D selection results.

A new window attribute (pick) enables and disables 3D selection.

The term “pick” was adopted to denote the 3D selection feature to

avoid confusion with other uses of “select”. The term “select” is

heavily used in different contexts in programming languages and

libraries. Clipboard contents, text regions and TCP sockets are

examples of such use. The meaning of “pick” also conforms very

well with its role in the language which is selecting or picking

objects. A few steps are required to use 3D selection in Unicon.

These steps are summarized by the following:

 Enable/disable the selection (on/off)

 Give selectable 3D objects unique string names

 Collect selection results for mouse input events

through the keyword &pick

Figure 1. Selection viewing volume centered around the

mouse cursor.

3.1. Controlling the selection state

Turning on/off 3D selection is controlled by the Unicon function

WAttrib() [8]. WAttrib() is a generic routine for getting or setting

a window's attributes. To turn on 3D selection at any point in the

program, the following statement is inserted:

WAttrib("pick=on")

To turn off the 3D selection simply make another call to

WAttrib() like the following:

WAttrib("pick=off")

To check the current 3D selection state (on or off) the function

WAttrib() can be called with the string parameter "pick" (i.e

WAttrib(“pick”)) and it will return a string value of "on" or "off"

depending on the current 3D selection state. By default 3D

selection is turned off. The program can turn on and off the 3D

selection depending on the program requirements. For better

performance it is recommended to turn off selection for any non-

selectable object in the scene.

3.2. Naming 3D Objects

3D Objects are defined by their corresponding rendered

primitives. The function WSection() [5] marks the beginning and

the ending of a section that holds a 3D object. A call to the

function WSection() with a parameter string marks the beginning

of a 3D object with the string as its name. Another call to

WSection() with no string parameter marks the end of the 3D

objects. All of the rendered graphics between a beginning

WSection() and its corresponding ending WSection() are parts

of the same object. To be selectable, a 3D object must have at

least one graphical primitive, such as a line or a sphere. The string

name should be unique to distinguish different objects from each

other. Different objects could have the same name if the same

action would be taken no matter which of these objects is picked.

The following code fragment is an example of named 3D objects.

It simply draws a red rectangle and gives it the name "redrect".

WSection("redrect") # beginning of object Fg("red")
FillPolygon(0,0,0, 0,1,0, 1,1,0, 1,0,0)
WSection() # end of the object

In the example above, the call WSection("redrect") marks the

beginning of a new object with the name redrect. Fg("red")does

not affect selection because it does not produce a rendered object.

FillPolygon(0,0,0, 0,1,0, 1,1,0, 1,0,0)on the other hand does

affect selection because it produces a rendered object, and it

actually represents the object named redrect. WSection()marks

the end of the object named redrect.

3.3. Retrieving Picked Objects

In general, picking objects is associated with the mouse. In

Unicon, mouse events are tracked through a set of keywords.

&lpress and &rpress for example denote values that indicate that

there was a left click or right click event, respectively. The Unicon

function Event() produces these events from the event queue. It

also generates other information related to such events such as the

x and y coordinates of the mouse cursor at the time of the click.

&pick was designed to work in the same fashion with mouse

clicks. If selection is enabled, &pick generates all of the string

names of the objects under the cursor, one at a time. The

following code fragment writes all of the objects’ names that were

picked by the mouse left-click:

every picked_object := &pick do
 write(" picked object :", picked_object)

If there were no selectable objects under the cursor at the time of

the event, &pick just fails and produces no results. &pick gets its

results from both left-clicks and right-clicks.

3.4. Complete Example

This section presents a simple full example program. The example

demonstrates the use of the 3D selection mechanism in Unicon.

Three spheres, red green and blue, are drawn in a 3D graphics

window. The red and blue spheres are selectable but the green is

not. The user can click on any place in the window and the

program reports the picked object to the user. If the user clicks on

the red or blue sphere he will get the message “you picked red

ball” or “you picked blue ball”. If the user clicked anywhere else

including on the green ball he will get the message “you picked

nothing”. That is because the selection is off for the green ball so

it is not selectable.

procedure main()
open a 3D window and make it the default
&window := open("3D selection in Unicon",

"gl","size=500,500")
begin a new selectable section/object
WAttrib("pick=on") #turn on 3D selection
WSection("red ball")
 Fg("red")
 DrawSphere(1, 0.5, 0, 0.5)
WSection() # end of the red ball

Draw a nonselectable green ball
WAttrib("pick=off") #turn off 3D selection
Fg("green")
DrawSphere(-1, 0.5, 0, 0.5)

begin a new selectable section/object
WAttrib("pick=on") #turn on 3D selection
WSection("blue ball")
 Fg("blue")
 DrawSphere(0, -0.5, 0, 0.5)
WSection() # end of the blue ball

#setup the eye to look at the spheres
Eye(0,0,4, 0,0,0, 0,1,0)
Refresh()

enter an event loop to handle user events
repeat{
 case \Event() of {
 &lpress | &rpress : write("you picked : ", &pick | "nothing")
 }
 }
end

4. EVENT-DRIVEN INTERFACE FOR 3D OBJECT

SELECTION

Using 3D selection directly through WSection() function and

keyword &pick is easy. The programmer gives objects unique

names using WSection(), collects selected objects’ names by

scanning string names generated by &pick, and then takes the

appropriate action based on the selected object. For small

programs with few selectable objects this is a trivial task, but as

the program and its number of selectable objects gets larger,

managing selectable objects and the actions to be taken becomes

challenging especially if the objects are hierarchical. When using

selection, from a high level view, the programmer defines a

selectable object and assigns an action to be taken when this

object is selected. It can be thought of as a graphical user

interface (GUI) object; which is an on-screen entity that respond

to user events. When a programmer creates a button for example,

he does not worry about the button name (except to make it

readable and meaningful), and he does not worry about how or

when this button was clicked. All the programmer cares about is

to take an action if this button is clicked. This section discusses

the introduction of a new class to the Unicon language for the

purpose of managing 3D selection and adding a high level

abstracted layer for using 3D selection.

4.1. Design for the 3D Selection Class

A new class was introduced with the name Selection3D. The class

holds information about what objects are selectable, what events

should these objects respond to and what is the action to be taken

when an object is selected and receives an event that it should

respond to. Any selectable object can respond to one or more

mouse events. A separate table for each one of these mouse events

(except for CLICK and DRAG, they simply reuse other events’

tables) keeps all of the objects that can respond to that particular

event. For example there is a table of all objects that can respond

to a LEFT_CLICK event if any of these objects were selected.

This table is called Tleft_click. Figure 2 shows the mapping

from all of the mouse events that are recognized by this

class to their corresponding tables.
The Selection3D class uses another helper class to store

information about each selectable object: its name (given by the

user), the action associated with it, the class objects that holds the

action if the action is a method, and the event type (specified by

the user). Figure 3 shows the two classes and their relationship.

4.2. Using the Selection3D class

To make the Selection3D class available for a program in Unicon,

the following statement should be added at the beginning of the

source code.

link Selection3D

An instance of this class can be created simply by an assignment

statement. The following example line creates this instance and

store it in a variable called select3D

select3D := Selection3D()

The Selection3D class has three methods that can be called to

manage the 3D selection in the program. The first method is

selectable(), which is used to register new 3D objects to make

them selectable. This method takes up to four parameters in the

following order

 A string name of the 3D object. The name does not

affect the selection behavior in any way.

 A procedure/method name to be called when this 3D

object is selected

 An optional event type which could be any of the event

types shown in Figure 2. The default event type is

LEFT_CLICK

 The class object that has the method name (second

parameter). This is only valid (and mandatory) if the

second parameter is a method which is part of a class

object.

The method selectable() returns a string value which is referred to

as selection_id. selection_id is a unique value that can then be

passed to WSection() to mark a new 3D object name. The

following is an example of such use:

Figure 3. UML diagram for the classes used to

manage/control 3D object selection.

Figure 2. Events that are recognized by the Selection3D class

and the mapping between these events and their

corresponding object tables.

CLICK Tleft_click and Tright_click
LEFT_CLICK Tleft_click
RIGHT_CLICK Tright_click
DOUBLE_CLICK Tdouble_click
DRAG Tleft_drag and Tright_drag
LEFT_DRAG Tleft_drag
RIGHT_DRAG Tright_drag

select_id := select3D.selectable("red ball", on_red_ball)
WSection(select_id)

In this example a 3D object named “red ball” was registered to be

selectable. The procedure on_red_ball will be called if this 3D

object is selected. The third parameter is omitted which means the

3D object responds to the default event type and that is mouse left

click. on_red_ball is assumed to be a procedure name (not a

method) so nothing should be passed as a fourth parameter

(omitted also) because a procedure is not part of any object unlike

a method. The example also shows how is the returned value

select_id was passed to WSection().

The second method in Selection3D class is add_action(). This

method takes four parameters exactly like selectable() except for

the first parameter. Instead of taking a random string name, it

takes a string name that was returned and registered by

selectable() to add another action or response to another kind of

event. In the example above the following line of code can be

added right after the first line to make the red ball respond to

mouse right click by calling the procedure on_right_click():

select3D.add_action(select_id, on_right_click,
select3D.RIGHT_CLICK)

The third and the final method in the Selection3D class is

handle_events(). Normally this method should be part of the

event handling loop in the program. At least all types of mouse

events in Unicon should be passed to this method. This lets the

Selection3D class collect events information and picked objects

through &pick and take the appropriate action. Failure to pass any

kind of mouse events to the Selection3D class might cause it not

to produce the intended behavior. A correct way to use the method

handle_events() is shown toward the end of the example in the

following section:

4.3. Complete example

link selection3D
global select3D

procedure on_red_ball()
 write(" You picked the red ball!")
end

procedure on_blue_ball()
 write("You picked the blue ball")
end

procedure main()
&window := open("3D selection in Unicon",

"gl","size=500,500")
select3D := Selection3D()

begin a new selectable section/object
WAttrib("pick=on") #turn on 3D selection
select_id := select3D.selectable("red ball", on_red_ball)

WSection(select_id)
 Fg("red")
 DrawSphere(1, 0.5, 0, 0.5)

WSection() # end of the red ball

Draw a nonselectable green ball
WAttrib("pick=off") #turn off 3D selection
Fg("green")
DrawSphere(-1, 0.5, 0, 0.5)

begin a new selectable section/object
WAttrib("pick=on") #turn on 3D selection
select_id := select3D.selectable("blue ball", on_blue_ball)

WSection(select_id)
 Fg("blue")
 DrawSphere(0, -0.5, 0, 0.5)
WSection() # end of the blue ball

#setup the eye to look at the spheres
Eye(0,0,4, 0,0,0, 0,1,0)
Refresh()

enter an event loop to handle user events
repeat{
 if (ev := \Event()) then{
 select3D.handle_event(ev)
 }
 }
end

5. IMPLEMENTATION DETAILS

3D selection in OpenGL requires rendering the scene in a special

rendering mode called the GL_SELECT rendering mode [2]. In

this mode, the scene should be redrawn in the off-screen buffer -

without swapping it with the front buffer so that this process

would be hidden from the user. After setting up the selection

environment, objects in the scene must be rendered along with

unique integer names assigned to each one of them. This

selection mode works by restricting the drawing to a very small

area on the screen around the mouse cursor and creating the

viewing volume from that area back to the far Z-plane. All of the

objects that are rendered in this viewing volume are reported as

being selected.

In Unicon, each 3D graphics window has a Unicon list of lists and

records to keep track of all objects in a 3D graphics scene. This

list is maintained internally in Unicon’s window structure when

creating a window with "gl" parameter. Each entry in this list

contains information about the function name and the parameters

of that function. When a window needs to be redrawn, the window

is cleared, all attributes are reset to the defaults, and the Unicon

list of lists is traversed to redraw every object in the scene [9].

This implementation is very useful for 3D selection. Unlike the

usual use of selection in OpenGL in languages such as C, where

the programmer should keep a separate rendering function with

selection data for selection rendering mode, in Unicon the same

rendering function can be used and the selection code would be

executed or skipped dynamically depending on whether the

rendering pass is regular rendering mode or selection rendering

mode. The key points in the implementation of 3D selection in

Unicon include:

 Two variables were introduced to control the execution

of the selection code

o A state variable to turn on and off the

selection in the application

o A variable to control when to execute the

selection code. Even if the selection is on, the

selection code should be executed only once

after each mouse click (left click or right click

do the same)

 List of String names to be mapped with the integer ids

(OpenGL names) for selection

 String names are controlled by WSection() calls which

also stores the integer name mapped to each string

name. i.e WSection() maintains both a string name and

an integer name

 &pick generates all of the results from a list of string

6. CONCLUSIONS

This paper describes a very high level 3D object selection model

that was created for the Unicon programming language,

extending Unicon's 3D graphics API. The language hides most of

the implementation details which leads to a design that puts fewer

burdens on programmers when they use 3D object selection. The

model also adds a layer of abstraction in the form of a class that

encapsulates details and makes 3D object selection event-driven,

similar to common GUI environments. Most programmers are

familiar with GUI programming style, where the programmer

doesn’t have to worry about how to get the mouse to work or

where the mouse pointer is at the time of a click. The

programmer needs to worry only about what to do when an object

is picked. He provides a handler and connects it to a specific

object in the scene with a specific mouse event. This handler

then is called whenever the user triggered that event.

This model was put to work in the CVE, an open source

collaborative development environment (http://cve.sf.net). The

model proved to be very effective and provided the CVE

developers with a very easy access to 3D object selection,

enabling them to add new functionalities to the CVE virtual

world.

ACKNOWLEDMENT

The research was supported in part by NSF ATE grant number

0405072

7. REFERENCES

[1] Jeffery, C., El-khatib, O., Al-sharif, Z. & Martinez, N.

(2005). Programming Language Support For Collaborative

Virtual Environments. In Proceedings of 18th International

Conference on Computer Animation and Social Agents.

CGS.

[2] D. Shreiner, M. Woo, and J. Neider, OpenGL(R)

Programming Guide: The Official Guide to Learning

OpenGL, Version 1.2, 3rd ed. Addison-Wesley Longman,

Amsterdam

[3] The Java 3D Tutorial, Sun Microsystems. Pages 4.1- 4.52.

(Accessed Jan, 2011)

http://java.sun.com/developer/onlineTraining/java3d/j3d_tut

orial_ch4.pdf

[4] D. F. Savarese. Learning to Fly. JAVAPro, June 2003.

[5] Jeffery, C., Martinez, N., and Al-Gharaibeh, J. Unicon 3D

Graphics: User's Guide and Reference Manual (November.

1, 2010), Unicon Technical Report #9b. (Accessed Jan,

2011) http://unicon.org/utr/utr9b.pdf

[6] R. Griswold, C. Jeffery, and G. Townsend. Graphics

Programming in Icon. Peer to Peer Communications, San

Jose CA, 1998.

[7] Jeffery, C., Mohamed, S., Parlett, R., Pereda, R.

Programming with Unicon. (2005),. (Accessed Jan, 2011)

http://unicon.org/book/ub.pdf.

[8] R. E. Griswold and M. T. Griswold. The Icon Programming

Language. Peer to Peer Communications, San Jose, 1996.

[9] Jeffery, C., Martinez, N. The Implementation of Graphics in

Unicon Version 11 (June. 25, 2003), Unicon Technical

Report #5a. (Accessed Jan, 2011)

http://unicon.org/utr/utr5a.pdf

http://unicon.org/book/ub.pdf

