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Dual-hop transmissions with fixed-gain relays
over Generalized-Gamma fading channels

Kostas P. Peppas, Akil Mansour and George S. Tombras

Abstract—In this paper, a study on the end-to-end performance of dual-hop wireless communication systems equipped with fixed-gain
relays and operating over Generalized-Gamma (GG) fading channels is presented. A novel closed form expression for the moments
of the end-to-end signal-to-noise ratio (SNR) is derived. The average bit error probability for coherent and non-coherent modulation
schemes as well as the end-to-end outage probability of the considered system are also studied. Extensive numerically evaluated and
computer simulations results are presented that verify the accuracy of the proposed mathematical analysis.

Index Terms—Dual-hop wireless communication systems, fixed-gain relays, Generalized-Gamma fading channels, average bit error
probability, outage probability.
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1 INTRODUCTION

R ECENTLY, research efforts have been focused on the
investigation of multi-hop wireless communications

systems, which seem to extend the coverage without
using large power at the transmitter and increase connec-
tivity and capacity in wireless networks [1]–[10]. Multi-
hop wireless communications systems are able to pro-
vide a potential for broader and more efficient coverage
in bent pipe satellites and microwave links, as well as
modern ad-hoc, cellular, WLAN, and hybrid wireless
networks. In multi-hop networks, intermediate nodes
operate as relays between the source and the destina-
tion terminal. Generally, there are two main categories
of multi-hop wireless communication systems: Non-
regenerative and regenerative systems. In the regener-
ative systems, the relay re-encodes and retransmits the
signal towards the destination after demodulating and
decoding the received signal from the source. At the des-
tination, the receiver can employ a variety of diversity
combining techniques to benefit from the multiple signal
replicas available from the relays and the source. Non-
regenerative systems use less complex relays that just
amplify and and re-transmit the information signal with-
out performing any sort of decoding. Moreover, relays
in non-regenerative systems systems can in their turn
be classified into two subcategories, namely, channel
state information (CSI)-assisted relays and blind relays.
Non-regenerative systems with CSI-assisted relays use
instantaneous CSI of the first hop to control the gain
introduced by the relay. On the other hand, systems with
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blind relays employ at the relaying nodes amplifiers with
fixed gains. Although such systems are not expected to
perform as well as systems equipped with CSI-assisted
relays, they are characterized by low complexity and
ease of deployment.

A versatile fading envelope distribution, which gen-
eralizes many of the commonly used models for multi-
path and shadow fading, is the generalized gamma (GG)
distribution [11]. This fading model is quite general as it
includes the Nakagami-m and the Weibull distributions
as special cases and the log-normal distribution as a lim-
iting case. Representative past works concerning the per-
formance of dual-hop systems over fading channels can
be found in [6], [12], [13]. In [6], the authors have studied
the end-to-end performance of dual-hop transmission
systems with regenerative and non-regenerative relays,
respectively, over Rayleigh fading channels. In [12], the
performance of dual-hop wireless communication sys-
tems with fixed-gain relays over Nakagami-m fading
channels was investigated. Also, in [13], lower bounds of
the performance of dual-hop relaying over independent
GG fading channels were given. In the view of the
appropriateness of the GG distribution for characteriz-
ing real-world communication links, it is appealing to
inspect the performance of dual-hop systems operating
over these channels. However, to the best of the authors’
knowledge, results concerning the performance of non-
regenerative systems with fixed-gain relays operating
over GG fading are not available in the open technical
literature.

In this paper a thorough performance analysis of dual-
hop wireless communications systems with fixed gain re-
lays is presented. A novel closed form expression for the
moments of the end-to-end output SNR is derived. Based
on this formula, the outage performance and the average
error probability for binary coherent and non-coherent
modulation schemes are studied, using the well-known
moment-generating function (MGF) approach [14]. The
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proposed method for the evaluation of the MGF is based
on the Pade approximants theory. Moreover, an alter-
native integral representation for the outage probability
of the considered system is presented. A new closed-
form expression is derived for the gain of previously
proposed semi-blind relays. These formulae are used in
numerical and computer simulations results, to verify
the correctness of the presented mathematical analysis.
Our results incorporate similar others available in the
open technical literature, such as those for Nakagami-m
fading channels.

The remainder of the paper is organized as follows:
In Section 2, the system and channel model is described
in details. In Section 3, closed form expressions for
the moments of the end-to-end SNR are presented. In
Section 4, the gain of a previously proposed class of
semi-blind relays is derived in closed form. In Sections
5 and 6, the error rate and outage performance of the
considered system are addressed, respectively. Numer-
ical and computer simulation results are presented in
Section 7, while the paper concludes with a summary
given in Section 8.

2 SYSTEM AND CHANNEL MODEL

We consider a wireless communication system where a
source terminal A is communicating with a destination
terminal C through a terminal B which acts as a relay.
The node B amplifies and forwards the received signal
to the destination C without any sort of decoding. As-
suming that the source is transmitting a signal with an
average power normalized to unity, the end-to-end SNR
is given as [12, Eq. 1]:

γend =
(a21/N01)(a

2
2/N02)

(a22/N02) + (1/G2N01)
(1)

where ai is the fading amplitude of the ith hop, i =
1, 2, assumed to be GG distributed, G is the relay gain,
and N0i is the single-sided power spectral density of the
additive white Gaussian noise (AWGN) at the i-th hop.
When blind relays are used, the fixed gain G established
in the connection is G2 = 1/(CN01), where C is a constant
[6]. Thus (1) becomes:

γend =
γ1γ2
C + γ2

(2)

where γi = a2i /N0i is the instantaneous SNR of the ith
hop. The probability density function (pdf) of γi is given
by [11]

fγi(γi) =
βiγ

miβi/2−1
i

2Γ(mi)(τiγi)
miβi/2

exp

−( γi
τiγi

) βi
2

 (3)

where βi > 0 and mi > 1/2 are parameters related to
fading severity, γi = E⟨γi⟩ with E⟨·⟩ denoting expecta-
tion, τi = Γ(mi)/Γ(mi + 2/βi) and Γ(x) ,

∫∞
0
e−ttx−1dt

is the Gamma function. For βi = 2, (3) reduces to the
Nakagami-m fading distribution whereas for m = 1 the

Weibull distribution is obtained. Moreover, the cumula-
tive distribution function (cdf) of γi may be expressed
as

Fγi(γi) = 1−
Γ

(
mi,

(
γi

τiγi

) βi
2

)
Γ(mi)

(4)

where Γ(x, y) ,
∫∞
x
e−tty−1dt is the upper incomplete

Gamma function.

3 MOMENTS OF THE END-TO-END SNR

In this section, a closed-form expression for the moments
of the end-to-end SNR is derived. The n-th moment of
γend is given by

E⟨γnend⟩ =
∫ ∞

0

∫ ∞

0

(
γ1γ2
C + γ2

)n

fγ1(γ1)fγ2(γ2)dγ1dγ2 (5)

Using (3), E⟨γnend⟩ can be written as:

E⟨γnend⟩ =
1

4

2∏
i=1

βi

Γ(mi) (τiγi)
βi
2

×
∫ ∞

0

γ
m1β1/2+n−1
1 exp

−( γ1
τ1γ1

) β1
2

 dγ1
×
∫ ∞

0

(
γ2

C + γ2

)n

γ
m2β2/2−1
2 exp

−( γ2
τ2γ2

) β2
2

 dγ2
(6)

The integral with respect to γ1, I1, can be evaluated by

applying the change of variables
(

γ1

τ1γ1

) β1
2

= t and using
the definition of the Γ function as

I1 = 2
(τiγi)

m1β1/2+n

β1
Γ

(
m1 +

2n

β1

)
(7)

The integral with respect to γ2, I2, can be evaluated
by expressing the exponential and the fraction in terms
of Meijer-G functions i.e exp(−x) = G 1,0

0,1 [x |−0 ] [15, Eq.
8.4.3.2] and (1+x)−ρ = 1

Γ(ρ)G
1,1
1,1

[
x
∣∣1−ρ

0

]
[15, Eq. 8.4.2.5]

and with the application of [15, Eq. 2.24.1.1] as:

I2 =

√
k2l

n−1
2 Cm2l2

Γ(n)(2π)l+
k2−3

2

×G k2+l2,l2
l2,k2+l2

[
(τ2γ2)

−l2 Cl
2

kk2
2

∣∣∣ ∆(l,1−m2l2−n)
∆(k2,0),∆(l2,−m2l2)

] (8)

where k2 and l2 are the minimum integers that satisfy
β2 = 2l2/k2 and ∆(x, a) = { a

x ,
a+1
x , . . . a+x−1

x }. It is
noted that the Meijer-G function is a standard built-in
function available in the most popular software-based
mathematical packages such as Maple or Mathematica.
Finally, the moments of the end-to-end SNR of the
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considered system are given in closed-form as

E⟨γnend⟩ =
Γ
(
m1 +

2n
β1

)
(τ1γ1)

n
ln2 Cm2l2

√
k2Γ(m1)Γ(m2) (τ2γ2)

m2l2
k2 Γ(n)(2π)l2+

k2−3
2

×G k2+l2,l2
l2,k2+l2

[
(τ2γ2)

−l2 Cl
2

kk2
2

∣∣∣ ∆(l2,1−m2l2−n)
∆(k2,0),∆(l2,−m2l2)

]
(9)

By substituting n = 1 to (9) a closed-form expression for
the average end-to-end SNR can be obtained. For the
special case of Nakagami-m fading channels (β1 = β2 =
2), it can be observed that (9) is reduced to a previously
known result [12, Eq. 9].

4 A CLASS OF ”SEMI-BLIND” RELAYS IN
GENERALIZED-GAMMA FADING CHANNELS

In this section, a new expression for the gain of a -
previously published- class of ”semi-blind” relays is
presented in closed form for GG fading channels. In
[6], the authors proposed a specific class of ”semi-blind”
relays which consume the same average power with
the corresponding CSI-based relays. The proposed fixed
gain relay, benefits from the knowledge of the first hop
average fading power. In such a scenario, the fixed gain
is considered equal to the average of CSI assisted gain,
namely

G2 = E
⟨

1

a21 +N2
01

⟩
(10)

For GG fading, by performing the required statistical
average in (10) and following a process similar to the
one for the evaluation of I2, G can be expressed in closed
form as

G2 =
l1

N01(2π)
l1+

k1−3
2

√
k1Γ(m1)(τ1γ1)

m1l1/k1

×G k1+l1,l1
l1,k1+l1

[
(τ1γ1)

−l1

kk1
1

∣∣∣ ∆(l1,1−m1l1)
∆(k1,0),∆(l,1−m1l1)

] (11)

where k1 and l1 are the minimum integers that satisfy
β1 = 2l1/k1. Finally, the parameter C can be obtained
as C = 1/(G2N01). For Nakagami-m fading channels
(l1 = k1 = 1, τ1 = 1/m1), by making use of the identity
G 2,1

1,2

[
x
∣∣ 1−a
0,1−b

]
= Γ(a)Γ(a−b+1)Ψ(a, b, x) [15, Eq. 8.4.46.1]

where Ψ(·, ·, x) denotes the Tricomi hypergeometric func-
tion [15, Eq. (7.2.2.7)] and Ψ(a, a, z) = ezΓ(1 − a, z) [15,
Eq. (7.11.4.4)], we observe that G2 reduces to a previously
known result [12, Eq. (12)].

5 PADÉ APPROXIMANTS AND AVERAGE BIT
ERROR PROBABILITY

In this section we address the error performance of the
considered dual-hop system for different coherent and
non-coherent binary modulation schemes. The ABEP of
various digital modulation schemes over fading chan-
nels can be evaluated by using the well-known MGF

based approach [14]. In this case, however, it is difficult
to derive a closed form expression for the MGF of the
output SNR, Mγend

(s). Instead, it is more convenient to
use the Padé approximants method [16], a simple and
efficient method to accurately approximate the MGF and
in sequel to evaluate the ABEP. The main advantage of
this method is that due to the form of the produced
approximation, the ABEP can be calculated directly
using simple expressions for the non-coherent Binary
Frequency Shift Keying (BFSK) and Binary Differential
Phase Shift Keying (BDPSK) modulation schemes, while
for M-ary Quadrature Amplitude Modulation (QAM)
and M-ary Phase Shift Keying (PSK), single integrals
with finite limits and integrands composed of elemen-
tary functions can be readily evaluated by numerical
integration.

A Padé approximant to the MGF is a rational function
of a specified order B for the denominator and A for the
nominator, whose power series expansion agrees with
the (A+B)-order power expansion of the MGF, namely

Mγend
(s) ≃ R[A/B](s) =

∑A
i=0 cis

i

1 +
∑B

i=0 bis
i
≃

A+B∑
n=0

E⟨γnend⟩sn

n!

(12)
where bi and ci are real numbers. In order to obtain
an accurate approximation of the MGF, we assume sub-
diagonal Padé approximants (B = A+1) [16]. The coeffi-
cients bi and ci may be numerically evaluated using any
of the most popular commercial software mathematical
packages such as Maple or Mathematica.

Using (12), the ABEP of digital modulations for several
signaling constellations may be efficiently evaluated. For
example, the ABEP of BDPSK can be readily obtained
from (12) as P be = 0.5Mγend

(−1). Also, the ABEP for
coherent binary signals is given by [14]

P be =
1

π

∫ π/2

0

Mγend

(
− ψ

sin2 θ

)
dθ (13)

where ψ = 1 for coherent binary phase shift keying
(BPSK), ψ = 1/2 for coherent BFSK and ψ = 0.715 for
coherent BFSK with minimum correlation.

6 END-TO-END OUTAGE PROBABILITY (OP)

In this section the end-to-end Outage Probability (OP) of
the considered system is addressed. The OP is defined as
the probability that the instantaneous output SNR, γend,
falls below a specified threshold γth. Two methods for
the evaluation of the end-to-end OP are presented: The
first method is based of the Padé approximants theory
where as the second one derives an easy-to-evaluate
integral representation of the OP.
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6.1 Evaluation of the end-to-end OP using Padé ap-
proximants

The outage probability can be extracted from Mγend
(s)

based on the following Laplace transformation

Pout (γth) = L−1

{
Mγend

(s)

s
; s; t

}∣∣∣∣
t=γth

(14)

where L−1 {·, s; t; } denotes inverse Laplace transform.
Using (12) and the residue inversion formula [17], the
OP can be obtained as

Pout(γth) = 1−
B∑
i=1

λi
pi
epiγth (15)

where pi are the poles of the of the Padé approximants
to the MGF, which must have negative real part, and λi
are the residues.

6.2 An integral representation of the end-to-end OP

Using (2) the end-to-end OP may be obtained as

Pout (γth) = Pr(γend ≤ γth) =∫ ∞

0

Pr
(

γ1γ2
C + γ2

≤ γth

∣∣∣∣ γ2) fγ2(γ2)dγ2

=

∫ ∞

0

Pr
(
γ1 ≤ (C + γ2)γth

γ2

∣∣∣∣ γ2) fγ2(γ2)dγ2

= 1−
∫ ∞

0

[
1− Fγ1

(
(C + γ2)γth

γ2

)]
fγ2(γ2)dγ2

= 1− β2
2Γ(m1)Γ(m2)(τ2γ2)

m2β2/2

×
∫ ∞

0

Γ

m1,

(
Cγth + γthγ2
τ1γ1γ2

) β1
2

 γ
m2β2/2−1
2

× exp

−( γ2
τ2γ2

) β2
2

 dγ2

(16)

where Pr(·) denotes the probability operator. A closed
form expression for the previously defined integral is
very difficult, if not impossible to be obtained. However,
after performing the change of variables γ2 = τ2γ2w

2
β2 ,

the OP may be expressed after some algebraic manipu-
lations as

Pout (γth) =1− 1

Γ(m1)Γ(m2)

∫ ∞

0

wm2−1e−w

× Γ

m1,

Cγth + γthτ2γ2w
2
β2

w
2
β2

∏2
j=1 τjγj


β1
2

 dw
(17)

It can be observed that this integral can be accurately
and efficiently evaluated by using the Gauss-Laguerre
quadrature rule [18]. Thus, the end-to-end OP may be
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Fig. 1. Parameter C versus γ1 for β1 = 4/3 and for several
values of m1.

obtained as

Pout (γth) ≃ 1− 1

Γ(m1)Γ(m2)

×
N∑
i=1

Wix
m2−1
i Γ

m1,

Cγth + γthτ2γ2x
2
β2
i

x
2
β2
i

∏2
j=1 τjγj


β1
2

 (18)

where xi are the roots of the N -th order Laguerre
polynomial LN (x) and Wi are the corresponding weights
given by

Wi =
xi

(N + 1)2[LN+1(xi)]2
(19)

7 NUMERICAL AND COMPUTER SIMULATION
RESULTS

In this section, various performance evaluation results
obtained by numerical and simulations techniques that
illustrate the formulations derived herein are presented.

In Fig. 1, the parameter C as a function of γ1 for several
values of m1 and β1 = 4/3 is depicted and as expected,
C increases as m1 increases. In Fig. 2, the average end-
to-end SNR as a function of γ1 for β1 = β2 = 3
and m1 = m2 = 2 is depicted. In the same plot, the
impact of power imbalance between the two hops on
the considered metric is also illustrated. As expected
[6], when γ2 > γ1, it is beneficial and, otherwise, it is
detrimental. In Fig. 3, the ABEP for BDPSK and BPSK
is illustrated as a function of γ1 for balanced (γ2 = γ1)
and unbalanced (γ2 = 2γ1) hops assuming β1 = β2 = 3
and m1 = m2 = 2. As it is evident, ABEP decreases as γ1
increases. Moreover, in Figs. 4 and 5 the impact of the
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Fig. 2. Average end-to-end SNR versus γ1 for β1 = β2 =
3 and m1 = m2 = 2 .
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Fig. 3. Average Bit Error Probability versus γ1 for bal-
anced (γ2 = γ1) and unbalanced (γ2 = 2γ1) hops
(β1 = β2 = 3 and m1 = m2 = 2) .

fading parameters β and m on the ABEP is illustrated.
More specifically, in Fig. 4 the ABEP of BDPSK and BPSK
is illustrated for γ2 = 2γ1, assuming β1 = β2 = 2.5 and
m1 = m2 = m, as a function of γ1 and for m = 1.5, 3
and 3.5. One can observe that ABEP improves as m
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Fig. 4. Average Bit Error Probability versus γ1 for unbal-
anced (γ2 = 2γ1) hops, β1 = β2 = 2.5, m1 = m2 = m and
for various values of m .
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Fig. 5. Average Bit Error Probability versus γ1 for unbal-
anced (γ2 = 2γ1) hops, β1 = β2 = β, m1 = m2 = 2 and
for various values of β .

and/or γ1 increases. In Fig. 5, ABEP results for BDPSK
and BPSK are presented for β1 = β2 = β, m1 = m2 = 2,
β = 1, 2.5, 3.5 and as it is obvious the ABEP improves as
β and/or γ1 increases.
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Fig. 6. Outage Probability versus γ1/γth (β1 = β2 = 3
and m1 = m2 = 2) .

In Fig. 6, the OP of the considered system is illustrated
as a function of the first hop inverse normalized outage
threshold γ1/γth when β1 = β2 = 3 and m1 = m2 = 2.
The impact of power imbalance between the two hops on
the OP is also illustrated. As far as the power imbalance
is concerned, one can verify similar findings to that
mentioned in Fig. 2. Finally, for all the considered test
cases, our theoretical analysis is substantiated by means
of monte-carlo simulations and as it can be observed,
the simulations are in perfect agreement with the ana-
lytically obtained results.

8 CONCLUSION

In this paper, the end-to-end performance of dual-hop
wireless communication systems with fixed-gain relays
operating over GG fading channels was evaluated. A
novel closed-form expression for the moments of the out-
put SNR was derived. Moreover, the average error and
the outage performance of the considered system were
studied using the MGF approach and the Padé approxi-
mants method. An alternative integral representation for
the outage probability was also derived. This expression
can be acurrately and efficiently evaluated by means of
the Gauss-Laguerrre quadrature rule. Various numerical
and computer simulations results were presented that
demonstrated the proposed mathematical analysis.
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