Resource Information Service for Cloud Datacenters

Radko Zhelev

Institute on Parallel Processing

Bulgarian Academy of Sciences
Sofia, Bulgaria
zhelev@acad.bg

Abstract—Existing Grid systems make different choices abouthe
employed type of data storage used for keeping péstent
information about the presence and state of the ailable grid-

wide resources. They usually use a concrete stoetype — LDAP
[2], RDMBS [7], Round-robin database [5], etc. andbuild the
organization of their distributed infrastructure using the same
storage type for all resources employed within Grid Of course
each type of storage brings its specific advantagesnd
disadvantages regarding arbitrary considerations. th this paper
we propose a design approach for resource data péstency in
Cloud datacenters that does not restrict all the da to be kept in
a certain type of storage. Instead, different typesf resources can
choose an optimal storage for their data with respet to the
specific resource semantic requirements. Althoughata is spread
into different locations and fetched via differenttypes of queries,
we still implement efficient filtering for cross-resource-type
searches. We achieve this by employing the techniesi of logical
decomposition of Boolean expressions and executingartial

filters against the responsible parties.

Keywords - Cloud Systems; Grid Information Services;
Database; Search; Filtering; Query Processing

l. RELATED WORK OVERVIEW

A. Grid Information Services

Vasil Geogriev

Faculty on Mathematics and Informatics
University of Sofia “St. Cl. Ohridsky”
Sofia, Bulgaria
v.georgiev@fmi.uni-sofia.bg

system resources. Globus Toolkit [11] adopts hidviaally
based infrastructure and uses a LDAP storage WitAR_and
Xpath queries [4][9] for retrieving resource infation.
Condor [12] and its Hawkeye [13] are concentratad o
gathering of statistical information about the loahd
utilization of the available hardware resourcesisk dspace,
memory usage, open files, system load, etc. Thwrirdtion is
stored in the so called Round-robin database [Bichwis very
suitable for storing statistical information sindé has
functionality to consolidate (summarize) old stited data,
gradually reducing the resolution of the data aldimg time
axis. The Relational Grid Monitoring ArchitecturB-GMA)

[10] used within the European Data Grid, as it'snea says,
implements GMA [8] using a relational RDBMS datadbdsr

storing and retrieving of resource information 8@L queries.

C. Analysis and Motivation

Each storage type has its pros and cons and differes
could appear as most appropriate for differentazses. Data
about system users is usually kept in LDAP dataljagg
Over the years LDAP has become the most populeaiggdor
managing users’ data and most of the related uaeaagement
tools work exactly with LDAP servers. UnfortunatdlipAP
has certain disadvantages regarding the generachesa
functionality. The Round-robin database tool is eatlen for

A Grid Information Service is a software component,keeping statistical and hardware utilization data, again it is

whether singular or distributed, that maintainsoinfation

about the resources in distributed computing enwrent, and
makes that information available upon request. rmédion

Services has an Update Interface for populatingpures

entities data and Query Interface for retrievingJpdates are
performed within obtainment of status informatioonfi actual
resources, while Query Interface is used by adtnaic users,
grid applications, job schedulers, etc. The sojatbn of the

Query Interface determines the ease with whichsusan write
queries and the efficiency of query executionsafRahal and
object oriented databases support a standardiz&gp@merful

access method like SQL [3], which is declarative guaeries
are optimized so are highly efficient. Hierarchin@dels such
as LDAP use simplified access protocols. Therehacemain

sides of the Grid Information Service discussianohe view,

Grid Resource Information is best served by a hibreal

representation, and on the other side, that aarédtor at table
representation is more suitable [1].

B. Resource data in existing Grid systems

highly insufficient for more general-purpose pdmisy like
application states, software configurations, etceakivhile
there are types of resources that may prefer taunstuctured
or semi-structured data, thus not needing standatdbase
functionality at all — for instance, system log reg could
better be kept in simple files on the file systemaalistributed
file system (DFS). There could also be resources$ thay
report only runtime status, without any need forsigtency -
like currently active connections.

Another major issue introduced in the existing Giidtems
is that even if one certain storage type is usedryetype of
resources naturally needs a custom data structmréet
efficiently stored. For instance R-GMA defines gvegsource
type to be related to a certain database tablespititific name
and columns. Since Query Interface is usually vaaatabase
query (SQL or LDAP), one should possess intimataadge
on the specific data structures for every differesburce type.
The last functional disadvantage is the inability gerform
complex queries that relate information from difietr resource
types. Even in R-GMA, although employing relational

Existing grid middlewares make use of different,t bu database, it is not possible to perform table jdinslependent

always one certain storage type for keeping infeionaabout

This research is supported by the National Sci&ucel Proj.
JIBY02/22-2010

Producer tables reside on different physical locef6] [20].

These considerations lead us to the conclusion ¢heh
type of resources should be able to use an anpitygre of
storage for meeting efficiently its specific reguirents; Query
Interface needs to be decoupled from the physich d
structures, allowing more opportunities for dataituring as
well as more convenience in the Query Interface; tamally
we need well-defined capabilities for cross-resetype
filtering even if data is spread in various locatiand shapes.

The paper proceeds as follows. In chapter Il we enak
short overview of the “Generic Resource Framewatéfined
in our previous paper [15], on which basis we buildr
Information Service. In Il we present the data r&to
architecture and information management organiaatim
chapter IV are described the searches capabifitiegded by
our System. Chapters V and VI
implementation of those searches. In VIl we analyze
functional and performance aspects of the propatesign.
And in the conclusion, we summarize the achievealggand
outline the directions for future elaboration.

Il. GENERICRESOURCEFRAMEWORK — BRIEF SUMMARY

A. Resource Representation

Our resource framework defines a general abstradtio
representing diverse types of resources into atmifnterface
regardless of the underlying resource access pmbtand
related information structure. Its main charactessare:

» A Resource stateis represented as a set of State

Variables, which are simply name-value pairs.

» EveryResourcehas aype and id associated with it. The
type of Resource identifies its interface, i.e.rgv@esource of
a given type has a constant list of State Variahlmes. There
may be many Resource instances of the same typea\ahg
the same list of State Variable names, but beindifierent
state, i.e. different values for the State Variable

 Resources may be arranged hierarchically - every
Resource instance may have one or more sub Resaumden
turn may have a parent Resource. This allows moreptex
entities to be decomposed to a hierarchy of subpcomnts,
achieving arbitrary level of granularity. For therpose of
extensibility it is responsibility to the sub Resmeito attach
itself to its parent.

* In datacenter-wide scope, we can say that Resoarees
physically or logically hosted on some autonomoatackenter
entity that we can call ®&esource Host A Resource Host
could be a datacenter node hosting different Resoemtities —
native processes, user applications, system logg, fietc.
Resource Hosts could also be completely logicabkuikie user
accounts or predefined maintenance procedures ntiyrre
performed in the datacenter. Thus we distinguish kimds of
Resources — Host Resources and Component Resobvesy.
Component Resource “belongs” to certain Host Resour
Again for the purpose of extensibility it is resgdnility to the
Component Resource to attach itself to the respeEtost.

In summary, we can say that Resources are repegsasta
set of State Variables, which is determined by Resource

present an efficien
[

type. There are defined two relations that may Résources
between different types — th®st-componentrelation and the
parent-sub relation - figure 1.

Cloud Datacenter

Host Resource

ComponentResource

SO

Figure 1. Resource relations

B. Topology

In our resource framework described in [15], manag&
of datacenter resources is handled by a set ofr-ggeesthat
we call Management Servers. The super-peers dya#ynic
balance the load of resource management in a mématezach
super-peer is responsible for a separate sub-sethef
datacenter resources. The details of this mechafiisinare
not important to our exposition, but as we shak & the
Analysis section, the presence of such a distribuésource
management is integrated very well with our dat@estoncept
decisions, and influences the performance of gseayches.

lll. RESOURCEINFORMATION MANAGEMENT

On figure 2 is shown a simple draft of our thregela
system architecture. The Admin Applications arenested in
management and monitoring of datacenter resourthsy
interact with the System layer that handles allegieractivities
like partial processings and load balancing.

Admin Applications
Admin
T T T T T T T e haferface
Generic Besource Framework
Frovider
T TITT T T T T T T T T ferface
Resource Prowviders

Figure 2. System architecture

The System retrieves resource
appropriate Resource Providers in the bottom laybere is
one Resource Provider for each resource type, whéctdles
directly the communication with the underlying reste and
maintains the persistency of resource informatioreéded. On
behalf of the Providers, the System could be conéig with
ready-to-use access to different types of stord@B3BMS,
LDAP, Round-robin, DFS), so that Providers to b db use
interface to a respective storage without caringuabthe
configuration and availability of the database. Fedleration
scaling purposes the System could be configurell avbitrary

information from the

number of storage instances of the same type. dviare

A. No cross-type relation

completely unconstrained about choosing the storage s case encompasses filtering of resources ohasis of

typel/instance, and the format of their tables aatd.dOn figure
3 is shown how a resource information request fldweugh
the System, so that its data to be flexibly regvirom
arbitrary place and in arbitrary manner by the Rfew

R I N I R
> o> o
RDELIZ LDAFP Iledia
Databage Directory Server Databasze
h
1. Request <2 - 4 2. Request
[
Resource Resource
State Other type DB State
L Zecess interface >
| LDAF &ccess Interface I 3, Get
g Stared o
g Information| -o
o ‘ RDMBS Access Intetface ‘ < £
2 3 3
gf' 4. Feturn o
o Generic Resource Stored E
v§: r::)l Storage Interface Infgrmaﬁog E
> DFs
6. Return | Local FS -~
Resource - 5. Return
Siate Found Robin Resource
-t System DE Intetface State

Figure 3. Request-response flow

The Admin Application requests a resource statenftbe
System (1). Notice that Admin Applications view ogasces
behind the generic resource abstraction and dadeal with
direct database queries. The System redirects dhetocthe
appropriate Provider for the respective resourpe t§2). The
Provider gathers the resource information in his oway,

State Variable conditions in the scope of singlsdrece type.
A meaningful search example would be to list afloweces of
type “application” with name “foo” and state “nasponding”.
A filter explaining this criterion could look asllmws:

application: (hame == foo & state == not_responding

B. Host-component relations

This includes more complex queries that join infation
from different resource types on our host-compomelation
(defined in Chapter Il). The meaning of this sedscto enable
administrators to find datacenter nodes (or otbgichl Host
Resources) that “contain” or “not contain” othern@nent
Resources satisfying criteria on their states;thedopposite —
to find Component Resources that belong to Hodisfwag
criteria on the Host state. A meaningful examplailde to
find the datacenter nodes that contain certain icgimn
instance named “foo”, and the cpu usage for thatenis
underutilized (<20%). The filter could look as fmls:

node: (cpu-usage < 20 & contains(app: (name == §30)

In this example, we used an operator named “cositam
express relation with a Component Resource thebrigained
within the searched Host Resources. The reverskdiore
search would be to find the Component Resourcesyd
“application” with name “foo”, that belong to Hostgth cpu
usage under 20%. We will use “belongs” for thistieh:

app: (name == foo & belongs(node: (cpu-usage < 20))

C. Parent-sub relations

This case includes joining of information on ourgrd-sub
relations (Chapter Il). For instance, we if there @omponent

Resources of typapplicationwith sub-Component Resources
of typestatisticthat provide some runtime performance metrics
about the parensipplication we may need to search for all

potentially using some storage access interfaceiged by the
System (4) and (5). Note that there is no condtrawer the

structure and format of data; the Provider wouldd fihis

resource data in the same shape, in which it wpslated by
him via the same storage interface. The Providaesents the
resource data into the generic abstraction andn=it to the
System (5). The result is brought up to the Admpplcation

(6). Note that steps (3) and (4) are optional apdtai the

Provider to be performed. The Provider may also thet
resource information via external mechanisms natiiwig with

System facilities, or can just return runtime imh@ation if

storage is not needed for his type of resources.

V. SEARCHSCENARIOS

A main issue we introduce with our flexible datarstis
what kinds of searches we can perform if data i®a&p so
unrestrictedly. In our framework, we can separag gearch
evaluations into three main sub-groups - presemsgectively
in sections A, B and C. The separation is doneherbasis of
participation of a complex cross-resource-typetiata

Note: in this paper, we will provide filter texts as self
explained examples, since specifying complete fittemmar
is not in focus of our exposition and current goals

application instances with certain performanceisias. A
possible expressing of such filter would be:

app: (name == foo & sub(statistic: (cache-hit-rates0)))

Analogously to the host-component relation, we gae the
parent-sub relation in both directions resourderft

statistic: (cache-hit-rate < 50 & parent (app: (nam= f00)))

V. THERESOURCEPROVIDER FILTER PLUGIN

To enable searches based on resource statesacriteei
System employs two basic approaches. One is téevetr
resource states from the Providers and then topergtate by
state matching against the search filter. This @@t seems
far not efficient, since it discards any db leviingation of
not needed data and does not prevent loading anpally
redundant information from db into the main memdgyen
though, this approach could be good enough foaietypes
of resources considering their specific managerusatcases.
In order to enable utilization of the standard skes provided

by databases, we define that a Resource Provider ma

optionally implement a so called - Filter Plugiterface. There

could be one Filter Plugin for a given resourceetiipat should
be able to interpret logical filters, whose baserapds are
State Variable conditions. The job of the Filteud#h is to
translate the filter into its storage-specificeiinhg abilities and
retrieve a filtered set of requested resourceiestitVe define
the interface of a Filter Plugin to be consistedind method:

» listResources(Filter)

A. Processing filters composed only of Simple Operands

In this simplest case all filtering conditions arethe State
Variables of the requested resource type. Therenareross-
type relations so the filter could be fully forwart to the
listResources(Filterinethod of the respective Resource Plugin.
The result produced by the Plugin will be finaluledor the
processed filter.

The result expected from the Plugins is a set fupleg processing filters with Join Operands

representing resource instance elements that ysdlisfinput
filter. Each tuple should be consisted of the folloy three
properties of a resourcergsource-id, host-id, parentJdThis
limited information is completely enough for thesB&m to
perform the ‘joins’ on the possible cross-resouyqee
relations as we shall see further.

In general, each Plugin is obliged to perform fitig only
in the scope of its resource type. Since Pluginge hténe
knowledge on the structure of data they employyatild be
easy for them to translate the generic filter iatstorage and
schema specific query. For instance, utilizers @BRIS
storage can transform the filters into SQL querggmrding the
exact tables employed. If we consider example gefiker:

(name == foo & state == not_responding)
The example SQL transformation could be:

select * from my_applications where app_name ="‘fand
app_state = ‘not_responding’

LDAP utilizers can translate this example into #isdile LDAP
search with respect to the structure of their egtri

(&(name=foo)(version=xxx))

Utiliziers of the local file system can brute-fdilyi read
unordered entries and test whether the entry at&#bsatisfy
the search criteria (no real benefit achieved)tH@y can read
only part of all entries if data is semi-structusgdsome degree
into suitable directories or ordered within specffie names.

VI.

Our strategy will be to decompose the filters iparts
suitable for passing them to the separate FiltegiRs. The
partial results obtained from Plugins should thee b
consolidated so that correct filtered set to bedpeed in the
end. To prepare the ground for such decompositi@n first
classify the following distinguishable types ofdil Operands:

PERFORMINGSEARCHES

» Simple Operands — name-value conditions targetdteto
searched resource type. For instamegne == foo

» Join Operands — filters on cross-type resourcesatteain
certain relation with the resources of the requksipe. In
Chapter IV, we used the so called Operattzentains’,
“belongs’, “parent” and “sub” to express the concrete
relations. All of them accept a nested filter fesaources of a
new type. Such a Join Operator together with itstatefilter
we distinguish as a Join Operafithe nested filters may in turn
be composed of both - Simple and Join Operands.

Our processing algorithm is recursive, so that stgpe
relations could be nested in arbitrary depth.

Distinguishing the Simple and Join Operands asriest
above, we transform the filter into Minimal Disjuive
Normal Form (MDNF) using the famous Quine-McClusky
algorithm for minimizing Boolean expressions. Thiterf gets
transformed into the following disjunction:

F=Ko|Ki] ... Ky)

where each Kis a conjunction of Simple and Join Operands:

Ki= SRy &... SR, & JPp& ... JPg (2
SR, and JR stand respectively for Simple and Join Operands,
each of which may potentially participate with néga

The (SR, &... SR,) part of the conjunctions is interpreted
with the means described in Section A. The setlygred by
this partial filter is further intersected by each the JP
Operands remained in the conjunction. Table | shtvedields
on which the sets are intersected for the diffed@nOperands:

TABLE I. JOIN FIELDS [INTERSECTION
Left-hand / Right-hand Operands Join
SP JP Operator
[res-id, host-id, parent-id] [res-idhost-id, parent-id] contains
[res-id,host-id, parent-id] fes-id, host-id, parent-id] belongs
[res-id, host-id, parent-id] | [res-id, host-igarent-id] sub
[res-id, host-idparent-id] | [res-id, host-id, parent-id] parent

Intersection is done on the fields in bold
To obtain the set produced by a JP Operand (befing it
in intersection) we evaluate its nested filter rsuely as
described in this Section B, i.e. starting agaithwWMDNF
decomposition. In case the nested filter includely Gimple
Operands, it is evaluated as described in Section A

If the JP is negated in the conjunction, the System
calculates a set-difference of {all available Reses of the
related type} and {the Resources produced by ther&m}.

When all conjunctions are evaluated, the Systengese
their results by performing a set-union.

To compute union, intersection and difference af sets,
there are two general approaches. If at least btieeosets is
small enough to fit in a RAM buffer, the calculatics done
using a one-pass algorithm, i.e. at once withouingus
temporarily stored results. If data is too largee tSystem
employs a two-pass algorithm. Two-pass algorithme a

characterized by processing parts of the dataingtéemporal
results to the disk, then reading them again forthér
processing. Reference [16] provides some nice iisers of
two-phase algorithms for set-operations based otingoand
based on hashing.

VIl. ANALYSIS

A. First Order Logic

Most existing database and storage tools provilderifig
capabilities only in the limited scope of the Prsitional
Logic. The Propositional Logic is not Turing conteldimiting
the problems one can define, because it cannoessriteria
for the composition of data [19]. First Order Logixtends the
Propositional Logic with two new quantifier concept
specifically universal and existential quantifietdniversal
guantifiers allow checking that something is traedverything
— normally supported by the ‘forall' conditionalemkent.
Existential quantifiers check for the existencesofmething -
supported with 'not' and 'exists' conditional elatae

For our search capabilities, we inescapably emghleyFirst
Order Logic to express criteria on cross-type i@tet For
instance we express evaluation of criteria forifigdResource
Hosts that “contain” or “not contain” a specific @ponent
Resource (recall that we support negation upon JRe
Operands). This is clearly a support of existergisntifier, to
which we give specific names with relevance todbetext of
our resource compositionscentains, belongs, pareahdsuh

Regarding the ‘forall’ universal quantifier, we caay it is
expressible by ‘not exists’, so we may say we mteviniversal
quantifier capability, too. For example listing datacenter
nodes where all application instances are (@tate

‘not_responding’) can actually be listed as nodes that not

contain an application istate != ‘not_responding)

B. Supporting more cross-type relations if needed

To enable such functionally rich search capabidlitjeith
subjective to our purposes), we generalized thatiosls
between resources, bringing these relations updnrésource
abstraction -host-componenand parent-sub In this way, we
mandated Resource Providers to maintain a consttdormat
for the resource relations so that every Resowcerihg its
resource-id, host-icand parent-id Except for this obligation,

we are absolutely freeing Resource Providers to use Regarding

unconstrained data structures for their Resouatesstas well
as to choose a physical storage of arbitrary thpehest fits to
the resource information demand. With this approah
achieve together - flexibility in data storing anell-defined
joining of data. Although our joins are not fullyrictional and
are preliminary limited to théost-componenand parent-sub
relations, the employed strategy works fine for purposes
simply because we get a rich-enough search capebiind a
lightweight evaluation in the same time.

If we need to create an extended System with aahditi
join capability on a new relation, all we have id to define
this new relation in the resource abstraction, tanelxtend the
tuple retrieved by the Filter Plugin interface,tbat respective
intersection to be done on the new join-fields. iAsay be

seen, although we closely relate the proposed igabs to the
specifics of our resource framework, the desigridccbe easily
adopted by other infrastructures.

C. Functional comparison with other Systems

To implement the First Order Logic needed in owarck
scenarios we used techniques employed in relatistabases
where data is structured into tables and varioussjare
possible over the data tuples. Actually, only thkational type
of database offers support for First Order Logierips. If we
need to rely on LDAP type of storage, we could negform
the ‘not exists’ with an LDAP search request. Netithat
‘exists’ is somewhat feasible, since we can findl reDAP
objects having reference to the cross-type ergitiipugh there
will remain some duplication issues.

Although R-GMA is Grid Information System with
relational storage that is expected to support ¢exngelation
searches upon resources, the reality is slightiferént. R-
GMA uses physically federated database serversREBMA
is not a distributed database management systestealh it
relies on a much looser coupling of data provideceoss a
Grid [6] and does not support implicit joining oatd from
different type Producers.

D. Performance Analysis

In this chapter, we shall try to analyze what penfance
impact our data store should imply in comparisoth\ai single
type data-store as it is with the existing gridusohs. The
workloads relative to an Information Service are:

e Loading Resource states by Admin Applications
» Populating data by Resource Providers
Search query evaluations

Regarding retrieval of Resource states (figure B) a
population of data, we can say that our Systemldhmeinever
outperformed, because every resource is fetchedigdated)
against the optimum possible type of storage. Tglkin
examples, statistics data could be fetched fronnBaabin db
tool where data is preliminary summarized, log iestr
information is read from DFS instead of heavy-weifhly-
functional database, users’ data comes via somelgmopighly
optimized user management tool working normaliyhviDAP

the searching performance, we
distinguish two searching sub cases. For simpleiegiaithout
cross-type relations, our System should not be nagai
outperformed, since the whole filter is translaiefd storage-
specific query and again processed against thenaptipe of
storage for the respective resource. The more doatedl sub
case is when searches relate cross-resource-tiqrenation.
We shall compare our System to R-GMA configurechwat
centralized relational database, since currenily iththe only
famous grid configuration that can support simfianctional
cross-type capabilities. When database is cergdlizable
joins for different Producers become possible, caitfn
centralization brings more serious drawbacks likee t
scalability bottleneck and the single point of dad.

should

The main difference between our System and a dizeia
RDBMS regarding cross-type searches is within ogstesn-
handled processing of partially executed filterscoparative
disadvantage of our System is that we retrieve fdatabases
some redundant information that otherwise coulélminated
at db level, i.e. if the set-operations were dondhe database
machine instead of transporting the partial sets oto
processing node. Since we talk about transportatyimdant
information, we chose the network volume as a seprative
comparison metric.

TABLE I1. NEWORKVOLUME COMPARISON
Set Size of Set Operands Network Volume
operatin | s | sz | JOONS [Pty
Union M M 32M 2M
Intersection M 1/2M 2M
Difference 2M M M 3M

In table Il, we show a relative difference of tretalvolume
transmitted from db when the employed set-operatiare
performed by RDBMS or by our System. If we assuhme t
each of the 3 operations has equal probabilityetpdrformed,
then our drawback is 3M versus 7M, or we can catelinat
we retrieve 7/3 (~2.3) times more data from datalies each
set-operation performed on our processing nodes.

As compensation to this drawback, our approacbdiuices
a set of performance advantages and speed ugsaec 11-B,
we mentioned that our processing nodes are orghreze
cluster of super-peers. Since our cluster nodesk vawer
independent not-intersected sets of
mechanisms are explained in [16]), our set-openatlzecome
a distributed job with high parallelization effioiey.
Additional unignorable speed up we can introducth winis
parallelization is possible saving of the disk 1/0s the two-
phase algorithms within set-operations. As state¥lj two-
phase algorithm would be needed if the smallest-det is too
large to fit in a RAM buffer. In our cluster of seippeers, the
size of each retrieved set is reduced by a fadtdt, avhere N
is the number of super-peers. This provides an roppity for
Cloud System owners to configure their datacentétls an
adequate number of super-peers with regards teatune of
the managed datacenter, so that two-phase opeydiiome
eliminated due to the reduced amount of processdd by
each super-peer. To make a distinction, the diGksivings
would not be possible if set-operations are pramkssn a
single database machine.

VIIl. CONCLUSIONS ANDFUTURE WORK

In this paper we have proposed a flexible desigramf
Information Service that allows arbitrary storagget and
unconstrained data structures to be used for vafiesources.
We facilitate the administration of resources bgujding the
Query Interface from the underlying data structurége also
provide a lightweight and still rich functionalityegarding
search capabilities. As for the performance, owst&y seems
promising to be outperforming existing Grid Inforioa

Resources t(exagal] A

Services, but this should be further proven. Ouuré work
will be concentrated on creating a prototype anddooting
comparative measurements that demonstrate thdityiafithe
system, particularly in an actual deployment.

REFERENCES

[1] Plale, B., P. Dinda, and G. Laszewski, “Key Consepid Services of a
Grid Information Service”. ISCA 15th Internationdbarallel and
Distributed Computing Systems (PDCS), 2002.

[2] Arkills, B (2003). LDAP Directories Explained: Amtroduction and
Analysis. Addison-Wesley Professional. ISBN 020198X.

[3] Beaulieu, Alan (April 2009). Mary E Treseler. ecedrning SQL (2nd
ed.). Sebastapol, CA, USA: O'Reilly. ISBN 978-0-52883-0.

[4] Anders Berglund, Scott Boag, Don Chamberlin, MaryFernandez,
Michael Kay, Jonathan Robie, and Jerome Simeon. X¥th Language
(XPath) 2.0. Technical Report W3C Working Draft,rsfen 2.0, World
Wide Web Consortium, December 2001.
http://iwww.w3.org/TR/xpath20/.

[5] Round Robin Database Tool (RRDtool). http://os#keetch/rrdtool.

[6] R-GMA System Specification Version 6.2.0: http://ww
gma.org/documentation/specification.pdf

[71 Codd, E.F. (1970). "A Relational Model of Data farge Shared Data
Banks". Communications of the ACM 13 (6): 377-387.
doi:10.1145/362384.362685.

[8] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swan, Taylor and R.
Wolski, A Grid Monitoring Architecture, Global Gri6orum, Lemont,
lllinois, U.S.A., GFD.I.7, January 2002

[9] Howes, T.: RFC 1960: A String Representation of IED8earch Filters.
IETF. (1996)

A. Cooke, AJ.G. Gray, L. Ma, W. Nutt, J. Magowav, Oevers, P.
Taylor, R. Byrom, L. Field, S. Hicks, J. Leake, Boni, A.Wilson, R.
Cordenonsi, L. Cornwall, A. Djaoui, S. Fisher,N. dRorszki, B.
Coghlan, S. Kenny, D. O'Callaghan, R-GMA: an infation
integration system for grid monitoring, in: Procegd of the 10th
International Conference on Cooperative Informatystems, 2003.

Globus Primer 4 available at
http://www.globus.org/toolkit/docs/4.0/key/

Douglas Thain, Todd Tannenbaum, and Miron LivnyoriGor and the
Grid", in Fran Berman, Anthony J. G. Hey, GeoffrEgx, in Grid
Computing: Making the Global Infrastructure A RealiJohn Wiley,
2003, ISBN:0-470-85319-0.

Hawkeye Team. Hawkeye, Monitoring and Managemenbl Tor
Distributed Systems, 2004. http://www.cs.wisc.edofior/hawkeye

Zhelev, R., V. Georgiev. 2010. Load Balanced ResoiManagement
for Cloud Systems. 4th International Conference laformation

Systems and Grid Technologies, ISGT'2010, 28-29% ®IB09, Sofia,
Bulgaria.

Zhelev, R., V. Georgiev. 2010. Generic Resourcenermmork for Cloud
Systems. 5th International Conference Distributedn@uting and Grid
Technologies in Science and Education, GRID'20X0J@ne - 04. July
2010, Dubna, Russia.

H. Garcia-Molina, J. Ullman, J. Widom, Database t&ys: The
Complete Book, Prentice Hall, Upper Saddle RiveswNersey, 2002.

Kobsa, A. and Fink, J.: An LDAP-Based User Model®erver and its
Evaluation. User Modeling and User-Adapted IntéaactThe Journal
of Personalization Research 16, (2006) 129-169, D®D1007/s11257-
006-9006-5.

R. M. Smullyan. First-Order Logic. Springer-Verladgieidelberg,
Germany, 1968.

Duda, C., Kossmann, D., Zhou, C. — Predicate-basddxing for
desktop search (Lang.: eng). — In: VLDB journal(2r80)5, pp. 735-
758

W. Xing, O. Corcho, C. Goble, and M. Dikaiakos,fdrmation Quality
Evaluation for Grid Information Services,” submittéo CoreGrid
Symposium in conjunction with Euro-Par 2007.

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

