
Protecting AJAX Code Using Secure Communication

Rami Al-Salman

Department of Computer Engineering,

Jordan University of Science and Technology,

 Irbid, 22110, Jordan

Ramialsalman9@gmail.com

Mohammad Fraiwan, Natheer Khasawneh

Department of Computer Engineering,

Jordan University of Science and Technology,

 Irbid, 22110, Jordan

{ natheer,mfraiwan}@just.edu.jo

Abstract— AJAX is a ubiquitous technology that empowers Web

applications by facilitating communication with the server side of

the Web transaction. The drawback of this enabling technology is

that malicious exploits can use this AJAX “back door” to

communicate on behalf the client/server and steal users’

information. In this paper, we present a technique that will

protect the AJAX-enabled communication. The method works by

encrypting the URL and content using the low overhead Tiny

Encryption Algorithm. Authentication of the content is done via

3rd party verification of the encrypted URL and content, and the

SHA-1 digital signature of the user.

Keywords ; AJAX, Encryption, Security, Web

I. INTRODUCTION

JavaScript (JS) is a scripting language, which is commonly
used in web applications; initially it was mainly used for
making the websites more interactive with the clients.
However, recently, JavaScript has been injected in Web
applications to do more effective tasks such as decreasing the
sever-side load (e.g., JavaScript can be used to make format
checks and that the input conforms to certain criteria).
Moreover, JS has evolved to be more interactive not only with
a client side but also with the server side. Asynchronous
JavaScript and XML (AJAX) is another JS technology. The
main idea of the AJAX is to allow the JS code to communicate
with a server using XMLHttpRequest function call. Using
XMLHttpRequest, JS can request data from the server, which
could be used later in partially-loaded sections of the webpage.
Therefore, the JS allows loading parts of the webpage instead
of loading the whole webpage. Despite of the big benefits of
AJAX, it has critical drawbacks; because most Web crawlers
do not execute JavaScript code [1], the data retrieved by AJAX
(or XMLHttpRequest) will not be indexed and will not appear
in the search results. Another problem is related to usability; if
the JavaScript or XMLHttpRequest is disabled, then this means
that the clients will not be able to properly browse pages
dependent on AJAX. But the most critical drawback is related
to the security and confidentiality aspects of the webpage.
Anyone is able to view the source code of the AJAX. That
means any user could use it to communicate with a server. This
weakness allows any user to steal the transferred data from the
server to clients and vice versa (i.e., user maybe inject the
AJAX code in his Webpage to show data from other server).
Thus we propose a complete framework that protects the AJAX
code using tiny encryption algorithm, SHA-1 algorithm, and
third party authentication.

The contributions of this paper are as follows:

1. We protect the AJAX code (XMLHttpRequest) using
complete and simple framework.

2. We conduct performance evaluation studies on
various Webpage sizes to show the effectiveness of
our proposed scheme.

The remainder of this paper is organized as follows: We
discuss the related work in section II. The system architecture
is presented in section III. The implementation and comparison
experiments are described in section IV. We conclude in
section V.

II. RELATED WORK

The protection of scripts which could inject vulnerabilities in

web applications is presented in [4], the authors proposed a

simple framework which eliminated a wide range of JS (or

AJAX) scripts injection vulnerabilities in the web applications.

They extended the original JS is Sandboxed by only minor

browser modifications, to support other policies. New

extended policies were used for preventing AJAX

development frameworks such as the Dojo Toolkit,

prototype.js, and AJAX.NET from cross-site scripting and

RSS injection attacks.

The prevention of cross-site scripting attacks against web

applications is presented in [3]. The proposed system is based

on the use of X.509 certificates, and XACML for the

expression of authorization policies. They gave the web

developers and/or administrators the ability to set their

requirements and policies at the server side.

Server-based filtering proxies strategy is presented in [2],

the authors proposed the analysis and filtering techniques

based on a modified PHP interpreter at the server side.

Modified interpreter is supported by analysis history table,

which can filter the unsafe interpreted PHP statements.

Browser-Enforced Embedded Policies scheme (BEEP) is

reported in [7], BEEP gave web application developers and/or

administrator the ability to inject policies inside the websites,

and these prevented the unsafe JavaScript codes to run beyond

the embedded policies. The authors also prove that the

browsers were required only small and localized modifications

to support BEEP.

ADSandbox system [6] presented and concerns with analysis

malicious websites and focuses on detecting attacks through

JavaScript. Since,JavaScript does not have any built-in

sandbox concept, the idea is to execute any embedded

JavaScript within an isolated environment and log every

critical action. Using heuristics on these logs.

III. THE SYSTEM ARCHITECTURE

We propose a simple but complete framework; it consists of
three phases; 1. URL encryption 2. Generating hash value and
encrypting the AJAX content URL, 3. Decrypting the AJAX
URL and Generating the hash value. The complete view for the
framework can be shown in figure 1.

1. URL encryption.

In the phase one, we encrypt the URL for a target server
that posses the service. As can be shown in figure 2. Firstly, the
target server registers it URL in the mediator (In our case
called secure.php).In addition hash value is generated from the
URL by the mediator. Then the mediator generates a key to
encrypt the URL using tiny algorithm. Then it puts it in the
AJAX code. In this way no body could know what is the target
of the URL that owns the service. In addition the same key will
be sent to server side code in the home page (which includes
the AJAX code).

Figure 1, shows how registering, generating hash and
encryption for service URL that owns the services for the
clients.

2. Generating hash value and encrypting the AJAX
content URL.

In the phase two, As can be shown in figure 2, we applied
an encryption algorithm to encrypt AJAX URL content which
presents the variables and values (i.e.,
service.php?a=100&b=200 a and b are variables, 100 and 200
are the values). After that URL and the content which already
are encrypted will be sent via XMLHttpRequest() function to
the mediator. The purpose of the encryption is to prevent
anyone to know what is the URL content which will be sent to
the server from the clients.

For authentication purpose, we generate hash value
(message digest) for the AJAX URL using Secure Hash
Algorithm (SHA-1) [10]. SHA-1 is a cryptographic hash
function designed by the National Security Agency. It is used
to produce 160-bit message digest, and commonly used as a
part of authentication operation. For simplicity we aliased the
message digest output as part 2. In advance step (last step in
phase one), the part 1 and part 2 will be combined in one
message, which will be sent to mediator (or third party).

Figures 2, shows the encryption and generating hash value
from URL and URL content, and are fulfilled.

The encryption operation is fulfilled by Tiny Encryption
Algorithm (TEA) [11]; The TEA is one of the fastest and most
efficient cryptographic algorithms in existence. It is a Feistel
cipher which uses XOR, ADD and SHIFT operations; it can
encrypt 64 data bit is using a 128-bit key. Thus, we used a 128-
bit key. For simplicity we aliased the Encrypted URL output as
part 1. See figure 3.

Fig 3.a shows how the AJAX code sends a data as a plain
text; Fig 3.b shows how AJAX code sends a data as a cipher
text which is encrypted by TEA.

From the figure 3.a, it is clear that anyone can take the
server URL which contains the associated values of variables
to communicate with the server, Thus we proposed to encrypt
this URL, to prevent attackers to know what the URL that
AJAX communicates through is.

3. Decrypting the AJAX URL and the Generating the
hash value.

Phase 3, As can be shown in figure 4, is started by
receiving the mediator to the encrypted output (part1, part 2)
which is the final output of phase two. The mediator decrypted
the cipher text using the same key (we named decrypted the
cipher text as part 3) which used in the phase 1. In the next step
message digest (we name it as part 4) is generated from the
decrypted message by the same SHA-1 function which is used
in the phase 1, 2. Then the mediator compared between part 2
and part 4, if the values are identical, the mediator
communicate with target server URL and returns the results to
the client(s), in the other case, access denied will be returned.

Figure 4, shows how the decryption and authentication are
fulfilled.

IV. IMPLEMETATION AND RESULTS

In implementation part, we used XHTML 4.0 as Markup

language and JavaScript 0.1 as client side scripting language.

On the other side, we used PHP: Hypertext Preprocessor

(PHP) as server side scripting language. For TEA and SHA-1,

we used open source PHP codes [8] [9].

RESULTS.

In this part, we tested our framework using variant data sizes

which could be sent via AJAX (XmlHttpRequest). In addition,

we compared our results with normal AJAX mode (without

Encryption/Decryption and Digital Signature operations). We

used a time is taken to send data via AJAX and response from

server as a testing measure. For each size test (i.e., 1KB test),

we repeated the test 10 times, and then we got the average

values for their, the repeating is necessary, the reason that the

time which computed, it is affected by our local machine

environment (i.e., CPU, RAM, etc...).

Table 1, shows average time which is taken to send and

receive data using our framework.

Time is taken (per second) experiments using our framework

1 KB/sec 3 KB/sec 5 KB/sec 6 KB/sec

0.015 0.029 0.039 0.047

0.012 0.032 0.049 0.058

0.017 0.030 0.045 0.047

0.015 0.031 0.049 0.049

0.019 0.030 0.037 0.047

0.016 0.023 0.034 0.039

0.020 0.022 0.043 0.057

0.011 0.021 0.036 0.062

0.021 0.026 0.035 0.054

0.019 0.028 0.037 0.046

0.0165 0.0272 0.0404 0.0506

Table 2 shows the results for the average time which is taken

to send and receive data using normal AJAX mode.

Time is taken (per second) experiments using normal AJAX

1 KB/sec 3 KB/sec 5 KB/sec 6 KB/sec

0.009 0.020 0.033 0.040

0.011 0.017 0.030 0.045

0.012 0.024 0.029 0.039

0.010 0.026 0.028 0.037

0.007 0.019 0.036 0.042

0.010 0.016 0.029 0.039

0.014 0.018 0.030 0.049

0.013 0.012 0.032 0.048

0.008 0.021 0.031 0.040

0.011 0.025 0.028 0.049

0.0105 0.0198 0.0306 0.0428

Table 3 shows the time penalty when we used our framework

comparing to normal AJAX mode.

Size 1 KB/sec 3 KB/sec 5KB/sec 6 KB/sec

Avg.Time

for normal

AJAX

0.0165

0.0272

0.0404

0.0506

Avg.Time

for our

framework

0.0105

0.0198

0.0306

0.0428

Penalty 0.0060 0.0074 0.0098 0.0078

As we can see, there is no a big penalty using our framework,

that means we can easily and safety integrate our framework

to the current web applications. Additionally, there is no need

to add any extra plug-in to the current browser.

V. CONCUSION

We build a complete framework for protecting AJAX code.

We build mediator that generates hash value from the URL. In

addition it encrypts and decrypts the URL and URL content.

Finally we test our work using variant data sizes, to test the

usability of our work.

[1] P. Andreas (2007-05-08). "Help Web crawlers efficiently crawl your

portal sites and Web sites". IBM. Retrieved 2009-04-22.

[2] C. Reis, J. Dunagan, W. Helen, D. Opher, and E.Saher. BrowserShield:
Vulnerability-driven filtering of dynamic HTML. In Proceedings of the
USENIX Symposium on Operating System Design and Implementation
(OSDI),

[3] J.Garcia-alfaro and G.Navarro-arribas, Prevention of Cross-Site
Scripting Attacks on Current Web Applications Greece ,Proceedings of
the 2007 OTM confederated international

[4] B. Livshit is and Ú. Erlingsson. Using web application construction
frameworks to protect against code injection attacks. In Proc.
Programming Languages and Analysis for Security, June 2007.

[5] T. Pietraszeck. and C. Vanden-Berghe. Defending against injection
attacks through contextsensitivestring evaluation. Recent Advances in
Intrusion Detection (RAID 2005), pp.124–145, 2005.

[6] D. Andreas, H. Thorsten. and C.Felix. “ADSandbox: Sandboxing
JavaScript to fight Malicious Websites”,Symposium on Applied
Computing (SAC), Sierre, Switzerland,2010.

[7] T. Jim, N. Swamy, and M. Hicks. Defeating Script Injection Attacks
with Browser-Enforced Embedded Policies. In Proceedings of the 16th
International World Wide Web Conference (WWW’07), pages 601–610,
2007.

[8] http://www.php-einfach.de/sonstiges_generator_xtea.php.

[9] http://php.net/manual/en/function.sha1.php

[10] S. J. Shepherd, “The tiny encryption algorithm,” Journal of Cryptologia,
Vol. 31, No. 3, pp. 233–245, July 2007.

[11] H. Handschuh , L. Knudsen, and M . Robshaw, Analysis of SHA-1 in
encryption mode. In Advances in Cryptology { CT-RSA '01 (2001), D.
Naccache, Ed.,Lecture Notes in Computer Science, Springer-Verlag, pp.
70-83}.

http://www.php-einfach.de/sonstiges_generator_xtea.php

