
Resource Information Service for Cloud Datacenters

Radko Zhelev
Institute on Parallel Processing
Bulgarian Academy of Sciences

Sofia, Bulgaria
zhelev@acad.bg

Vasil Geogriev
Faculty on Mathematics and Informatics
University of Sofia “St. Cl. Ohridsky”

Sofia, Bulgaria
v.georgiev@fmi.uni-sofia.bg

Abstract—Existing Grid systems make different choices about the
employed type of data storage used for keeping persistent
information about the presence and state of the available grid-
wide resources. They usually use a concrete storage type – LDAP
[2], RDMBS [7], Round-robin database [5], etc. and build the
organization of their distributed infrastructure us ing the same
storage type for all resources employed within Grid. Of course
each type of storage brings its specific advantages and
disadvantages regarding arbitrary considerations. In this paper
we propose a design approach for resource data persistency in
Cloud datacenters that does not restrict all the data to be kept in
a certain type of storage. Instead, different types of resources can
choose an optimal storage for their data with respect to the
specific resource semantic requirements. Although data is spread
into different locations and fetched via different types of queries,
we still implement efficient filtering for cross-resource-type
searches. We achieve this by employing the techniques of logical
decomposition of Boolean expressions and executing partial
filters against the responsible parties.

Keywords - Cloud Systems; Grid Information Services;
Database; Search; Filtering; Query Processing

I. RELATED WORK OVERVIEW

A. Grid Information Services

A Grid Information Service is a software component,
whether singular or distributed, that maintains information
about the resources in distributed computing environment, and
makes that information available upon request. Information
Services has an Update Interface for populating resource
entities data and Query Interface for retrieving it. Updates are
performed within obtainment of status information from actual
resources, while Query Interface is used by administrator users,
grid applications, job schedulers, etc. The sophistication of the
Query Interface determines the ease with which users can write
queries and the efficiency of query executions. Relational and
object oriented databases support a standardized and powerful
access method like SQL [3], which is declarative and queries
are optimized so are highly efficient. Hierarchical models such
as LDAP use simplified access protocols. There are two main
sides of the Grid Information Service discussion. In one view,
Grid Resource Information is best served by a hierarchical
representation, and on the other side, that a relational or at table
representation is more suitable [1].

B. Resource data in existing Grid systems

Existing grid middlewares make use of different, but
always one certain storage type for keeping information about

system resources. Globus Toolkit [11] adopts hierarchically
based infrastructure and uses a LDAP storage with LDAP and
Xpath queries [4][9] for retrieving resource information.
Condor [12] and its Hawkeye [13] are concentrated on
gathering of statistical information about the load and
utilization of the available hardware resources - disk space,
memory usage, open files, system load, etc. The information is
stored in the so called Round-robin database [5], which is very
suitable for storing statistical information since it has
functionality to consolidate (summarize) old statistical data,
gradually reducing the resolution of the data along the time
axis. The Relational Grid Monitoring Architecture (R-GMA)
[10] used within the European Data Grid, as it’s names says,
implements GMA [8] using a relational RDBMS database for
storing and retrieving of resource information via SQL queries.

C. Analysis and Motivation

Each storage type has its pros and cons and different ones
could appear as most appropriate for different use cases. Data
about system users is usually kept in LDAP database [17].
Over the years LDAP has become the most popular storage for
managing users’ data and most of the related user management
tools work exactly with LDAP servers. Unfortunately LDAP
has certain disadvantages regarding the general searches
functionality. The Round-robin database tool is unbeaten for
keeping statistical and hardware utilization data, but again it is
highly insufficient for more general-purpose persistency like
application states, software configurations, etc. Meanwhile
there are types of resources that may prefer to use unstructured
or semi-structured data, thus not needing standard database
functionality at all – for instance, system log entries could
better be kept in simple files on the file system or a distributed
file system (DFS). There could also be resources that may
report only runtime status, without any need for persistency -
like currently active connections.

Another major issue introduced in the existing Grid systems
is that even if one certain storage type is used, every type of
resources naturally needs a custom data structure to be
efficiently stored. For instance R-GMA defines every resource
type to be related to a certain database table with specific name
and columns. Since Query Interface is usually a native database
query (SQL or LDAP), one should possess intimate knowledge
on the specific data structures for every different resource type.
The last functional disadvantage is the inability to perform
complex queries that relate information from different resource
types. Even in R-GMA, although employing relational
database, it is not possible to perform table joins if independent
Producer tables reside on different physical location [6] [20].

This research is supported by the National Science Fund Proj.
ДДВУ02/22-2010

These considerations lead us to the conclusion that each
type of resources should be able to use an arbitrary type of
storage for meeting efficiently its specific requirements; Query
Interface needs to be decoupled from the physical data
structures, allowing more opportunities for data structuring as
well as more convenience in the Query Interface; and finally
we need well-defined capabilities for cross-resource-type
filtering even if data is spread in various locations and shapes.

The paper proceeds as follows. In chapter II we make a
short overview of the “Generic Resource Framework” defined
in our previous paper [15], on which basis we build our
Information Service. In III we present the data store
architecture and information management organization. In
chapter IV are described the searches capabilities provided by
our System. Chapters V and VI present an efficient
implementation of those searches. In VII we analyze the
functional and performance aspects of the proposed design.
And in the conclusion, we summarize the achieved goals and
outline the directions for future elaboration.

II. GENERIC RESOURCE FRAMEWORK – BRIEF SUMMARY

A. Resource Representation

Our resource framework defines a general abstraction for
representing diverse types of resources into a uniform interface
regardless of the underlying resource access protocol and
related information structure. Its main characteristics are:

• A Resource state is represented as a set of State
Variables, which are simply name-value pairs.

• Every Resource has a type and id associated with it. The
type of Resource identifies its interface, i.e. every Resource of
a given type has a constant list of State Variable names. There
may be many Resource instances of the same type, all having
the same list of State Variable names, but being in different
state, i.e. different values for the State Variables.

• Resources may be arranged hierarchically - every
Resource instance may have one or more sub Resources and in
turn may have a parent Resource. This allows more complex
entities to be decomposed to a hierarchy of sub-components,
achieving arbitrary level of granularity. For the purpose of
extensibility it is responsibility to the sub Resource to attach
itself to its parent.

• In datacenter-wide scope, we can say that Resources are
physically or logically hosted on some autonomous datacenter
entity that we can call a Resource Host. A Resource Host
could be a datacenter node hosting different Resource entities –
native processes, user applications, system log files, etc.
Resource Hosts could also be completely logical units like user
accounts or predefined maintenance procedures currently
performed in the datacenter. Thus we distinguish two kinds of
Resources – Host Resources and Component Resources. Every
Component Resource “belongs” to certain Host Resource.
Again for the purpose of extensibility it is responsibility to the
Component Resource to attach itself to the respective Host.

In summary, we can say that Resources are represented as a
set of State Variables, which is determined by the Resource

type. There are defined two relations that may link Resources
between different types – the host-component relation and the
parent-sub relation - figure 1.

Figure 1. Resource relations

B. Topology

In our resource framework described in [15], management
of datacenter resources is handled by a set of super-peers that
we call Management Servers. The super-peers dynamically
balance the load of resource management in a manner that each
super-peer is responsible for a separate sub-set of the
datacenter resources. The details of this mechanism [16] are
not important to our exposition, but as we shall see in the
Analysis section, the presence of such a distributed resource
management is integrated very well with our data-store concept
decisions, and influences the performance of query searches.

III. RESOURCE INFORMATION MANAGEMENT

On figure 2 is shown a simple draft of our three-layer
system architecture. The Admin Applications are interested in
management and monitoring of datacenter resources. They
interact with the System layer that handles all generic activities
like partial processings and load balancing.

Figure 2. System architecture

The System retrieves resource information from the
appropriate Resource Providers in the bottom layer. There is
one Resource Provider for each resource type, which handles
directly the communication with the underlying resource and
maintains the persistency of resource information if needed. On
behalf of the Providers, the System could be configured with
ready-to-use access to different types of storages (RDBMS,
LDAP, Round-robin, DFS), so that Providers to be able to use
interface to a respective storage without caring about the
configuration and availability of the database. For federation
scaling purposes the System could be configured with arbitrary

number of storage instances of the same type. Providers are
completely unconstrained about choosing the storage
type/instance, and the format of their tables and data. On figure
3 is shown how a resource information request flows through
the System, so that its data to be flexibly retrieved from
arbitrary place and in arbitrary manner by the Provider.

Figure 3. Request-response flow

The Admin Application requests a resource state from the
System (1). Notice that Admin Applications view resources
behind the generic resource abstraction and do not deal with
direct database queries. The System redirects the call to the
appropriate Provider for the respective resource type (2). The
Provider gathers the resource information in his own way,
potentially using some storage access interface provided by the
System (4) and (5). Note that there is no constraint over the
structure and format of data; the Provider would find his
resource data in the same shape, in which it was populated by
him via the same storage interface. The Provider represents the
resource data into the generic abstraction and returns it to the
System (5). The result is brought up to the Admin Application
(6). Note that steps (3) and (4) are optional and up to the
Provider to be performed. The Provider may also get the
resource information via external mechanisms not dealing with
System facilities, or can just return runtime information if
storage is not needed for his type of resources.

IV. SEARCH SCENARIOS

A main issue we introduce with our flexible data store is
what kinds of searches we can perform if data is spread so
unrestrictedly. In our framework, we can separate the search
evaluations into three main sub-groups - presented respectively
in sections A, B and C. The separation is done on the basis of
participation of a complex cross-resource-type relation.

Note: in this paper, we will provide filter texts as self-
explained examples, since specifying complete filter grammar
is not in focus of our exposition and current goals.

A. No cross-type relation

This case encompasses filtering of resources on the basis of
State Variable conditions in the scope of single Resource type.
A meaningful search example would be to list all resources of
type “application” with name “foo” and state “not responding”.
A filter explaining this criterion could look as follows:

application: (name == foo & state == not_responding)

B. Host-component relations

This includes more complex queries that join information
from different resource types on our host-component relation
(defined in Chapter II). The meaning of this search is to enable
administrators to find datacenter nodes (or other logical Host
Resources) that “contain” or “not contain” other Component
Resources satisfying criteria on their states; and the opposite –
to find Component Resources that belong to Hosts satisfying
criteria on the Host state. A meaningful example would be to
find the datacenter nodes that contain certain application
instance named “foo”, and the cpu usage for that node is
underutilized (<20%). The filter could look as follows:

node: (cpu-usage < 20 & contains(app: (name == foo)))

In this example, we used an operator named “contains” to
express relation with a Component Resource that is contained
within the searched Host Resources. The reversed relation
search would be to find the Component Resources of type
“application” with name “foo”, that belong to Hosts with cpu
usage under 20%. We will use “belongs” for this relation:

app: (name == foo & belongs(node: (cpu-usage < 20)))

C. Parent-sub relations

This case includes joining of information on our parent-sub
relations (Chapter II). For instance, we if there are Component
Resources of type application with sub-Component Resources
of type statistic that provide some runtime performance metrics
about the parent application, we may need to search for all
application instances with certain performance statistics. A
possible expressing of such filter would be:

app: (name == foo & sub(statistic: (cache-hit-rate < 50)))

Analogously to the host-component relation, we can use the
parent-sub relation in both directions resource filters:

statistic: (cache-hit-rate < 50 & parent (app: (name == foo)))

V. THE RESOURCE PROVIDER FILTER PLUGIN

To enable searches based on resource states criteria, the
System employs two basic approaches. One is to retrieve
resource states from the Providers and then to perform state by
state matching against the search filter. This approach seems
far not efficient, since it discards any db level elimination of
not needed data and does not prevent loading of potentially
redundant information from db into the main memory. Even
though, this approach could be good enough for certain types
of resources considering their specific management use-cases.
In order to enable utilization of the standard searches provided
by databases, we define that a Resource Provider may
optionally implement a so called - Filter Plugin interface. There

could be one Filter Plugin for a given resource type that should
be able to interpret logical filters, whose base operands are
State Variable conditions. The job of the Filter Plugin is to
translate the filter into its storage-specific filtering abilities and
retrieve a filtered set of requested resource entities. We define
the interface of a Filter Plugin to be consisted of one method:

• listResources(Filter)

The result expected from the Plugins is a set tuples
representing resource instance elements that satisfy the input
filter. Each tuple should be consisted of the following three
properties of a resource: {resource-id, host-id, parent-id}. This
limited information is completely enough for the System to
perform the ‘joins’ on the possible cross-resource-type
relations as we shall see further.

In general, each Plugin is obliged to perform filtering only
in the scope of its resource type. Since Plugins have the
knowledge on the structure of data they employ, it would be
easy for them to translate the generic filter into a storage and
schema specific query. For instance, utilizers of RDBMS
storage can transform the filters into SQL queries regarding the
exact tables employed. If we consider example generic filter:

(name == foo & state == not_responding)

The example SQL transformation could be:

select * from my_applications where app_name = ‘foo’ and
app_state = ‘not_responding’

LDAP utilizers can translate this example into a suitable LDAP
search with respect to the structure of their entries:

(&(name=foo)(version=xxx))

Utiliziers of the local file system can brute-forcibly read
unordered entries and test whether the entry attributes satisfy
the search criteria (no real benefit achieved). Or they can read
only part of all entries if data is semi-structured at some degree
into suitable directories or ordered within specific file names.

VI. PERFORMING SEARCHES

Our strategy will be to decompose the filters into parts
suitable for passing them to the separate Filter Plugins. The
partial results obtained from Plugins should then be
consolidated so that correct filtered set to be produced in the
end. To prepare the ground for such decomposition, we first
classify the following distinguishable types of filter Operands:

• Simple Operands – name-value conditions targeted to the
searched resource type. For instance: name == foo

• Join Operands – filters on cross-type resources that are in
certain relation with the resources of the requested type. In
Chapter IV, we used the so called Operators “contains”,
“belongs“, “parent” and “sub” to express the concrete
relations. All of them accept a nested filter for resources of a
new type. Such a Join Operator together with its nested filter
we distinguish as a Join Operand. The nested filters may in turn
be composed of both - Simple and Join Operands.

Our processing algorithm is recursive, so that cross-type
relations could be nested in arbitrary depth.

A. Processing filters composed only of Simple Operands

In this simplest case all filtering conditions are on the State
Variables of the requested resource type. There are no cross-
type relations so the filter could be fully forwarded to the
listResources(Filter) method of the respective Resource Plugin.
The result produced by the Plugin will be final result for the
processed filter.

B. Processing filters with Join Operands

Distinguishing the Simple and Join Operands as described
above, we transform the filter into Minimal Disjunctive
Normal Form (MDNF) using the famous Quine-McClusky
algorithm for minimizing Boolean expressions. The filter gets
transformed into the following disjunction:

 F = K0 | K1 | … Kn (1)

where each Ki is a conjunction of Simple and Join Operands:

 Ki = SPi0 &... SPir & JPi0 & … JPis (2)

 SPij and JPij stand respectively for Simple and Join Operands,
each of which may potentially participate with negation.

The (SPi0 &... SPir) part of the conjunctions is interpreted
with the means described in Section A. The set produced by
this partial filter is further intersected by each of the JP
Operands remained in the conjunction. Table I shows the fields
on which the sets are intersected for the different JP Operands:

TABLE I. JOIN FIELDS IINTERSECTION

Left-hand / Right-hand Operands

SP JP
Join

Operator

[res-id, host-id, parent-id] [res-id, host-id, parent-id] contains

[res-id, host-id, parent-id] [res-id, host-id, parent-id] belongs

[res-id, host-id, parent-id] [res-id, host-id, parent-id] sub

[res-id, host-id, parent-id] [res-id, host-id, parent-id] parent

Intersection is done on the fields in bold

To obtain the set produced by a JP Operand (before using it
in intersection) we evaluate its nested filter recursively as
described in this Section B, i.e. starting again with MDNF
decomposition. In case the nested filter includes only Simple
Operands, it is evaluated as described in Section A.

If the JP is negated in the conjunction, the System
calculates a set-difference of {all available Resources of the
related type} and {the Resources produced by the Operand}.

 When all conjunctions are evaluated, the System merges
their results by performing a set-union.

To compute union, intersection and difference of two sets,
there are two general approaches. If at least one of the sets is
small enough to fit in a RAM buffer, the calculation is done
using a one-pass algorithm, i.e. at once without using
temporarily stored results. If data is too large, the System
employs a two-pass algorithm. Two-pass algorithms are

characterized by processing parts of the data, storing temporal
results to the disk, then reading them again for further
processing. Reference [16] provides some nice descriptions of
two-phase algorithms for set-operations based on sorting and
based on hashing.

VII. ANALYSIS

A. First Order Logic

Most existing database and storage tools provide filtering
capabilities only in the limited scope of the Propositional
Logic. The Propositional Logic is not Turing complete limiting
the problems one can define, because it cannot express criteria
for the composition of data [19]. First Order Logic extends the
Propositional Logic with two new quantifier concepts -
specifically universal and existential quantifiers. Universal
quantifiers allow checking that something is true for everything
– normally supported by the 'forall' conditional element.
Existential quantifiers check for the existence of something -
supported with 'not' and 'exists' conditional elements.

For our search capabilities, we inescapably employ the First
Order Logic to express criteria on cross-type relations. For
instance we express evaluation of criteria for finding Resource
Hosts that “contain” or “not contain” a specific Component
Resource (recall that we support negation upon the JP
Operands). This is clearly a support of existential quantifier, to
which we give specific names with relevance to the context of
our resource compositions – contains, belongs, parent and sub.

Regarding the ‘forall’ universal quantifier, we can say it is
expressible by ‘not exists’, so we may say we provide universal
quantifier capability, too. For example listing of datacenter
nodes where all application instances are in (state ==
‘not_responding’), can actually be listed as nodes that not
contain an application in (state != ‘not_responding’).

B. Supporting more cross-type relations if needed

To enable such functionally rich search capabilities (with
subjective to our purposes), we generalized the relations
between resources, bringing these relations up in the resource
abstraction – host-component and parent-sub. In this way, we
mandated Resource Providers to maintain a constrained format
for the resource relations so that every Resource to bring its
resource-id, host-id and parent-id. Except for this obligation,
we are absolutely freeing Resource Providers to use
unconstrained data structures for their Resource states, as well
as to choose a physical storage of arbitrary type that best fits to
the resource information demand. With this approach we
achieve together - flexibility in data storing and well-defined
joining of data. Although our joins are not fully functional and
are preliminary limited to the host-component and parent-sub
relations, the employed strategy works fine for our purposes
simply because we get a rich-enough search capabilities and a
lightweight evaluation in the same time.

If we need to create an extended System with additional
join capability on a new relation, all we have to do is to define
this new relation in the resource abstraction, and to extend the
tuple retrieved by the Filter Plugin interface, so that respective
intersection to be done on the new join-fields. As it may be

seen, although we closely relate the proposed techniques to the
specifics of our resource framework, the design could be easily
adopted by other infrastructures.

C. Functional comparison with other Systems

To implement the First Order Logic needed in our search
scenarios we used techniques employed in relational databases
where data is structured into tables and various joins are
possible over the data tuples. Actually, only the relational type
of database offers support for First Order Logic queries. If we
need to rely on LDAP type of storage, we could never perform
the ‘not exists’ with an LDAP search request. Notice, that
‘exists’ is somewhat feasible, since we can find real LDAP
objects having reference to the cross-type entity, although there
will remain some duplication issues.

Although R-GMA is Grid Information System with
relational storage that is expected to support complex relation
searches upon resources, the reality is slightly different. R-
GMA uses physically federated database servers, but R-GMA
is not a distributed database management system. Instead, it
relies on a much looser coupling of data providers across a
Grid [6] and does not support implicit joining of data from
different type Producers.

D. Performance Analysis

In this chapter, we shall try to analyze what performance
impact our data store should imply in comparison with a single
type data-store as it is with the existing grid solutions. The
workloads relative to an Information Service are:

• Loading Resource states by Admin Applications

• Populating data by Resource Providers

• Search query evaluations

Regarding retrieval of Resource states (figure 3) and
population of data, we can say that our System should be never
outperformed, because every resource is fetched (or updated)
against the optimum possible type of storage. Talking in
examples, statistics data could be fetched from Round-robin db
tool where data is preliminary summarized, log entries
information is read from DFS instead of heavy-weight fully-
functional database, users’ data comes via some popular highly
optimized user management tool working normally with LDAP

Regarding the searching performance, we should
distinguish two searching sub cases. For simple queries without
cross-type relations, our System should not be again
outperformed, since the whole filter is translated into storage-
specific query and again processed against the optimal type of
storage for the respective resource. The more complicated sub
case is when searches relate cross-resource-type information.
We shall compare our System to R-GMA configured with a
centralized relational database, since currently this is the only
famous grid configuration that can support similar functional
cross-type capabilities. When database is centralized, table
joins for different Producers become possible, although
centralization brings more serious drawbacks like the
scalability bottleneck and the single point of failure.

The main difference between our System and a centralized
RDBMS regarding cross-type searches is within our System-
handled processing of partially executed filters. A comparative
disadvantage of our System is that we retrieve from databases
some redundant information that otherwise could be eliminated
at db level, i.e. if the set-operations were done on the database
machine instead of transporting the partial sets to our
processing node. Since we talk about transporting redundant
information, we chose the network volume as a representative
comparison metric.

TABLE II. NEWORK VOLUME COMPARISON

Size of Set Operands Network Volume Set
Operation Set 1 Set 2

RDBMS
Processing

Processing by
our System

Union M M 3/2 M 2M

Intersection M M 1/2 M 2M

Difference 2M M M 3 M

In table II, we show a relative difference of the data volume
transmitted from db when the employed set-operations are
performed by RDBMS or by our System. If we assume that
each of the 3 operations has equal probability to be performed,
then our drawback is 3M versus 7M, or we can conclude that
we retrieve 7/3 (~2.3) times more data from database for each
set-operation performed on our processing nodes.

As compensation to this drawback, our approach introduces
a set of performance advantages and speed ups. In chapter II-B,
we mentioned that our processing nodes are organized as
cluster of super-peers. Since our cluster nodes work over
independent not-intersected sets of Resources (exact
mechanisms are explained in [16]), our set-operations become
a distributed job with high parallelization efficiency.
Additional unignorable speed up we can introduce with this
parallelization is possible saving of the disk I/Os for the two-
phase algorithms within set-operations. As stated in VI, two-
phase algorithm would be needed if the smallest data-set is too
large to fit in a RAM buffer. In our cluster of super-peers, the
size of each retrieved set is reduced by a factor of N, where N
is the number of super-peers. This provides an opportunity for
Cloud System owners to configure their datacenters with an
adequate number of super-peers with regards to the volume of
the managed datacenter, so that two-phase operations to be
eliminated due to the reduced amount of processed data by
each super-peer. To make a distinction, the disk I/O savings
would not be possible if set-operations are processed on a
single database machine.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a flexible design of an
Information Service that allows arbitrary storage type and
unconstrained data structures to be used for various resources.
We facilitate the administration of resources by decupling the
Query Interface from the underlying data structures. We also
provide a lightweight and still rich functionality regarding
search capabilities. As for the performance, our System seems
promising to be outperforming existing Grid Information

Services, but this should be further proven. Our future work
will be concentrated on creating a prototype and conducting
comparative measurements that demonstrate the viability of the
system, particularly in an actual deployment.

REFERENCES
[1] Plale, B., P. Dinda, and G. Laszewski, “Key Concepts and Services of a

Grid Information Service”. ISCA 15th International Parallel and
Distributed Computing Systems (PDCS), 2002.

[2] Arkills, B (2003). LDAP Directories Explained: An Introduction and
Analysis. Addison-Wesley Professional. ISBN 020178792X.

[3] Beaulieu, Alan (April 2009). Mary E Treseler. ed. Learning SQL (2nd
ed.). Sebastapol, CA, USA: O'Reilly. ISBN 978-0-596-52083-0.

[4] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernandez,
Michael Kay, Jonathan Robie, and Jerome Simeon. XML Path Language
(XPath) 2.0. Technical Report W3C Working Draft, Version 2.0, World
Wide Web Consortium, December 2001.
http://www.w3.org/TR/xpath20/.

[5] Round Robin Database Tool (RRDtool). http://oss.oetiker.ch/rrdtool.

[6] R-GMA System Specification Version 6.2.0: http://www.r-
gma.org/documentation/specification.pdf

[7] Codd, E.F. (1970). "A Relational Model of Data for Large Shared Data
Banks". Communications of the ACM 13 (6): 377–387.
doi:10.1145/362384.362685.

[8] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor and R.
Wolski, A Grid Monitoring Architecture, Global Grid Forum, Lemont,
Illinois, U.S.A., GFD.I.7, January 2002

[9] Howes, T.: RFC 1960: A String Representation of LDAP Search Filters.
IETF. (1996)

[10] A. Cooke, A.J.G. Gray, L. Ma, W. Nutt, J. Magowan, M. Oevers, P.
Taylor, R. Byrom, L. Field, S. Hicks, J. Leake, M. Soni, A.Wilson, R.
Cordenonsi, L. Cornwall, A. Djaoui, S. Fisher,N. Podhorszki, B.
Coghlan, S. Kenny, D. O’Callaghan, R-GMA: an information
integration system for grid monitoring, in: Proceedings of the 10th
International Conference on Cooperative Information Systems, 2003.

[11] A Globus Primer 4 available at
http://www.globus.org/toolkit/docs/4.0/key/

[12] Douglas Thain, Todd Tannenbaum, and Miron Livny, "Condor and the
Grid", in Fran Berman, Anthony J. G. Hey, Geoffrey Fox, in Grid
Computing: Making the Global Infrastructure A Reality, John Wiley,
2003, ISBN:0-470-85319-0.

[13] Hawkeye Team. Hawkeye, Monitoring and Management Tool for
Distributed Systems, 2004. http://www.cs.wisc.edu/condor/hawkeye

[14] Zhelev, R., V. Georgiev. 2010. Load Balanced Resource Management
for Cloud Systems. 4th International Conference on Information
Systems and Grid Technologies, ISGT'2010, 28-29. May 2009, Sofia,
Bulgaria.

[15] Zhelev, R., V. Georgiev. 2010. Generic Resource Framework for Cloud
Systems. 5th International Conference Distributed Computing and Grid
Technologies in Science and Education, GRID'2010, 27. June - 04. July
2010, Dubna, Russia.

[16] H. Garcia-Molina, J. Ullman, J. Widom, Database Systems: The
Complete Book, Prentice Hall, Upper Saddle River, New Jersey, 2002.

[17] Kobsa, A. and Fink, J.: An LDAP-Based User Modeling Server and its
Evaluation. User Modeling and User-Adapted Interaction: The Journal
of Personalization Research 16, (2006) 129-169, DOI 10.1007/s11257-
006-9006-5.

[18] R. M. Smullyan. First-Order Logic. Springer-Verlag: Heidelberg,
Germany, 1968.

[19] Duda, C., Kossmann, D., Zhou, C. – Predicate-based indexing for
desktop search (Lang.: eng). – In: VLDB journal, 19(2010)5, pp. 735-
758

[20] W. Xing, O. Corcho, C. Goble, and M. Dikaiakos, “Information Quality
Evaluation for Grid Information Services,” submitted to CoreGrid
Symposium in conjunction with Euro-Par 2007.

