
Objective-COP: Objective Context Oriented
Programming

Basel Magableh
Department of Computer Science and Statistics

Trinity College Dublin, Ireland
Email:magablb@cs.tcd.ie

Stephen Barrett
Department of Computer Science and Statistics

Trinity College Dublin, Ireland
Email:stephen.barrett@tcd.ie

Abstract—This paper introduces a context-oriented

component-based application MDA (COCA-MDA) that

modularizes the application’s context-dependent behaviour into

context-oriented components. The components separate the

application’s functional concerns from the extra-functional

concerns. The application is organized into two casually

connected layers: the base layer, which provides the application’s

core structure, and the meta-layer, where the COCA-components

are located, and which provides composable units of behaviour.

This architecture provides software developers with a clear

modular structure, which reflects a clear separation of concerns

between the context provider and context consumer. In addition,

this paper demonstrates the possibility of implementing

context-oriented programming with Objective-C. The COCA-

middleware enables the context-aware application to modify

its behaviour dynamically, based on the execution context

conditions.

Index Terms—Adaptable middleware, Context-oriented com-

ponent, Self-adaptive application, Objective-COP, Context Ori-

ented Programming, .

I. INTRODUCTION

The main goal of model-driven architecture (MDA) is to
improve software quality by using a model as a means of
producing high-quality systems with decreased development
costs. In a similar way, MDA enables the developer to rep-
resent software solutions through a model and to evaluate
the model instead of the base code. The component model
design (COCA-components) has been proposed in previous
work in [15]. A COCA-component refers to any subpart
of the software system that is associated with a specific
context condition. A COCA-component is a unit of behaviour
contractually specified by interfaces and explicit dependences.
The use of Architecture Description Language (COCA-ADL)
provides code mobility for the same application into various
implementation platforms. The COCA-ADL syntax and design
have been proposed in previous work [16].

A self-adaptive application modifies its own structure and
behaviour in response to changes in its operating environment
[21]. The information that describes the computation envi-
ronment is called context information. Software applications
that use context information to adapt their behaviour are
called context-aware applications. Context awareness is a key
technology for enabling applications to be sensitive about the
social and physical environments in which they operate. Many

precise definitions of context can be found in the literature [6],
[9], [24].

In line with the definition proposed by Hirschfeld et al. [13],
context is considered as any information that is computation-
ally accessible and upon which behavioural variations depend.
Context information is provided by a context source [4] or
provider [22]. These providers are software or hardware enti-
ties distributed in the computation environment. Normally, a
runtime infrastructure provides context monitoring, gathering,
and reasoning among this context information. This includes
a context-binding mechanism, which refers to the association
between the application architecture’s units and the context
information [3].

The key challenge for constructing context-aware appli-
cations is the formulation and development of systems and
applications that are capable of managing (i.e. configuring,
adapting, optimizing, protecting, and healing) themselves.
This requires a platform support, including a model-based
approach, component-based system, and middleware, that is
able to reason about various heterogeneous context conditions.

Heterogeneous cross-cutting concerns refer to multiple
points that extend the application behaviour by adding multiple
extensions. Each extension is individually implemented by a
distinct piece of code, which affects exactly one join point.
This implies having multiple code fragments that are applied
in different program parts [2].

Hochmuller et al. refer to the technological and non-
functional properties of software architecture as extra-
functionalities [14]. In other works, they refer to concerns
in the architecture quality attributes that may be tangled, i.e.
several concerns are observed in the same component, or
scattered, i.e. the same concern is observed in more than one
component. Broens et al. [3] refer to these properties as context
requirements. This work refers to them as extra-functionalities
that extend the application behaviour in response to context
changes. Hirschfeld et al. refer to these behaviours as context-
dependent behaviours [13]. This research focuses on address-
ing these concerns as context-oriented components (COCA-
components). The COCA-components are managed by adapt-
able middleware, which modifies the application behaviours.

The rest of the article is structured as follows. Section II
provides a comparative analysis of the related works. The
COCA-MDA phases are described in Section III. Section



IV provides an overall description of the COCA-middleware.
Section V demonstrates a case study designed using the
COCA-MDA and implemented with the COCA-middleware.

II. RELATED WORKS

Compositional adaptation techniques can be used to achieve
dynamic context-driven adaptations [17]. Adaptation is di-
vided into internal and external approaches, based on the
separation of the adaptation mechanism from the application
logic. The internal approach intertwines the application and
the adaptation logic. As a result, context can be handled
directly at the code level by enriching the business logic of
the application with code fragments responsible for performing
context manipulation, thus providing the application code with
the required adaptive behaviour [23]. This approach usually
involves the extension of existing programming languages,
either at the syntax level or by providing complementary
external mechanisms. Context-oriented programming (COP)
has been proposed as an internal adaptation mechanism [11],
[13]. In this approach, the whole set of sensors, effectors,
and adaptation processes are mixed with the application code,
which often leads to poor scalability and maintainability.

The external approach uses an external adaptation engine
to perform the adaptation processes. In this approach, the
self-adapting software system consists of an adaptation engine
and adaptable software. The external engine implements the
adaptation logic, mostly with the aid of middleware [7], [10],
[19], a policy engine [1], or other application-independent
mechanisms. However, a complex software system requires
a mixed approach between internal and external adaptations,
which provides a composition of elements in an appropriate
architecture. The middleware flexibility in adopting a suitable
adaptation approach provides a lead to achieving the adap-
tation results with less cost and several levels of granularity
[23].

Fig. 1. Context-oriented component-based application model-driven archi-
tecture (COCA-MDA) development.

III. GENERIC PHASES OF COCA-MDA

The COCA-MDA follows the principles of the object man-
agement group (OMG) model-driven architecture. In MDA,
there are three different viewpoints to the software: the
computation-independent view (CIV), platform-independent

view (PIV), and platform-specific view (PSV). The CIV fo-
cuses on the environment of the system and the requirements
for the system, and hides the details of the software structure
and processing. The PIV focuses on the operation of a system
and hides the details that are dependent on the deployment
platform. The PSV combines the CIV and PIV with an
additional focus on the details of the use of a specific platform
by a software system [20].

The enterprise collaboration architecture (ECA) [12] is
another standard presented by OMG. ECA aims to provide
a development methodology to simplify the development of
component-based systems by means of a modelling framework
and conforming to the OMG-MDA. ECA describes a method-
ology for building a component-based system at varying and
mixed levels of granularity.

Component structure and behaviour are defined by parti-
tioning the system specification into several viewpoints. The
application’s architecture is described by recursive decomposi-
tion and assembly of parts to apply it to several domains. The
ECA comprises a set of five models. Each model consists of a
set of model elements that represent concepts needed to model
specific aspects of the software system. However, COCA-
MDA has adopted the component collaboration architecture
(CCA) and the entity model. The CCA details how to model
the structure and behaviour of the components that comprise a
system at varying and mixed levels of granularity. The entity
model describes a meta-model that may be used to model
entity objects that are a representation of concepts in the
application problem domain and define them as composable
components [12].

However, COCA-MDA adopts the CCA specification at the
Platform Independent Model (PIM) phase by partitioning the
software into three viewpoints: the structure, behaviour, and
enterprise viewpoints. The structure viewpoint focuses on the
core component of the self-adaptive application and hides the
context-driven component. The behaviour viewpoint focuses
on modelling the context-driven behaviour of the component,
which may be invoked in the application execution at runtime.
The enterprise viewpoint focuses on remote components or
services, which may be invoked from the distributed environ-
ment. The design of a context-aware application according
to the COCA-MDA approach in general involves six main
phases, as shown in Fig. 1.

1) Analysis: The requirements for the system are modelled
in a computation-independent model describing the situ-
ation in which the system will be used. Such a model is
sometimes called a domain model or a business model.
It may hide much or all of the information about the
use of automated data-processing systems. Typically,
such a model is independent of how the system is
implemented. A CIM is a model of a system that shows
the system in the environment in which it will operate,
and thus it helps in presenting exactly what the system
is expected to do. It is useful not only as an aid to
understanding a problem, but also as a mechanism for
predicting the exact behaviour of a software system as a



result of runtime changes. The result from this phase is a
requirements diagram describing the user and functional
requirements besides the extra-functional requirements
that describe a context-dependent functionality.

2) Modelling and design: Platform-independent model. The
platform-independent viewpoint focuses on the oper-
ation of a system while hiding the details necessary
for a particular platform. A platform-independent view
shows the part of the complete specification that does
not change from one platform to another. In this phase,
the requirements diagram is incorporated into a use-case
model. The use-cases describe the interactions between
the software system and the actor. The system-dependent
and environment-dependent behaviours are modelled as
an extension of the functional use-cases. The functional
use-cases are modelled in a class diagram describing the
application core functions. The extended use-cases are
modelled as another class diagram describing the appli-
cation behavioural view. The variant behaviour model
is supported by a state-machine model that describes
the application decision polices. The three models of
the application are used as input for the next phase, i.e.
model-to-model transformation.

3) Model-to-model transformation: The platform-
independent model and behavioural model are
transformed into architecture description language
(COCA-ADL). This phase includes model-to-
model transformation and model verification for
the application’s structure, behaviour, and enterprise
views. The COCA-ADL is implemented by extending
the xADL schema, which is an extensible XML
language. ArchStudio [8] helps developers to model
the architecture using three grouped models: activity
diagram, state diagram, and structure diagram.

4) Testing and validating: Tests the model and verifies its
fitness for the application goals and objectives.

5) Platform-specific model: The platform-specific model
produced by the transformation is a model of the same
system specified by the PIM; it also specifies how that
system makes use of the chosen platform. A PSM may
provide more or fewer details, depending on its purpose.
A PSM will be an implementation if it provides all the
information needed to construct a system and to put
it into operation, or it may act as a PIM that is used
for further refinement to a PSM that can be directly
implemented.

6) Code generation: Model-to-text includes model-to-text
transformation deployment and execution verification.
The COCA-ADL XMI code is transformed into the
implementation language.

IV. OVERVIEW OF THE COCA-MIDDLEWARE

The COCA-platform offers a context-aware middleware
environment for adjusting the application’s behaviour dynam-
ically. Fig. 2 shows the COCA-middleware architecture. The
platform is layered into four major layers. Each layer provides

Fig. 2. COCA-platform architecture.

an abstraction of the underlying technology. Each layer is
totally platform independent of any given technology. The
first layer represents the context-aware application. It provides
the user with GUI, functional properties, and non-functional
properties.

The second layer in the platform represents the COCA-
middleware. It has the middleware components. The middle-
ware has nine components in total. There are six computa-
tion components: the context manager, adaptation manager,
variation manager, components manager, policy manager, and
decomposition manager. These computation components are
linked to three data-storage repositories. These repositories
are the context repository, components repository, and policy
repository.

The third layer in the platform represents the resources
and services layer. It provides information about the device’s
resources, physical sensors, and remote services to the mid-
dleware. The context information is retrieved from the OS,
resources,and physical sensors. The OS kernel is located in
the fourth layer in Fig. 2. The OS sensor retrieves information
about the OS. Function calls are used to retrieve information
about CPU, memory, and disk space.

V. CONTEXT-ORIENTED COMPONENT-BASED
APPLICATION EXAMPLE

IPetra is a tourist-guide application that helps the client to
explore the magnificent historical city of Petra, Jordan. IPetra
offers a map–client interface maintained by an augmented
reality browser (ARB). The browser exhibits many points of
interest (POI) inside the physical outlook of the tool’s camera.
Information related to every POI is exhibited inside the camera
overlay outlook. The POIs comprise edifices, tourist services



Fig. 3. Location COCA-component with sublayers.

site, restaurants, hotels, and ATMs in Petra. The AR browser
offers an instantaneous live direct physical display inside the
portable camera. When the client positions the portable camera
in the direction of a building, an explanation confined to a
small area related to that edifice is shown to the client.

Constant use of the device’s camera, backed with attainment
data from many sensors, can consume the tool’s resources.
This needs the application to adjust its tasks among several
contexts to maintain quality of services without disrupting
the function’s tasks. The function requires frequent updates
of client position, network bandwidth, and battery level.

The self-adaptive context-aware IPetra application is de-
signed and implemented using the COCA-component model
and COCA-middleware proposed in [15]. Fig. 4 shows the
region that IPetra is monitoring, with sample PIOs; the AR
browser displays these PIOs inside the camera overlay view.

IPetra is required to adapt its behaviour and increase the
battery life. This is achieved by adopting a location service that
consumes less power. For example, if the battery level is low,
the IPetra application switches off the GPS location services
and uses the cell-tower location services. Using an IP-based
location reduces the accuracy of the location but saves battery
energy. In addition, the application may reduce the number of
POIs it displays to the most recent device location. Moreover,
the application reduces the frequency of the location updates.
On the other hand, if the battery level is high and healthy,
IPetra uses the GPS service with more accurate locations.
The application starts listening for all events in the monitored
region inside Petra city.

The IPetra application is modularized into several COCA-
components. Each component models one extra-functionality
such as the LocationCOCA − component in Fig. 3.
The COCA-component sublayers implement several context-
dependent functionalities that use the location service. Each
layer is activated by the middleware, based on context changes.

Listing 1. Loading COCA-component

//file: LocationCOCA−component.h

#import <objc/Object.h>
#import ”stdio.h”
#import ”Location Manager Delegate.h”

@class Location Manager Delegate;

@interface Update Location :Object <Location Manager Delegate> {
}

−(void) BatteryLevelDidChanged;

−(void) BandwidthLevelDidChanged;

−(void) LocationDidChanged;
@end

@implementation Update Location
−(void) BatteryLevelDidChanged {

[AdaptationManager BatteryLevelDidChanged]
}

−(void) BandwidthLevelDidChanged {
[AdaptationManager BandwidthLevelDidChanged]

}

−(void) LocationDidChanged {
[AdaptationManager LocationDidChanged]

}
@end

Listing 2. Location Manager Delegate
//file: Location Manager Delegate.h

#import ”GPS based Location.h”
#import ”Update Location.h”

@class GPS based Location;
@class Update Location;

@protocol Location Manager Delegate :GPS based Location <
Update Location>
−(void) GetCurrentLocation;
−(void) AddServices;
−(void) RemoveService;
@end

Listing 3. IP-based location Layer
//file: ”IP−based Location.h”

#import ”Location Manager Delegate.h”
@class Location Manager Delegate;
@interface IP−based Location : Location Manager Delegate {

private NSFloat frequancy;
private NSString locationFilter;
private NSFloat Accuracy;
private NSInterval timeInterval;

}
−(void) StartStandaredUpdate;
@end

@implementation IP−based Location
− (void)startStandardUpdates
{ // Create the location manager if this object does not // already have one.

if (nil == locationManager)
locationManager = [[CLLocationManager alloc] init];
locationManager.delegate = self;

locationManager.desiredAccuracy = kCLLocationAccuracyKilometer;
locationManager.distanceFilter = 1000;

[locationManager startUpdatingLocation];
}@end



A partial snapshot for the location manager COCA-
component is shown in Listing. 1. The code in listing 2 shows
the location manager delegate. The code in listing 3 shows the
implementation of a sub layer of COCA-component. This layer
implementing a call to an IP-based location update services.
The Figure 3 shows the COCA-component and its layers. This
component is invoked in the execution whenever “Location-
DidChanged” is detected by the context manager. The “Point-
of-interest” is a base-component that invokes a current loca-
tion interface. This interface invokes the “COCA-Component
Location Manager”, which handles this situation by adopting
one of the three dynamic layers. Each layer is implemented
as a layer-in-class. The class is simply a subclass of the
location manager. The “StandaredUpdates” layer is activated in
response to the notification “BatteryLevelDidChanged”. This
layer implements “StartStandaredUpdates”, which uses IP-
based location updates. The “Wifi-based location” layer is
activated whenever the battery level is notified and a Wifi
connection is found. The “GPS-based location” is activated
only when the battery level is high.

Fig. 4. IPetra region-monitoring view.

The middleware adopts the notification (observer) design
pattern [5], [18]. This reduces the tight coupling between

the context provider and consumer. In addition, the COCA-
middleware context manager only notifies the component
when the context information of interest is changed. This re-
duces the frequency of context information and provides one-
to-one binding between the context provider and consumer;
this enables the adaptation manger to dynamically decide
which behaviour should be adopted. The location manager

IPetra & COCA-
MW

IPetra

CPU Activity

Context Monitoring

Battery Consuming

Location update

Sleep/Wake

33% 59%

10% 59%

20% 40%

16% 34%

10% 95%

0%

25%

50%

75%

100%

CPU 
Activity

Context
 Monitoring

Battery 
Consuming

Location 
update

Sleep
/Wake

Eneragy Usage

IPetra & COCA-MW IPetra

Fig. 5. Energy usage for IPetra application.

COCA-component registers itself with the context manager
to be notified only when the battery level is low. When
low battery is found at runtime, the context manager notifies
[PostNotficationBatteryLevelDidChanged] to the adap-
tation manager and the location manager to activate its sub-
behavioural layer (BatteryLevelLowLayer). As a result, the
adaptation manager invokes the layer implementation, and ex-
ecutes and deactivates the “ArBrowserWithHighBatteryLevel”
layers.

Adaptation /configuration time Context Monitoring

IPetra & COCA-MW

IPetra

67 137

29 78

0

37.5

75

112.5

150

Adaptation /configuration time Context Monitoring

IPetra & COCA-MW IPetra

TABLE I
ADAPTATION TIME (MS)



Memory allocation Low battery adaptation High Battery adaptation

IPetra & COCA-MW

IPetra

9917 9917 9917

10306 10306 10306

8917

9437.75

9958.5

10479.25

11000

Memory allocation
Low battery 
adaptation

High Battery 
adaptation

IPetra & COCA-MW IPetra

TABLE II
MEMORY ALLOCATION IN KILO BYTE (KB)

The IPetra application has been implemented in two distinct
versions, i.e. with and without the COCA-middleware. The
battery life has been measured by running each version in
an IPhone Device 4. The experiments show that the COCA
IPetra application saved the battery-consuming level by 13%
in addition to its self-adaptability. Fig. 5 shows the experi-
mental results for energy usage. The IPetra implementation
without adopting the COCA-platform consumes more energy
during context monitoring, draining the battery faster. On the
other hand, when the same application adopts the COCA-
middleware, the application is able to adapt its behaviour and
use less energy. The adaptation/configuration time and the
context monitoring time for handling low and high battery-
levels are shown in Table I. It is worth mentioning here that
when the battery level is low, the COCA-middleware allocates
less memory because of the size of the COCA-component,
which is small compared to its implementation. The memory
allocation in kilo byte is shown in Table II.

REFERENCES

[1] Anthony, R., Chen, D., Pelc, M., Persson, M.: Context-aware adaptation
in dyscas. eceasst.cs.tu-berlin.de (2010)

[2] Apel, S., Batory, D., Rosenmüller, M.: On the structure of crosscutting
concerns: Using aspects or collaborations. GPCE Workshop on Aspect-
Oriented Product Line Engineering (AOPLE) (2006)

[3] Broens, T., Quartel, D., Sinderen, M.V.: Capturing context requirements.
Smart Sensing and Context pp. 223–238 (2007)

[4] Broens, T.: Dynamic context bindings: infrastructural support for
context-aware applications (2008)

[5] Buck, E., Yacktman, D.: Cocoa design patterns. Addidon-Wesley (2010)
[6] Chen, G., Kotz, D.: A survey of context-aware mobile computing

research. IEEE Workshop on Mobile Computing (Jan 2000)
[7] Chusho, T., Ishigure, H., Konda, N., Iwata, T.: Component-based ap-

plication development on architecture of a model, ui and components.
apsec p. 349 (2000)

[8] Dashofy, E., Asuncion, H., Hendrickson, S.: Archstudio 4: An
architecture-based meta-modeling environment. Software Engineering-
Companion (Jan 2007)

[9] Dey, A., Abowd, G., Salber, D.: A conceptual framework and a toolkit
for supporting the rapid prototyping of context-aware applications.
Human-Computer Interaction 16(2), 97–166 (2001)

[10] Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.:
Using architecture models for runtime adaptability. IEEE software 23(2),
62–70 (2006)

[11] Gassanenko, M.: Context-oriented programming. EuroForth’98 (1998)
[12] Group, O.M.: Enterprise collaboration architecture specification. Tech.

rep., Object Management Group inc (2004)
[13] Hirschfeld, R., Costanza, P., Nierstrasz, O.: Context-oriented program-

ming. Journal of Object Technology 7(3) (Jan 2008)
[14] Hochmüller, E., Dobrovnik, M.: Identifying types of extra-functional re-

quirements in the context of business process support systems. Workshop
on Requirements for Business Process Support (REBPS’03), Velden
(2003)

[15] Magableh, B., Barrett, S.: Pcoms: A component model for building
context-dependent applications. 2009 Computation World: Future Com-
puting pp. 44–48 (Jan 2009)

[16] Magableh, B., Barrett, S.: Primitivec-adl: Primitive component architec-
ture description language. INFOS2010 1, 1–8 (Mar 2010)

[17] McKinley, P., Sadjadi, S., Kasten, E., Cheng, B.: Composing adaptive
software. Computer 37(7), 56–64 (2004)

[18] Meyer, B.: Object-oriented software construction (2nd ed.). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA (1997)

[19] Mukhija, A., Glinz, M.: The casa approach to autonomic applications.
Proceedings of the 5th IEEE Workshop on Applications and Services in
Wireless Networks (ASWN 2005) (2005)

[20] The architecture of choice for a changing world.
http://www.omg.org/mda/ (October 2010)

[21] Oreizy, P., Gorlick, M., Taylor, R., Heimhigner, D., Johnson, G.,
Medvidovic, N., Quilici, A., Rosenblum, D., Wolf, A.: An architecture-
based approach to self-adaptive software. Intelligent Systems and Their
Applications, IEEE 14(3), 54–62 (1999)

[22] Paspallis, N., Papadopoulos, G.A.: An approach for developing adaptive,
mobile applications with separation of concerns. In: Proceedings of the
30th Annual International Computer Software and Applications Confer-
ence - Volume 01. pp. 299–306. IEEE Computer Society, Washington,
DC, USA (2006)

[23] Salehie, M., Tahvildari, L.: Self-adaptive software: Landscape and
research challenges. Transactions on Autonomous and Adaptive Systems
(TAAS 4(2) (May 2009)

[24] Schmidt, A., Beigl, M., Gellersen, H.: There is more to context than
location. Computers & Graphics 23(6), 893–901 (1999)


