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Abstract—The aim of this research is to extend the discrim-
ination of a decision tree builder by adding polynomials of the
base inputs to the inputs. The polynomials used to extend the
inputs are evolved using the quality of the decision trees resulting
from the extended inputs as a fitness function. Our approach
generates a decision tree using the base inputs and comparesit
with a decision tree built using the extended input space. Results
show substantial improvements.

I. I NTRODUCTION

This paper addresses the well-known problem of data
mining where given a set of data; the expected output is
a set of rules. Decision trees using the ID3 approach [1],
[2] are popular and in most cases successful in generating
rules correctly. Extensions to ID3 such as C4.5 and CART
are developed to cope with uncertain data. Fu et al [3] used
C4.5 followed by a Genetic Algorithm (GA) to evolve better
quality trees; in Fu’s work C4.5 was used to seed a GA, which
were then used as a basis for evolving better trees then using
Genetic Programming (GP) techniques to cross over the trees.
Many rule discovery techniques combining ID3 with other
intelligent techniques such as genetic algorithms and genetic
programming have also been suggested [4], [5], [6]. Generally,
when using ID3 with genetic algorithms, individuals which
are usually fixed length strings are used to represent decision
trees and the algorithm evolves to find the optimal tree.
When Genetic Programming is used to generate decision
trees, individuals are variable length trees, which represent
the decision tree. Variations in these approaches can be found
in the gene encoding. One rule per individual as done in
Greene [7], Freitas et al [8], [9] is a simple approach but
the fitness of a single rule is not necessarily the best indicator
of the quality of the discovered rule set. Encoding several
rules in an individual requires longer and more complex
operators [10], [11]. In genetic programming, a program can
be represented by a tree with rule conditions and/or attribute
values in the leaf nodes and functions in the internal nodes.
Here the tree can grow dynamically and pruning of the tree
is necessary [12]. Papagelis & Kelles [13] used a gene to
represent a decision tree and the GA then evolves to find the
optimal tree, similar to Fu et al [3]. To further improve the
quality of the trees, Eggermont et al [14] applied several fitness
measures and ranked them according to their importance in to

tackle uncertain data. Previous work has taken the input space
as a given and used evolution to produce the trees. In this
work, as we shall see, the trees are generated using a variant
of C4.5 and the input space is evolved rather than the trees,
in direct contrast to other workers.

A vast majority of the approaches use decision trees as
a basis for the search in conjunction with either a GA or
GP to further improve the quality of the trees. Our approach
described in this paper addresses continuous data and adds
polynomials of the input values to extend the input set. A GA
is used to search the space for these polynomials based on the
quality of the tree discovered using a version of C4.5.

II. I TERATIVE DISCRIMINATION

ID3, C4.5 and their derivatives proceed by selecting an
attribute that results in an information gain with respect to
the dependent variable. A simple data set with 2 continuous
attributes that are linearly separable is shown in Figure 1.
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Fig. 1. A granularised version of the linearly separable setof data based on
a 2 dimensional data set.

Applying C4.5 to the data set gives the result shown in
Figure 2, which was first documented in [15]. If no errors are
required over a large training set then the complexity of the
decision tree grows with the size of the training set. This is
unsatisfactory.

Anticipating the results of the proposed system a higher
level discriminant ofx−y in addition to the two basic variables
x andy would give the result shown in Figure 3.



x <= -0.25 :
| y > -0.75 : in (36.0)
:
:
:
x > -0.25 :
| y <= 0.75 : out (40.0)
| y > 0.75 :
:
:
:

Evaluation on training data (128 items):

Before Pruning After Pruning
-------------- ------------------------
Size Errors Size Errors Estimate
27 1( 0.8%) 27 1( 0.8%) (13.3%)

Fig. 2. The decision tree produced by C4.5 from the linearly separable data
shown in Figure 1. The size of 27 indicates why this tree is notreplicated
here.

x-y <= -0.5 : out (64.0)
x-y > -0.5 : in (64.0)

Evaluation on training data (128 items):

Before Pruning After Pruning
-------------- -----------------------
Size Errors Size Errors Estimate
3 0( 0.0%) 3 0( 0.0%) ( 2.1%)

Fig. 3. The decision tree produced by C4.5 from the linearly separable data
using the discriminant valuex − y.

III. M ORE COMPLEX DISCRIMINANTS

So far we have made no more progress than Konstam [16]
who used a GA to find linear discriminants. He makes the
comment that the technique can be applied to quadratic dis-
criminants. However he makes no statements about focussing
the search. A set of data was prepared using the same data
points as above to explore higher order and higher dimensional
discriminants. The data prepared used a torus such that points
inside the torus were in the concept and points outside the
torus, including those that are within the inner part of the
torus, were deemed outside the concept. Figure 4 illustrates
the data set although, as above, does not show all the points.

Applying C4.5 to the data set represented in figure 4
gives the decision tree shown in Figure 5. This decision tree
is smaller than the decision tree derived from the linearly
separable data although the function used to produce the data
is much more complex, and the predictions from the tree show
fewer errors. The decision tree is difficult to interpret.

Taking the toroidal data set, Figure 4, and adding another
attribute computed from the sum of squares of x and y gives
better discrimination and a more interpretable tree shown in
Figure 6. Notice that the decision tree is much smaller with

X

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

X

X

X

O

X

X

O

O

X

O

O

X

O

X

X

O O

O O

O

O

O

X

O

O

O

X

O O

X

X

O

O

O

O O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

XO

X

O O

O

X

X

O

X

O

O

O

O

X

O

O

Fig. 4. A granularised version of the torus illustrating a quadratic form.

x <= -3.25 : out (16.0)
x > -3.25 :
| x > 2.75 : out (16.0)
| x <= 2.75 :
| | y <= -3.25 : out (12.0)
| | y > -3.25 :
| | | y <= 2.75 : in (72.0/24.0)
| | | y > 2.75 : out (12.0)

Evaluation on training data (128 items):

Before Pruning After Pruning
-------------- ------------------------
Size Errors Size Errors Estimate
9 24(18.8%)9 24(18.8%)(25.5%)

Fig. 5. The decision tree produced by C4.5 from the toroidal data.

5 decision points compared to 9, and has no errors compared
with 18.8% in the original tree, Figure 5.

IV. N ON PROJECTABLE DATA SETS.

Thus far we have seen data sets that can be projected onto 1
dimension and which result in large trees but are nonetheless
useful predictors. Section III shows that these trees can be
reduced in size considerably by adding higher dimensional
combined functions of the original data elements.

With the data sets shown in Figures 7 and 11 C4.5 does not
produce a tree at all. Of the two data sets presented a higher
order combined attribute results in a concise tree where no
tree is produced without the higher order attribute. In the case

r2 > 8.125 : out (72.0)
r2 <= 8.125 :
| r2 <= 0.625 : out (8.0)
| r2 > 0.625 : in (48.0)

Evaluation on training data (128 items):

Before Pruning After Pruning
-------------- ------------------------
Size Errors Size Errors Estimate
5 0( 0.0%) 5 0( 0.0%) ( 3.1%)

Fig. 6. The decision tree produced by C4.5 from the augmentedtoroidal
data. r2 is the sum of the squares of x and y.



of the quadrant data set, a concise decision is possible with
the unaugmented data set, one is not produced by C4.5.

A. Banded data set

This test shows a data set that does not project down onto 1
dimension. This 2 dimensional data set results in the following
tree from C4.5, Figure 8.
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Fig. 7. A granularised version of banded linearly separabledata.

out (128.0/52.0)

Evaluation on training data (128 items):

Before Pruning After Pruning
-------------- ------------------------
Size Errors Size Errors Estimate
1 52(40.6%)1 52(40.6%)(44.1%)

Fig. 8. The decision tree produced by C4.5 from the banded data.

The decision tree produced from the banded data, Figure 8,
is shown in Figure 8 and is almost useless. It does not reveal
any useful information from the data. The most that can be
gained from this data is that there are 52 elements in the
concept and the rest are out. Adding the attributex− y gives
the tree shown in Figure 9, this is a good predictor and also
makes the information held in the data clear.

B. Quadrant data set

This test shows a data set that cannot be doscriminated
by C4.5, however a decision tree does exist. It is shown if

x-y <= -2 : out (38.0)
x-y > -2 :
| x-y <= 1.5 : in (52.0)
| x-y > 1.5 : out (38.0)

Evaluation on training data (128 items):

Before Pruning After Pruning
-------------- ------------------------
Size Errors Size Errors Estimate
5 0( 0.0%) 5 0( 0.0%) ( 3.2%)

Fig. 9. The decision tree produced by C4.5 from the banded data given the
added input feature of x-y.

Figure 10. This clear 2 dimensional data set results in the
following tree from C4.5, Figure 12.

x <= 0.0 : (64.0)
| y <= 0.0 : in (32.0)
| y > 0.0 : out (32.0)
x > 0.0 : (64.0)
| y <= 0.0 : out (32.0)
| y > 0.0 : in (32.0)

Evaluation on training data (128 items):

Before Pruning After Pruning
-------------- ------------------------
Size Errors Size Errors Estimate
6 0( 0.0%) 6 0( 0.0%) ( 3.2%)

Fig. 10. The decision tree which could be used to discriminate the quadrant
data, but cannot be produced by C4.5.
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Fig. 11. A granularised version of quadrant data set.

out (128.0/52.0)

Evaluation on training data (128 items):

Before Pruning After Pruning
-------------- ------------------------
Size Errors Size Errors Estimate
1 52(40.6%)1 52(40.6%)(44.1%)

Fig. 12. The decision tree produced by C4.5 from the quadrantdata.

x*y <= -2 : out (38.0)
x*y > -2 :
| x*y <= 1.5 : in (52.0)
| x*y > 1.5 : out (38.0)

Evaluation on training data (128 items):

Before Pruning After Pruning
-------------- ------------------------
Size Errors Size Errors Estimate
5 0( 0.0%) 5 0( 0.0%) ( 3.2%)

Fig. 13. The decision tree produced by C4.5 from the quadrantdata given
the added input feature of x*y.



V. GENETIC ALGORITHM

The genetic algorithm attached to the front of c4.5 has a few
special features. It follows most of the guidelines in [17],[18]
and so has aspects designed to preserve inheritability and to
ensure that no part of the genome has an inordinate effect on
the phenome. With this in mind the structure of the genome is
made up from a set of integers, rather than a binary genome.

A. Genetic structure.

The chromosome can deliver several genes corresponding
to several combined attributes. The chromosome is a fixed
maximum length and achieves a variable number of genes by
an activation flag. Each gene delivers one new attribute and
each variable is a linear combination of simpler variables.

1) Variable.: If the number in the variable slot isN and
there areK basic continuous variables in the data set andM

variables in the gene prior to this one thenN mod (K + M)
refers to variable within thoseK + M variables.

2) Function.: If the function is a monadic function then it is
applied to variable 1, otherwise to both. The prototype system
has a set of simple arithmetic functions, power, multiplication,
division and subtraction. This is sufficient to extract all the
decision trees we have considered.

3) Number of genes and gene length.: The variable length
chromosome has disadvantages as the effect on the gene itself
of the two fields that determine the length of the gene is
considerably more than any other field and can be destructive.
The variable length gene has similar disadvantages. The gene
structure finally chosen for the system is shown in Figure 14

Active
Variable1
Function
Variable2

Fig. 14. This shows the basic structure of the gene adopted. The Ac-
tive/Variable/Function/Variable is repeated up to the gene length.

This potentially has some of the properties of recessive
genes that are attributed to diploid gene structures although
no experiments have been conducted to determine this. An
example gene is shown in Figure 15. This gene has 4 segments,
1 of which is active. Each segment has 2 attributes, some
active and some not. The function field is interpreted as 2 for
plus, 3 for minus, 5 for multiply. No other function types are
illustrated.

VI. EXEMPLAR DATA

The system described above was applied to some data sets
taken from the Machine Learning Repository [19] in order
to compare the capability of the system with other known
decision tree generators.

The experiment compares the decision trees generated by
C4.5 and the decision trees generated by C4.5 with the
enhanced input space. The results consist of

• the percentage of correct results on the training set
• the percentage of correct results on the test set

1 active
1 x

3 minus
2 y

0 inactive
1 x

5 times
1 x

0 inactive
2 y
5 times
2 y

0 inactive
4 x2

2 plus
5 y2

Fig. 15. An exemplar gene.x andy are variables number 1 and 2. The first
new variable isx − y and is variable number 3. As this is activated then it
will be made available as an input to the decision tree generator. If variable 6
is activated then because it relies on variables 4 and 5 they will also be kept
but not necessarily activated.

• the number of degrees of freedom for the decision space
• the probability that the result could have arisen by chance
• the decision tree size

A. Experimental results

Each data set was split randomly into two sets, the training
set which comprised 90% of the data and the test set, which
comprised 10% of the data. The split was generated by
choosing whether a particular data point was to be in the
training set or the test set using a random number generator.
This way any temporal aspects that may be in the data are
accounted for. Notice the degrees of freedom are different for
the training set and the test set, this is because there were no
data elements belonging to one of the categories in the test
set, where there were elements in the training set.

TABLE I
EXPERIMENTAL RESULTS FORGLASS DATA SET

C4.5 C4.5+GP
Train Correct 92.8 98.5
Test Correct 75 100
DOF Train 30 30
DOF Test 25 25
probability of not null test set 1.0 1.0
Tree size 43 61

The glass data set shows a considerable improvement for
the enhanced input space, however the decision tree is larger.

The iris data set shows an improvement for the enhanced
input space, but the improvement is marginal, however the
decision tree is smaller.

The Pima indians data set shows a considerable improve-
ment for the enhanced input space. Both the training set and
the test set show improvement. The enhanced decision tree is
also considerably bigger, by a factor of nearly 4.



TABLE II
EXPERIMENTAL RESULTS FORIRIS DATA SET

C4.5 C4.5+GP
Train Correct 98 100
Test Correct 100 100
DOF 6 6
probability of not null test set 0.99 0.99
Tree size 9 7

TABLE III
EXPERIMENTAL RESULTS FORPIMA INDIANS DATA SET

C4.5 C4.5+GP
Train Correct 82.7 98.3
Test Correct 74.5 84.2
DOF 2 2
probability of not null 1.0 1.00
Tree size 33 119

The experiments have shown that the enhanced system is
able to significantly improve the quality of the decisions made,
however this is often at the expense of a larger tree. The teston
the iris data set indcates that the decision tree can be smaller,
as shown by some of the demonstration data sets earlier in the
paper.

VII. C ONCLUSIONS

This paper has extended the capability of decision tree
induction systems where the independent variables are con-
tinuous. The incremental decision process has been shown
to be inadequate in explaining the structure of several sets
of data without enhancement. The paper has shown that
introducing variables based on higher order and higher di-
mensional combinations of the original variables can result in
significantly better decision trees. This can all be accomplished
by introducing these variables at the start of the decision tree
generation and a suitable method for generating these would
be a genetic algorithm. A fitness function for a genetic pro-
gramming system has been introduced and serves to discover
structure in the continuous domain.
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