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Abstract—Existing Grid systems make different choices about the 
employed type of data storage used for keeping persistent 
information about the presence and state of the available grid-
wide resources.  They usually use a concrete storage type – LDAP 
[2], RDMBS [7], Round-robin database [5], etc. and build the 
organization of their distributed infrastructure us ing the same 
storage type for all resources employed within Grid. Of course 
each type of storage brings its specific advantages and 
disadvantages regarding arbitrary considerations. In this paper 
we propose a design approach for resource data persistency in 
Cloud datacenters that does not restrict all the data to be kept in 
a certain type of storage. Instead, different types of resources can 
choose an optimal storage for their data with respect to the 
specific resource semantic requirements. Although data is spread 
into different locations and fetched via different types of queries, 
we still implement efficient filtering for cross-resource-type 
searches. We achieve this by employing the techniques of logical 
decomposition of Boolean expressions and executing partial 
filters against the responsible parties.  
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I.  RELATED WORK OVERVIEW  

A. Grid Information Services 

A Grid Information Service is a software component, 
whether singular or distributed, that maintains information 
about the resources in distributed computing environment, and 
makes that information available upon request. Information 
Services has an Update Interface for populating resource 
entities data and Query Interface for retrieving it. Updates are 
performed within obtainment of status information from actual 
resources, while Query Interface is used by administrator users, 
grid applications, job schedulers, etc. The sophistication of the 
Query Interface determines the ease with which users can write 
queries and the efficiency of query executions. Relational and 
object oriented databases support a standardized and powerful 
access method like SQL [3], which is declarative and queries 
are optimized so are highly efficient. Hierarchical models such 
as LDAP use simplified access protocols. There are two main 
sides of the Grid Information Service discussion. In one view, 
Grid Resource Information is best served by a hierarchical 
representation, and on the other side, that a relational or at table 
representation is more suitable [1].  

B. Resource data in existing Grid systems 

Existing grid middlewares make use of different, but 
always one certain storage type for keeping information about 

system resources. Globus Toolkit [11] adopts hierarchically 
based infrastructure and uses a LDAP storage with LDAP and 
Xpath queries [4][9] for retrieving resource information. 
Condor [12] and its Hawkeye [13] are concentrated on 
gathering of statistical information about the load and 
utilization of the available hardware resources - disk space, 
memory usage, open files, system load, etc. The information is 
stored in the so called Round-robin database [5], which is very 
suitable for storing statistical information since it has 
functionality to consolidate (summarize) old statistical data, 
gradually reducing the resolution of the data along the time 
axis. The Relational Grid Monitoring Architecture (R-GMA) 
[10] used within the European Data Grid, as it’s names says, 
implements GMA [8] using a relational RDBMS database for 
storing and retrieving of resource information via SQL queries. 

C. Analysis and Motivation 

Each storage type has its pros and cons and different ones 
could appear as most appropriate for different use cases. Data 
about system users is usually kept in LDAP database [17]. 
Over the years LDAP has become the most popular storage for 
managing users’ data and most of the related user management 
tools work exactly with LDAP servers. Unfortunately LDAP 
has certain disadvantages regarding the general searches 
functionality. The Round-robin database tool is unbeaten for 
keeping statistical and hardware utilization data, but again it is 
highly insufficient for more general-purpose persistency like 
application states, software configurations, etc. Meanwhile 
there are types of resources that may prefer to use unstructured 
or semi-structured data, thus not needing standard database 
functionality at all – for instance, system log entries could 
better be kept in simple files on the file system or a distributed 
file system (DFS). There could also be resources that may 
report only runtime status, without any need for persistency - 
like currently active connections.  

Another major issue introduced in the existing Grid systems 
is that even if one certain storage type is used, every type of 
resources naturally needs a custom data structure to be 
efficiently stored. For instance R-GMA defines every resource 
type to be related to a certain database table with specific name 
and columns. Since Query Interface is usually a native database 
query (SQL or LDAP), one should possess intimate knowledge 
on the specific data structures for every different resource type. 
The last functional disadvantage is the inability to perform 
complex queries that relate information from different resource 
types. Even in R-GMA, although employing relational 
database, it is not possible to perform table joins if independent 
Producer tables reside on different physical location [6] [20]. 
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These considerations lead us to the conclusion that each 
type of resources should be able to use an arbitrary type of 
storage for meeting efficiently its specific requirements; Query 
Interface needs to be decoupled from the physical data 
structures, allowing more opportunities for data structuring as 
well as more convenience in the Query Interface; and finally 
we need well-defined capabilities for cross-resource-type 
filtering even if data is spread in various locations and shapes. 

The paper proceeds as follows. In chapter II we make a 
short overview of the “Generic Resource Framework” defined 
in our previous paper [15], on which basis we build our 
Information Service. In III we present the data store 
architecture and information management organization. In 
chapter IV are described the searches capabilities provided by 
our System. Chapters V and VI present an efficient 
implementation of those searches. In VII we analyze the 
functional and performance aspects of the proposed design. 
And in the conclusion, we summarize the achieved goals and 
outline the directions for future elaboration. 

II. GENERIC RESOURCE FRAMEWORK – BRIEF SUMMARY  

A. Resource Representation 

Our resource framework defines a general abstraction for 
representing diverse types of resources into a uniform interface 
regardless of the underlying resource access protocol and 
related information structure. Its main characteristics are:  

• A Resource state is represented as a set of State 
Variables, which are simply name-value pairs.  

• Every Resource has a type and id associated with it. The 
type of Resource identifies its interface, i.e. every Resource of 
a given type has a constant list of State Variable names. There 
may be many Resource instances of the same type, all having 
the same list of State Variable names, but being in different 
state, i.e. different values for the State Variables. 

• Resources may be arranged hierarchically - every 
Resource instance may have one or more sub Resources and in 
turn may have a parent Resource. This allows more complex 
entities to be decomposed to a hierarchy of sub-components, 
achieving arbitrary level of granularity. For the purpose of 
extensibility it is responsibility to the sub Resource to attach 
itself to its parent.  

• In datacenter-wide scope, we can say that Resources are 
physically or logically hosted on some autonomous datacenter 
entity that we can call a Resource Host. A Resource Host 
could be a datacenter node hosting different Resource entities – 
native processes, user applications, system log files, etc. 
Resource Hosts could also be completely logical units like user 
accounts or predefined maintenance procedures currently 
performed in the datacenter. Thus we distinguish two kinds of 
Resources – Host Resources and Component Resources. Every 
Component Resource “belongs” to certain Host Resource. 
Again for the purpose of extensibility it is responsibility to the 
Component Resource to attach itself to the respective Host.  

In summary, we can say that Resources are represented as a 
set of State Variables, which is determined by the Resource 

type. There are defined two relations that may link Resources 
between different types – the host-component relation and the 
parent-sub relation - figure 1.  

 

Figure 1.  Resource relations 

B. Topology 

In our resource framework described in [15], management 
of datacenter resources is handled by a set of super-peers that 
we call Management Servers. The super-peers dynamically 
balance the load of resource management in a manner that each 
super-peer is responsible for a separate sub-set of the 
datacenter resources. The details of this mechanism [16] are 
not important to our exposition, but as we shall see in the 
Analysis section, the presence of such a distributed resource 
management is integrated very well with our data-store concept 
decisions, and influences the performance of query searches.  

III.  RESOURCE INFORMATION MANAGEMENT 

On figure 2 is shown a simple draft of our three-layer 
system architecture. The Admin Applications are interested in 
management and monitoring of datacenter resources. They 
interact with the System layer that handles all generic activities 
like partial processings and load balancing. 

 

Figure 2.  System architecture 

The System retrieves resource information from the 
appropriate Resource Providers in the bottom layer. There is 
one Resource Provider for each resource type, which handles 
directly the communication with the underlying resource and 
maintains the persistency of resource information if needed. On 
behalf of the Providers, the System could be configured with 
ready-to-use access to different types of storages (RDBMS, 
LDAP, Round-robin, DFS), so that Providers to be able to use 
interface to a respective storage without caring about the 
configuration and availability of the database. For federation 
scaling purposes the System could be configured with arbitrary 



number of storage instances of the same type. Providers are 
completely unconstrained about choosing the storage 
type/instance, and the format of their tables and data. On figure 
3 is shown how a resource information request flows through 
the System, so that its data to be flexibly retrieved from 
arbitrary place and in arbitrary manner by the Provider.  

 

Figure 3.  Request-response flow 

The Admin Application requests a resource state from the 
System (1). Notice that Admin Applications view resources 
behind the generic resource abstraction and do not deal with 
direct database queries. The System redirects the call to the 
appropriate Provider for the respective resource type (2). The 
Provider gathers the resource information in his own way, 
potentially using some storage access interface provided by the 
System (4) and (5). Note that there is no constraint over the 
structure and format of data; the Provider would find his 
resource data in the same shape, in which it was populated by 
him via the same storage interface. The Provider represents the 
resource data into the generic abstraction and returns it to the 
System (5). The result is brought up to the Admin Application 
(6). Note that steps (3) and (4) are optional and up to the 
Provider to be performed. The Provider may also get the 
resource information via external mechanisms not dealing with 
System facilities, or can just return runtime information if 
storage is not needed for his type of resources. 

IV.  SEARCH SCENARIOS 

A main issue we introduce with our flexible data store is 
what kinds of searches we can perform if data is spread so 
unrestrictedly. In our framework, we can separate the search 
evaluations into three main sub-groups - presented respectively 
in sections A, B and C. The separation is done on the basis of 
participation of a complex cross-resource-type relation.  

Note: in this paper, we will provide filter texts as self-
explained examples, since specifying complete filter grammar 
is not in focus of our exposition and current goals. 

A. No cross-type relation 

This case encompasses filtering of resources on the basis of 
State Variable conditions in the scope of single Resource type. 
A meaningful search example would be to list all resources of 
type “application” with name “foo” and state “not responding”. 
A filter explaining this criterion could look as follows:  

application: (name == foo & state == not_responding)  

B. Host-component relations 

This includes more complex queries that join information 
from different resource types on our host-component relation 
(defined in Chapter II). The meaning of this search is to enable 
administrators to find datacenter nodes (or other logical Host 
Resources) that “contain” or “not contain” other Component 
Resources satisfying criteria on their states; and the opposite – 
to find Component Resources that belong to Hosts satisfying 
criteria on the Host state. A meaningful example would be to 
find the datacenter nodes that contain certain application 
instance named “foo”, and the cpu usage for that node is 
underutilized (<20%). The filter could look as follows: 

node: (cpu-usage < 20 & contains(app: (name == foo))) 

In this example, we used an operator named “contains” to 
express relation with a Component Resource that is contained 
within the searched Host Resources. The reversed relation 
search would be to find the Component Resources of type 
“application” with name “foo”, that belong to Hosts with cpu 
usage under 20%. We will use “belongs” for this relation: 

app: (name == foo & belongs(node: (cpu-usage < 20))) 

C. Parent-sub relations 

This case includes joining of information on our parent-sub 
relations (Chapter II). For instance, we if there are Component 
Resources of type application with sub-Component Resources 
of type statistic that provide some runtime performance metrics 
about the parent application, we may need to search for all 
application instances with certain performance statistics. A 
possible expressing of such filter would be:  

app: (name == foo & sub( statistic: (cache-hit-rate < 50)))  

Analogously to the host-component relation, we can use the 
parent-sub relation in both directions resource filters: 

statistic: (cache-hit-rate < 50 & parent (app: (name == foo)))  

V. THE RESOURCE PROVIDER FILTER PLUGIN 

To enable searches based on resource states criteria, the 
System employs two basic approaches. One is to retrieve 
resource states from the Providers and then to perform state by 
state matching against the search filter. This approach seems 
far not efficient, since it discards any db level elimination of 
not needed data and does not prevent loading of potentially 
redundant information from db into the main memory. Even 
though, this approach could be good enough for certain types 
of resources considering their specific management use-cases. 
In order to enable utilization of the standard searches provided 
by databases, we define that a Resource Provider may 
optionally implement a so called - Filter Plugin interface. There 

 



could be one Filter Plugin for a given resource type that should 
be able to interpret logical filters, whose base operands are 
State Variable conditions. The job of the Filter Plugin is to 
translate the filter into its storage-specific filtering abilities and 
retrieve a filtered set of requested resource entities. We define 
the interface of a Filter Plugin to be consisted of one method: 

• listResources(Filter) 

The result expected from the Plugins is a set tuples 
representing resource instance elements that satisfy the input 
filter. Each tuple should be consisted of the following three 
properties of a resource: {resource-id, host-id, parent-id}. This 
limited information is completely enough for the System to 
perform the ‘joins’ on the possible cross-resource-type 
relations as we shall see further. 

In general, each Plugin is obliged to perform filtering only 
in the scope of its resource type. Since Plugins have the 
knowledge on the structure of data they employ, it would be 
easy for them to translate the generic filter into a storage and 
schema specific query. For instance, utilizers of RDBMS 
storage can transform the filters into SQL queries regarding the 
exact tables employed. If we consider example generic filter:  

(name == foo & state == not_responding) 

The example SQL transformation could be:  

select * from my_applications where app_name = ‘foo’ and 
app_state = ‘not_responding’ 

LDAP utilizers can translate this example into a suitable LDAP 
search with respect to the structure of their entries:  

(&(name=foo)(version=xxx)) 

Utiliziers of the local file system can brute-forcibly read 
unordered entries and test whether the entry attributes satisfy 
the search criteria (no real benefit achieved). Or they can read 
only part of all entries if data is semi-structured at some degree 
into suitable directories or ordered within specific file names. 

VI.  PERFORMING SEARCHES 

Our strategy will be to decompose the filters into parts 
suitable for passing them to the separate Filter Plugins. The 
partial results obtained from Plugins should then be 
consolidated so that correct filtered set to be produced in the 
end. To prepare the ground for such decomposition, we first 
classify the following distinguishable types of filter Operands: 

• Simple Operands – name-value conditions targeted to the 
searched resource type. For instance: name == foo  

• Join Operands – filters on cross-type resources that are in 
certain relation with the resources of the requested type. In 
Chapter IV, we used the so called Operators “contains”, 
“belongs“, “parent” and “sub” to express the concrete 
relations. All of them accept a nested filter for resources of a 
new type. Such a Join Operator together with its nested filter 
we distinguish as a Join Operand. The nested filters may in turn 
be composed of both - Simple and Join Operands. 

Our processing algorithm is recursive, so that cross-type 
relations could be nested in arbitrary depth. 

A. Processing filters composed only of Simple Operands 

In this simplest case all filtering conditions are on the State 
Variables of the requested resource type. There are no cross-
type relations so the filter could be fully forwarded to the 
listResources(Filter) method of the respective Resource Plugin. 
The result produced by the Plugin will be final result for the 
processed filter.  

B. Processing filters with Join Operands 

Distinguishing the Simple and Join Operands as described 
above, we transform the filter into Minimal Disjunctive 
Normal Form (MDNF) using the famous Quine-McClusky 
algorithm for minimizing Boolean expressions. The filter gets 
transformed into the following disjunction:  

 F = K0 | K1 | … Kn (1)  

where each Ki is a conjunction of Simple and Join Operands: 

 Ki = SPi0 &... SPir & JPi0 & … JPis (2)  

 SPij and JPij stand respectively for Simple and Join Operands, 
each of which may potentially participate with negation. 

The (SPi0 &... SPir) part of the conjunctions is interpreted 
with the means described in Section A.  The set produced by 
this partial filter is further intersected by each of the JP 
Operands remained in the conjunction. Table I shows the fields 
on which the sets are intersected for the different JP Operands:  

TABLE I.  JOIN FIELDS IINTERSECTION 

Left-hand / Right-hand Operands 

SP JP 
Join 

Operator 

[res-id, host-id, parent-id] [res-id, host-id, parent-id] contains 

[res-id, host-id, parent-id] [res-id, host-id, parent-id] belongs 

[res-id, host-id, parent-id] [res-id, host-id, parent-id] sub 

[res-id, host-id, parent-id] [res-id, host-id, parent-id] parent 

Intersection is done on the fields in bold 

To obtain the set produced by a JP Operand (before using it 
in intersection) we evaluate its nested filter recursively as 
described in this Section B, i.e. starting again with MDNF 
decomposition. In case the nested filter includes only Simple 
Operands, it is evaluated as described in Section A.  

If the JP is negated in the conjunction, the System 
calculates a set-difference of {all available Resources of the 
related type} and {the Resources produced by the Operand}. 

 When all conjunctions are evaluated, the System merges 
their results by performing a set-union.  

To compute union, intersection and difference of two sets, 
there are two general approaches. If at least one of the sets is 
small enough to fit in a RAM buffer, the calculation is done 
using a one-pass algorithm, i.e. at once without using 
temporarily stored results. If data is too large, the System 
employs a two-pass algorithm. Two-pass algorithms are 



characterized by processing parts of the data, storing temporal 
results to the disk, then reading them again for further 
processing. Reference [16] provides some nice descriptions of 
two-phase algorithms for set-operations based on sorting and 
based on hashing. 

VII.  ANALYSIS 

A. First Order Logic 

Most existing database and storage tools provide filtering 
capabilities only in the limited scope of the Propositional 
Logic. The Propositional Logic is not Turing complete limiting 
the problems one can define, because it cannot express criteria 
for the composition of data [19].  First Order Logic extends the 
Propositional Logic with two new quantifier concepts - 
specifically universal and existential quantifiers. Universal 
quantifiers allow checking that something is true for everything 
– normally supported by the 'forall' conditional element. 
Existential quantifiers check for the existence of something - 
supported with 'not' and 'exists' conditional elements. 

For our search capabilities, we inescapably employ the First 
Order Logic to express criteria on cross-type relations. For 
instance we express evaluation of criteria for finding Resource 
Hosts that “contain” or “not contain” a specific Component 
Resource (recall that we support negation upon the JP 
Operands). This is clearly a support of existential quantifier, to 
which we give specific names with relevance to the context of 
our resource compositions – contains, belongs, parent and sub.  

Regarding the ‘forall’ universal quantifier, we can say it is 
expressible by ‘not exists’, so we may say we provide universal 
quantifier capability, too. For example listing of datacenter 
nodes where all application instances are in (state == 
‘not_responding’), can actually be listed as nodes that not 
contain an application in (state != ‘not_responding’). 

B. Supporting more cross-type relations if needed 

To enable such functionally rich search capabilities (with 
subjective to our purposes), we generalized the relations 
between resources, bringing these relations up in the resource 
abstraction – host-component and parent-sub. In this way, we 
mandated Resource Providers to maintain a constrained format 
for the resource relations so that every Resource to bring its 
resource-id, host-id and parent-id. Except for this obligation, 
we are absolutely freeing Resource Providers to use 
unconstrained data structures for their Resource states, as well 
as to choose a physical storage of arbitrary type that best fits to 
the resource information demand. With this approach we 
achieve together - flexibility in data storing and well-defined 
joining of data. Although our joins are not fully functional and 
are preliminary limited to the host-component and parent-sub 
relations, the employed strategy works fine for our purposes 
simply because we get a rich-enough search capabilities and a 
lightweight evaluation in the same time. 

If we need to create an extended System with additional 
join capability on a new relation, all we have to do is to define 
this new relation in the resource abstraction, and to extend the 
tuple retrieved by the Filter Plugin interface, so that respective 
intersection to be done on the new join-fields. As it may be 

seen, although we closely relate the proposed techniques to the 
specifics of our resource framework, the design could be easily 
adopted by other infrastructures. 

C. Functional comparison with other Systems 

To implement the First Order Logic needed in our search 
scenarios we used techniques employed in relational databases 
where data is structured into tables and various joins are 
possible over the data tuples. Actually, only the relational type 
of database offers support for First Order Logic queries. If we 
need to rely on LDAP type of storage, we could never perform 
the ‘not exists’ with an LDAP search request. Notice, that 
‘exists’ is somewhat feasible, since we can find real LDAP 
objects having reference to the cross-type entity, although there 
will remain some duplication issues.  

Although R-GMA is Grid Information System with 
relational storage that is expected to support complex relation 
searches upon resources, the reality is slightly different. R-
GMA uses physically federated database servers, but R-GMA 
is not a distributed database management system. Instead, it 
relies on a much looser coupling of data providers across a 
Grid [6] and does not support implicit joining of data from 
different type Producers. 

D. Performance Analysis 

In this chapter, we shall try to analyze what performance 
impact our data store should imply in comparison with a single 
type data-store as it is with the existing grid solutions. The 
workloads relative to an Information Service are: 

• Loading Resource states by Admin Applications 

• Populating data by Resource Providers  

• Search query evaluations 

Regarding retrieval of Resource states (figure 3) and 
population of data, we can say that our System should be never 
outperformed, because every resource is fetched (or updated) 
against the optimum possible type of storage. Talking in 
examples, statistics data could be fetched from Round-robin db 
tool where data is preliminary summarized, log entries 
information is read from DFS instead of heavy-weight fully-
functional database, users’ data comes via some popular highly 
optimized user management tool working normally with LDAP  

Regarding the searching performance, we should 
distinguish two searching sub cases. For simple queries without 
cross-type relations, our System should not be again 
outperformed, since the whole filter is translated into storage-
specific query and again processed against the optimal type of 
storage for the respective resource. The more complicated sub 
case is when searches relate cross-resource-type information. 
We shall compare our System to R-GMA configured with a 
centralized relational database, since currently this is the only 
famous grid configuration that can support similar functional 
cross-type capabilities. When database is centralized, table 
joins for different Producers become possible, although 
centralization brings more serious drawbacks like the 
scalability bottleneck and the single point of failure.  



The main difference between our System and a centralized 
RDBMS regarding cross-type searches is within our System-
handled processing of partially executed filters. A comparative 
disadvantage of our System is that we retrieve from databases 
some redundant information that otherwise could be eliminated 
at db level, i.e. if the set-operations were done on the database 
machine instead of transporting the partial sets to our 
processing node. Since we talk about transporting redundant 
information, we chose the network volume as a representative 
comparison metric. 

TABLE II.  NEWORK VOLUME  COMPARISON 

Size of Set Operands Network Volume Set 
Operation Set 1 Set 2 

RDBMS 
Processing 

Processing by 
our System 

Union M M 3/2 M 2M 

Intersection M M 1/2 M 2M 

Difference 2M M M 3 M 

 

In table II, we show a relative difference of the data volume 
transmitted from db when the employed set-operations are 
performed by RDBMS or by our System. If we assume that 
each of the 3 operations has equal probability to be performed, 
then our drawback is 3M versus 7M, or we can conclude that 
we retrieve 7/3 (~2.3) times more data from database for each 
set-operation performed on our processing nodes. 

As compensation to this drawback, our approach introduces 
a set of performance advantages and speed ups. In chapter II-B, 
we mentioned that our processing nodes are organized as 
cluster of super-peers. Since our cluster nodes work over 
independent not-intersected sets of Resources (exact 
mechanisms are explained in [16]), our set-operations become 
a distributed job with high parallelization efficiency. 
Additional unignorable speed up we can introduce with this 
parallelization is possible saving of the disk I/Os for the two-
phase algorithms within set-operations. As stated in VI, two-
phase algorithm would be needed if the smallest data-set is too 
large to fit in a RAM buffer. In our cluster of super-peers, the 
size of each retrieved set is reduced by a factor of N, where N 
is the number of super-peers. This provides an opportunity for 
Cloud System owners to configure their datacenters with an 
adequate number of super-peers with regards to the volume of 
the managed datacenter, so that two-phase operations to be 
eliminated due to the reduced amount of processed data by 
each super-peer. To make a distinction, the disk I/O savings 
would not be possible if set-operations are processed on a 
single database machine.  

VIII.  CONCLUSIONS AND FUTURE WORK 

In this paper we have proposed a flexible design of an 
Information Service that allows arbitrary storage type and 
unconstrained data structures to be used for various resources. 
We facilitate the administration of resources by decupling the 
Query Interface from the underlying data structures.  We also 
provide a lightweight and still rich functionality regarding 
search capabilities. As for the performance, our System seems 
promising to be outperforming existing Grid Information 

Services, but this should be further proven. Our future work 
will be concentrated on creating a prototype and conducting 
comparative measurements that demonstrate the viability of the 
system, particularly in an actual deployment. 
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