
IJCSI International Journal of Computer Science Issues, Vol. 1, 2009
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

13

Context Aware Adaptable Applications - A global approach

Marc DALMAU, Philippe ROOSE, Sophie LAPLACE

LIUPPA, IUT de Bayonne
2, Allée du Parc Montaury

64600 Anglet
FRANCE

Abstract
Actual applications (mostly component based)
requirements cannot be expressed without a ubiquitous
and mobile part for end-users as well as for M2M
applications (Machine to Machine). Such an evolution
implies context management in order to evaluate the
consequences of the mobility and corresponding
mechanisms to adapt or to be adapted to the new
environment. Applications are then qualified as context
aware applications.
This first part of this paper presents an overview of
context and its management by application adaptation.
This part starts by a definition and proposes a model for
the context. It also presents various techniques to adapt
applications to the context: from self-adaptation to
supervised approached.
The second part is an overview of architectures for
adaptable applications. It focuses on platforms based
solutions and shows information flows between
application, platform and context. Finally it makes a
synthesis proposition with a platform for adaptable
context-aware applications called Kalimucho. Then we
present implementations tools for software components
and a dataflow models in order to implement the
Kalimucho platform.
Key-words: Adaptation, Supervision, Platform, Context,
Model

1. Introduction
Actual applications (mostly component based)
requirements cannot be expressed without a ubiquity and
mobile part for end-users as well as for M2M applications
(Machine to Machine). Such an evolution implies context
management in order to evaluate the consequences of the
mobility and corresponding mechanisms to adapt or to be
adapted to the new environment. Mobile computing and
next, ubiquitous computing, focuses on the study of
systems able to accept dynamic changes of hosts and
environment [33] . Such systems are able to adapt
themselves or to be adapted according to their mobility
into a physical environment. That implies dynamic

interconnections, and the knowledge of the overall
context. Due to the underlying constraints (mobility,
heterogeneity, etc.), the management of such applications
is complex and requires considering constraints as soon as
possible and having a global vision of the application.

Adaptation decision can be fully centralized (A - Figure 1)
or fully distributed with all intermediary positions (B&C -
Figure 1). The consequence is the level of autonomy of
decision as well as the level of predictability. Obviously,
the autonomy increases with decentralized supervision.
Reciprocally, the complexity increases with the autonomy
(problems of predictability, concurrency, etc.).

A- Centralized
 Supervision

B- Adaptation Platform
(decentralized supervision)

C- Self Adaptation

A
ut

on
om

y

Predictability

+

- +

-

Figure 1 : Means of adaptation

Self-adaptable applications need to access to context
information. This access can be active if the application
captures itself the context (see A - Figure 1), or passive if
an external mechanisms gives it access to the context (see
B - Figure 1).
Nevertheless, with mobile peripherals and the underlying
connectivity problems, a fully centralized supervision is
not possible. A pervasive supervision [29] appears is a
good solution and allows managing complexity,
predictability while keeping the advantages of autonomy.

In order to be context-aware, applications need to get
information corresponding to three adaptation types: data,
service and presentation. The first one deals with “raw
data” and its adaptations to provide complete and
formatted information. Service adaptation deals with the
architecture of the application and with dynamic
adaptation (connection/disconnections/migration of

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

14

components composing the application). It allows
adapting the application in order to respect the required
QoS. Presentation deals with HCI (not addressed in this
paper).
Here is a global schema of an adaptable application:

Application

Adaptation
Manager

wish a QoS
provided QoS

influences on user requirem
ents

push/pull

adaptations

m
on

ito
re

d
by

Context Information

adaptations

Figure 2 : Adaptable applications

Whereas [34] [35] do not make distinction between
context oriented and application oriented data (functional
data), we think that such a distinction makes design easier
and offers a good separation of concerns [36] .

2. What is context?

2.1 Definition and model

The origin of the term « context awareness » if attributed
to Schilit and Theimer [42] . They explain that it is « the
capacity for a mobile application and/or a user to
discover and react to situations modifications ». Many
other definitions can be found in [43] . The application
context is the situation of the application so the context is
a set of external data that may influence the application
[36] .
A context management system can interpret the context
and formalize it in order to make a high level
representation. It creates an abstraction for the entities
reacting to situations evolutions, they can be applications
[35] , platforms, middlewares, etc. In order to make such
abstractions, a three layered taxonomy can be organized as
shown in Figure 3:
The first layer deals with context information capture. The
first type of context is called Environmental: this is the
physical context. It represents the external environment
where information is captured by sensors. This
information is about light, speed, temperature, etc. The
second type, called User, gives a representation of users
interacting with the application (language, localization,
activity, etc.). This is the user profile. The third one deals
with Hardware. Most probably, the more “classical” one;
it gives information on available resources (memory, %
CPU, connections, bandwidth, debit, etc.). It also gives
information as displays resolutions, type of the host (PDA,

Smartphone, Mobile Phone, PC, etc.). The third one is the
Temporal context. It preserves and manages the history
(date, hour, synchronizations, actions performed, etc.).
The last one is called Geographic and gives geographical
information (GPS Data, horizontal/vertical moving, speed,
etc.).
The second layer, called « context management » [44]
[45] is based on the previous layer representations. It
provides services specifying the software environment of
the application (platform, middleware, operating system,
etc.). The Storage of context data in order to allow
services retrieving them, the Quality giving a measure
about the service itself or data processed and the
Reflexivity allowing to represent the application itself.
The localization manages geographic information in order
to locate entities, predict their displacements.
The last layer proposes mechanisms to permit the
adaptation to the context. We will find several
mechanisms in order to react to contextual events. The
first one is the software component Composition, the
second one is the Migration in order to move entities and
the last one, the Adaptation to ensure the evolution of the
application. This last point is no-functional, the
middleware manages it, it can depend on a user profile or
on rules provided by the user. The polymorphism
facilitates the migration of entities and their adaptation to
various hosts (with more or less constraints).

Context Management Tools

Adaptation Migration Composition

Type of the context

User Hardware TemporalEnvironment

Context Management Services

Service Storage ReflexivityQuality

Polymorphisme

localization

Geographic

Figure 3 : Taxonomy of context

We propose a context model able to design any context
information. This model (called Context Object) provides
information needed by entities managing the application.
Some information defines the context (its nature) whereas
others define its validity. The nature of the context can be
[34] :
- User (people) as his preferences,
- Hardware (things) as network,
- Environment (places) as temperature, sunlight, sound,
movement, air pressure, etc. It is the physical context. It
represents the external environment from where

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

15

information is captured by sensors. It deals with users’
environment [36] as well as hardware environment.

Such information is called ContextInformation and we call
InformationValidity the validity area of a
ContextInformation (example: old information or
information which source is very far can be useless).
InformationValidity is:
- Temporal: Temporal information can be a date or time
used as timestamp. Time is one aspect of durability so it is
important to date information as soon as it is produced.
This temporal information allows making historical report
of the application and defining the validity (freshness) of
ContextInformation [40] . This freshness is the time since
the last sensor reads it. Ranganathan defines a temporal
degradation function that degrades the confidence of the
information.
- Spatial: it is the current location (the host (identity) or
the geographic coordinates (GPS)) and makes possible to
distinguish local and remote context
- Confidence information: how precise is the sensor
- Information ownership: in some application hosted on a
SmartPhone for example, privacy is very important,
therefore, each information has to be stamped with its
owner (the producer).

Let’s notice that some information is strongly coupled as
freshness and confidence whereas others are defined using
application data as ownership. That is the reason why [39]
identified physical, virtual (data source from software
application or services) and logical sensors (combine
physical and virtual sensors with additional information)
Depending on the application, one information type could
be a ContextInformation or a ValidityInformation. For
example, location can be a ContextInformation for a user
in a forest or can be a ValidityInformation for the sensor
network that supervises temperature and air pressure
measurement.
According to this model, we organize all the
characteristics of context information that define type,
value, time stamp, source, confidence and ownership [37]
or user, hardware, environment and temporal [45] [46]
Error! Reference source not found.. In order to structure
such contextual information, we proposed a meta-model
structuring ContextInformation and ValidityInformation
(see Figure 4).

Context

LocalContext RemoteContext

ContextObject

User Hardware Environment TemporalGeographic

1 1

1 1

*

* *

*

Spacio-TemporalC
ontextObject

*

*ContextInformati
onObject

Characterization

Figure 4 : Context class diagram

2.2 Context and applications

Since several years, the natural evolution of applications
to distribution shows the need of more than only
processing information. Traditionally, applications are
based on input/output, i.e. input data given to an
application produces output data. This too restrictive
approach is now old fashioned [48] . Data are not clearly
identified, processes does not only depend on provided
data but depend also on data such the hour, the
localization, preferences of the user, the history of
interactions, etc. in a word the context of the application.
We can find a representative informal definition in [49]
"The execution context of an application groups all
entities and external situations that influence on the quality
of service/performances (qualitative & quantitative) as the
user perceives them".
Designers and developers had to integrate the execution
environment into their applications. This evolution allows
applications to be aware of the context, then to be context-
sensible and then to adapt their processes and next to
dynamically reconfigure themselves in order to react as
well as possible to demands. This is evidence, but to adapt
itself to the context, the application needs to have a good
knowledge of it and of its evolutions.
With a research point of view, context needs a vertical
approach. All research domains/layers manage contextual
information. Many works deal with its design,
management, evaluation, etc. Its impact is wide: Re-
engineering, HCI, Grid, Distributed Applications,

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

16

Ubiquitous Computing, Security, etc. But to be honest, the
context it not a new concept in computer science! Since
the early 90’s, Olivetti Research Center with the
ActiveBadge [Harter, 1994] and most of all, with a lot a
regrets, the Xerox PARC with the PARCTab System [51]
gave the bases of modern context aware applications.

In order to be aware of the context, the following
architecture (see Figure 5) is “classical”. An example can
be found in [46] . It can be summarized as a superposition
of layers. Each of them matches to a contextual
information acquisition process, a contextual information
management and an adaptation of the application to the
context (as defined in Figure 3).

Contextual Information Acquisition

Context Management

Application Adaptation

Figure 5 : Architectural layers of context aware applications

According to Figure 5, context management do imply to
have dynamic applications in order to adapt them to
variations of the context and so to provide a quality of
service corresponding to current capabilities of the
environment (application + runtime).

3. Context aware applications
Context aware applications are tightly coupled to mobiles
devices and ubiquitous computing in the meaning of
"machines that fit the human environment, instead of
forcing humans to enter theirs" [1] . These applications are
able to be aware of their execution context (user, hardware
and environment) and its evolutions. They extract
information from the context about geographical
localization, time, hardware conditions (network, memory,
battery, etc.) as well as about users.
Interactions between an application and its context can
then be represented by two information flows (Figure 6):

− Application captures information from its context
− Application acts its context

Application

Context

1 2 D ata Flow #1 = consulta tion
D ata Flow #2 = modification

Figure 6 : Context aware application

The means operated to realize both data flows of the
Figure 6 depend on types of context (Table 1). They are
system and network primitives for hardware context
(resource allocation, connections, consultation of available

resources, etc.). The user's context is captured through the
interfaces and the information system (user's profile
description files). At last, environmental context can be
captured through sensors and modified by actuators.

Type of context Flow Hardware User Environment
#1 System and

network
primitives

Interfaces and
information
system

Sensors

#2 Resource
allocation

Interfaces Actuators

Table 1 : Means of interaction between application and context

However, even if it is possible to design limited
applications according to the use of contextual
information, the main interest is to be able to adapt the
behavior of the applications to the context evolutions.
Particularly, the increasing use of mobile and limited
devices implies the deployment of adaptable applications.
Such approach allows having a quality of service
management (functional and non-functional services as
energy saving for example).

3.1 Adaptable context aware applications

Adding adaptation to context aware applications means
the addition of a new interaction corresponding to the
influence that the context has on the application. That is
the property for the application to adapt itself to the
context (Figure 7).

Application

Context

1 2

3

Data F low #1 = consulta tion
Data F low #2 = modification
Data F low #3 = adaptation

Figure 7 : Adaptable Context Aware Application

Achievement of a context aware application can be done:
− By self adaptation
− By supervision

Application

Adaptation

Context

Self A
daptationSu

pe
rv

isi
on

Figure 8 : Supervision vs Self Adaptation: a global vue.

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

17

3.1.1 Self adaptation
Such systems are expected to dynamically self-adapt to
accommodate resource variability, change of user needs
and system faults. In [27] , self-adaptive applications are
described as useful for pervasive applications and sensor
systems. Self-adaptive applications mean that adaptations
are managed by the applications itself. It evaluates its
behavior, configuration, and with distributed application,
its deployment. The application captures the context (flow
#1) and therefore adapts its behavior (data flow #3). The
activity of the application modifies the context (flux #2).
This approach, represented in Figure 7, raises the essential
problem of accessing to distant context information.
Indeed, through the interactions described in Table 1 it is
only possible for the application to interact with its local
context. In order to get or modify distant contextual
information, the designer of the application has to set up
specific services on the different sites of its application. It
becomes necessary to set up many non functional
mechanisms that strongly increases the complexity of the
application and are difficult to maintain up to date.
Moreover self-adaptive solutions imply to have a planning
and an evaluation part at runtime and a control loop. In
order to make the evaluation, such application needs
components description, as well as software description,
structure and various alternatives, i.e. various assembling
configurations.
Such solutions do not simplify the separations of concern,
and so increase the practical viability of the application
and its maintainability and possible evolutions. Moreover,
with ubiquitous and heterogeneous environments, such
generic solutions are not suitable to exploit the potential of
hosts [28] . That is the reasons why most systems tend to
solve these problems using platforms.

3.1.2 Supervised adaptation
In these approaches a runtime platform interfaces the
application and the context. It allows then access to
distant context. The application only senses the context
(flow #1) by means of the middleware of the platform.
The application can modify the context and the platform
itself (flow #2). Both the application and the platform
adapt themselves to the context (flow #3). This kind of
organization is shown in Figure 9.

Application

Platform

Context

1 2

1 2

3
3

2

Da ta F low #1 = consulta tion
Data F low #2 = modification
Data F low #3 = adaptation

Figure 9 : Adaptable Context Aware Application with platform

Recent works as Rainbow use a closed-loop control based
on external models and mechanisms to monitor and adapt
system behavior at run time to achieve various goals [32] ,
such solution is closed to the use of pervasive supervision.
In order to implement such a solution, we need a
distributed platform on all heterogeneous hosts. Such
architecture allows to capture local context, and to propose
local adaptations. Additionally, communication between
local platforms gives a global vision of the context
permitting to have a global measure of the context and
adapted reactions.
Each platform has three main tasks to accomplish:

− Capture of the context: This task is important and
implements tools to capture information of layer
1 (see Figure 3).

− Context Management Service. Its role is to
manage and evaluate information from layer 1 in
order to evaluate if adaptation is required.

− Context Management Tools. It proposes a set of
mechanisms to adapt the application because of
variations of the context.

The means operated to realize data flows #1 and #2 of
Figure 9 depends on the types of context (Table 2).
Interactions with local context use the mechanisms
described in (Table 1) whereas those with distant context
use services of the platform. The middleware of the
platform offers services for context capture providing
contextual information completed by time and localisation
parameters as described in Figure 4.

Type of context Flo
w Hardware User Environment Context

System and
network
primitives

Interfaces Sensors Local

#1
Services of the
platform

Services of the
platform

Services of
the platform

Distant

Resource
allocation

Interfaces Actuators Local

#2 Services of the
platform

Services of the
platform

Services of
the platform

Distant

Table 2 : Interactions between Application and Context with a Platform

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

18

The role of the platform in this kind of organisation
becomes central. We will now define more precisely the
role and the architecture of a platform.

3.2 The platforms

Generally, we consider a platform as a set of elements of
virtualization (Figure 10) allowing application designers to
have a runtime environment independent of the hardware
and network infrastructures, supporting distribution and
offering non functional general services (persistence,
security, transactions …) or services specific to a domain
(business, medical …).

Context

Application

Framework

container

services distributionheterogeneity
middleware

Figure 10 : Elements of virtualization in a platform

The container virtualizes the application or its components
in make them suitable and compatible (interface) with the
platform. The framework finishes this task allowing the
designer to respect the corresponding model. The
middleware virtualizes communications and offers
services called by the application in order to access to the
context. At last heterogeneity consists in virtualization of
the hardware and the operating systems on witch the
application runs.
Interactions between platform and application are
bidirectional and represent the core aspect of the whole
system (platform/application). The platform has its proper
state evolving when modifications occur in the underlying
level (context) and in the application. Consequently, the
platform can trigger updates of the application state.
The interaction mode between application and platform
can be achieved by:

- service
- container

In the first case, the changes of the state of the application
that the platform knows are those inserted into the

application itself by services, API or middleware calls (
Figure 11 left), while in the second case the containers of

the business components send to the platform information
about their evolution (

Figure 11 right). These containers can themselves offer
some services to the business components or capture
information about their changes of state by observing their
behavior.

Application

Middleware

platform

Context

imply

imply

state change

state change

Interaction platform/Application by services

Application

platform

causes

imply

state change

state change

Interaction platform/Application by container

Container1

2

Context

Figure 11 : Modes of interaction between Application and Platform

The interaction mode between platform and application
allows distinguishing two families (Figure 12):

- Non intrusive platforms;
- Intrusive platforms.

A non intrusive platform acts on external elements of the
application like data or uses a event based mechanism. It
raises events when an internal state change occurs. These
events can be caught by specific components of the
application (event listeners). These modifications of
external elements and these events imply the changes of
the application state.
An intrusive platform can directly change the state of the
application without participation of the application. This
can be achieved by a direct action on the functional part
either by a modification of the circulating of information
either by directly modifying the architecture of the
application itself. The use of objects and components
facilitates greatly this task.

Application

platform

Context

cause

cause

chang of
state

change of
state

Non intrusive platform

Application

platform

cause

cause

change of
state

change of
state

Intrusive platform

Listener

event

Context

Figure 12 : Modes of interaction between platform and application

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

19

3.3 Architecture of context aware adaptable
applications

An overall schema of the architecture of an adaptable
context aware application is presented in Figure 13.
Relationship between platform and application are
materialized by four flows:

Appl ication

Platform

A B C D

D ata Flow A = Requirements for resources
D ata Flow B = Control of the p latform
D ata Flow C = In formation from the platform
D ata Flow D = C ontrol of the application

Figure 13: Information flows between application and platform [1]

This overall schema can be completed by adding the flows
of interactions with the context as presented in Figure 9.
We then obtain the general architecture shown in Figure
14 :

Application

Platform

Context

A B

1 23

2

C D Data Flow A = Access to services of the middleware some
 o f wi tch g ive access to the context
Data Flow B = Control of the p latform by the application
Data Flow C = Information for non in trusive mode
Data Flow D = Information for intrusive mode
Data Flow #1 = Consultation of the context
Data Flow #2 = Modification of the context
Data Flow #3 = Adaptation to the context

Figure 14 : Interactions between application, platform and context

Interactions between application and platform can be
described as follow:

− Data Flow A corresponds to information from the
application to the platform through usage of
services of the middleware.

− Data Flow B represents the possibility to the
application to configure the behavior of the
platform (events priorities, filtering of contextual
information, etc.)

− Data Flow C corresponds to the non intrusive
mode of interaction between platform and
application. It deals with events produced by the
platform for the listeners inside the application.

− Data Flow D represents the intrusive mode of
interaction between platform and application. It
deals with updates of the application by the
platform (modification of the architecture by
adding/suppressing/moving components or by
changing their business part).

Now, let’s have a look on different context aware
applications types that can be build according to data
flows really used. Firstly it is important to notice that for
context aware applications, data flow A is essential. In
order to be adaptable, at least flow C or flow D need to be
provided. If not, the platform is the only one able to be
adaptable. The optional data flow B represents the
possibility that the application has to configure the
interaction modes corresponding to the flows A, C and D.

The Table 3 presents the four models of adaptation that it
is possible to realize according to the flows used:

 Flows

used
Type of interaction Consequence

1 A

The platform is a
middleware (services for
accessing to local and
distant context)

Only the platform is able
to adapt itself to the
context

2 A and
C

The platform is a
middleware (services for
accessing to local and
distant context) and offers
an adaptation service

Adaptation is decided by
the application according
to information send by
the platform

3 A and
D

The platform is a
middleware (services for
accessing to local and
distant context) and
supervises the adaptation

Adaptation fully
supervised

4 A, C
and D

The platform is a
middleware (services for
accessing to local and
distant context) and offers
an adaptation service

Adaptation is partially
supervised and partially
decided by the
application

Table 3 : Possible models of adaptation according to the flows used

Data flow B allows to enrich the interaction types
presented in the above Table 3:
− In the first case: the application only can configure the

services of context access provided by the platform
− In the second case: the application can also choose the

events which are indicated to it and their priority.
− In the third case: the application can configure the

level of intrusion of the platform and eventually
protect itself from it at some moments.

− The fourth case is the union of the two before.

According to the taxonomy proposed in [23] ,
middlewares like Aura [6] [7] [8] [9] , CARMEN [10] ,
CORTEX [11] [12] and CARISMA [13] [14] [15] belong
to the first category while Cooltown [16] [17] , GAIA [18]
[19] and MiddleWhere [20] belong to the second
category. SOCAM [21] and Cadecomp [24] belong to the
third category while MADAM [25] and Mobipads [22]
belong to the fourth.

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

20

ApplicationAdaptation

Services

Context

B

D

AC

2

2

Capture of context

1

Platform

Figure 15: General schema of adaptation with a platform

We can then draw a general schema of an adaptable
context aware application (Figure 15). The platform is
distributed on every device hosting components of the
applications. Then it can access to all contextual
information. It offers a set of services in order to allow the
application accessing to local or distant context (data flow
A). Moreover it includes an adaptation manager sending
events (data flow C) and a manager supervising the
application (data flow D). The execution of this
supervision manager can be configured by the application
(data flow B).

3.4 Functional model of adaptation

The execution of an adaptable context aware application
looks like a looped system: the context modifies the
application, the execution of the application modify the
context and so on. When a platform is introduced between
the context and the application, a new loop appears
because the platform itself is modified by the context and
reciprocally, the platform modifies the context. Depending
on using an intrusive or a non intrusive platform model,
these loops are achieved by different data flows.

ApplicationAdaptation

Services

Context

B

C

2

2

Context capture

1

Platform

Figure 16 : Non intrusive adaptation model

− Case 1: Adaptation controlled by the application (non
intrusive model) :
The context is captured by the platform (data flow #1)
which signals its modifications to the application
(data flow C). The application adapts itself using or
not the services of the platform (data flow B). Activity
of the application and platform modifies the context
(data flow #2)

ApplicationAdaptation

Services

Context

D

2

2

Context capture

1

Platform

B

Figure 17 : Intrusive adaptation model

− Case 2: Adaptation monitored by the platform
(intrusive model):

− The context is captured by the platform (data flow #1)
which modifies the application (data flow D). This
mechanism can be monitored by the application (data
flow B). Activity of the application and of the
platform modifies the context (data flow #2).

3.5 General architecture of a platform for adaptable
context aware applications

The platform is composed of three main parts:
1. The capture of context is done by usual mechanisms

as described in Table 1. They are system and network
primitives, information system and sensors.
Moreover, the platform also receives information
about the application’s running context from the
containers of the business components (Figure 10).

2. The services concern both the application and the
platform itself (more precisely the part in charge of
the adaptation):
For the application it corresponds to:

• Services for accessing to the context
(hardware, user, environment) with filtering
possibilities (time, localisation)

• Other usual services (persistence, …)
For the adaptation it means:

• Services for accessing to the context
• Services for Quality of Service measurement
• Services for reflexivity that is to say the

knowledge that the system constituted by the
platform and the application has of itself.

3. The adaptation matches the general schema of
adaptation proposed in [3] which distinguishes two
parts:

• The evolution manager which implements
the mechanisms of the adaptation;

• The adaptation manager which monitors and
evaluates the application.

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

21

Plan changes

Collect
observations

Evaluate and
monitor

observations

New
deployment

Maintain
coherency

Implementation
Architectural

model

 Adaptation
management

 Evolution
management

Figure 18 : General schema of adaptation [3]

The evolution manager monitors the application and its
environment. Its architectural model selects an
implementation maintaining the coherency of the
application. The essential role of this manager is to check
if deployment of the application is "causally connected" to
the system [5]. Such a model integrates reflexivity like
defined in [4] but limited to the architecture of the
application and therefore protecting the encapsulation of
the business components. The adaptation manager
receives observations measured by the evolution manager.
It evaluates them in order to select an adaptation and to
find a new deployment of the components of the
application (Figure 18).

4. Kalimucho platform and implementation tools
The architecture of the application has to be virtualized in
order to be monitored by the platform. The general
architecture of the Kalimucho platform is the following:

Host 1

Host 2

Host 3

Osagaia Components

Data Fl ows between Components (Korrontea connectors)

Commandes États

Intra-platform communications Kalimucho platform

Platform Kali mucho

Pl atform Kalimucho

Pl atform Kali mucho

Osagaia Components

Osagai a Components

Osagaia Components

Figure 19: Kalimucho’s General Architecture

It is based on a distributed service based platform
implementing non-functional services for adaptations
(layer 2 – Figure 3). The functional part is implemented
with software and hardware components running into the
generic Osagaia container. Communication between

components uses the generic framework called Korrontea.
This framework is a first class component connector able
to implement various communications policies.

4.1 Kalimucho architecture

We propose to build the architecture of adaptable context
aware applications on a distributed platform called
Kalimucho.
The application is made of business components (BC)
interconnected by information flows. To directly modify
the architecture of the application it is necessary that the
platform should be able to
add/remove/move/connect/disconnect the components.
Moreover the platform has to capture the context on every
site. We created a container for information data flows
named Korrontea and another for business components
named Osagaia [26] . These containers collect local
contextual information from business components and
connectors and send them to the platform. They receive
back supervisions commands from the platform.
Interactions between the platform and the application are
implemented with the flows shown in Figure 20. We can
notice that because Korrontea containers have a non
functional role into the application (information
transportation), they do not accept the data flow C and are
not event listeners. On the other hand, some BC can react
to context events sent by the platform towards Osagaia
containers.

site #2site #1

Osagaia
BC

Osagaia
BC

Osagaia
BC

Platform Platform

A C D A C D A C D

Korrontea
Korrontea

Communication
between platforms

A D A D

A D

Korrontea

Figure 20 : Interactions between application and platform in Kalimucho

Our work deals with various devices as sensors (which are
CLDC compliant), PDA, SmartPhones (CDC compliant)
and traditional PCs. Such an heterogeneous environment
implies several services variations devoted to the platform:
The capture of the context is done by components
(Osagaia) and flow containers (Korrontea). Depending on
the host running the component, it will capture users,
environment, hardware, temporal or geographic
information (see layer 1 - Figure 3). The second layer
(context management services) is done by implementing
an heuristic in order to evaluate the current Quality of
Service (QoS) and to propose adaptations if needed and if
possible. The last layer (context management tools) gives
solutions to provide adaptations
(add/remove/move/connect/disconnect components).

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

22

The platform is distributed on every machine on which
components of the application are deployed (desktops,
mobile devices and sensors). The different parts of the
platform communicate through the network.
Communications between BCs (local or distant) are
achieved by data flows encapsulated into Korrontea
containers.
Various versions of the platform are implemented on the
different hosts according to their physical capacities. On a
desktop all the parts of the platform are implemented
whereas, on a mobile device, and particularly on a
wireless sensor, light versions are proposed (one for CDC
and one for CLDC compliant hosts). Consequently, only
non avoidable services for the host are deployed (for
example a service for persistence is useless on a sensor).
In the same way, the adaptation manager implemented on
a mobile device can be lightened using internal services of
one of the neighbouring platform (for example, only local
routing information is available on a limited device). If the
platform of this device needs to find others routes in order
to set up a new connection, it has to use services of the
platforms implemented on neighbouring desktops.

4.2 Osagaia Software Component Model

Osagaia

...

AccessPort

Acc essPort

Input
Unit

R eadF low

Output
Unit

WriteF low

AccessPort Acc essPort

Business
Component

W riteFlow

C, D

Control
Unit

A

A {Interactions with the Platform

C D

Figure 21: Osagaia Conceptual Model

Finally we design the software component model in order
to ensure the implementation of distributed applications
according to the specifications expressed by functional
graphs [41] .
Functional components are called business component
since they implement the business functionalities of
applications. These components need to be executed into a
container whose role is to provide non-functional
implementation for components. The architecture of this
container is shown in Figure 21, we call it Osagaia. Its
role is to perform interactions between business
components and their environment. It is divided into two
main parts: the exchange unit (composed of input and
output units, see Figure 21) and the control unit. The
exchange unit manages data flows input/output

connections. The control unit manages the life cycle of the
business component and the interactions with the runtime
platform. Thus, the platform supervises the containers and,
indirectly, the business components (a full description of
the Osagaia software component model is available in [31]
). Thanks to this container, business components read and
write data flows managed by Connectors called Korrontea
(see Figure 22). Its main role is to connect software
components of the applications. The Korrontea container
receives data flows produced by components and
transports them. It is made up of two parts. The control
unit implements interactions between the Korrontea
container and the platform while an exchange unit
manages the input/output connections with components.
The container is the distributed entity of our model, i.e. it
can transfer data flows between different sites of
distributed applications. The flow management is done
according to the business part of the connector
implementing both the communication mode (client/server
for example) and the communication politic (with or
without synchronization, loss of data, etc.). A full
description of the Korrontea component model is available
in [28]).

Korrontea

Input
Unit

AccessPort

Output
Unit

AccessPortClient/Serv er
Process

GetSlice ProvideSlice

D

A A

Control
Unit

A
Interactions with the Platform{D

Figure 22: Korrontea Conceptual Model

5. Conclusion
In this paper, we presented an overview of adaptable
applications. Because such applications need knowledge
of their environment, we made a definition of the context
and presented it according to applications uses. Next, we
present adaptation management politics and their possible
implementation. This part was followed by a presentation
of implementation tools able to provide adaptations. We
finished by the description of the Kalimucho platform,
software and connectors containers models used in order
to make adaptations.
Implementing context-aware adaptable applications with a
platform helps having a global view of the application and
of the context. The global view of the application permits
an optimum mobility and resource management. The
global view of context permits considering the whole
context of the application instead of the only local one.

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

23

The system composed of the platform and the application
make up a reflexive context aware system.
The problem of such an approach is its inherent
complexity. Context aware platforms become more and
more complex in order to manage a context more and
more variable and evanescent. So, depending on the
targeted application, it could be much more interesting to
provide various lighter, specialized and reflexive
platforms providing a view of their state. Moreover, such
platforms are able to be heaped with other light,
specialized and reflexive ones.
The influence of the environment on the system behavior
leads to strongly couple the execution platform and the
application[38] . So design methods for applications and
platforms must also be coupled to constitute a sole design
method.
Instead of making a whole design step, we propose a life-
cycle including both application and platform (which is
also an application – this is recursive) to finish with
implementation tools (platform specific, component and
connector models and specific implementations). Such
approach let us imagine wide development with automatic
code generation.

6. Bibliography
[1] Weiser, M. (1991) ‘The computer for the 21st century’,

Scientific American, pp.94–104.
[2] C. Efstratiou, K. Cheverst, N. Davies, A. Friday : "An

Architecture for the Effective Support of Adaptive
Context-Aware Applications". In Proc. of the Second Int’l
Conference on Mobile Data Management (MDM 2001).

[3] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G.
Johnson, N. Medvidivic, A. Quilici, D. S. Rosenblum, A.
L. Wolf : "An architecture-based approach to self-
adaptative software". IEEE Intelligent Systems, vol 14 n°3,
pp : 54-62. Mai/Juin 1999.

[4] P. Maes : "Concepts and experiments in computational
reflection". In proceedings of the conference on object-
oriented systems, languages and applications
(OOPSLA'87), pp : 147-155. Orlando, Florida 1987.

[5] S. Krakowiak : "Introduction à l'intergiciel", Intergiciel et
construction d'application réparties (ICAR), pp : 1-21, 19
Janv 2007, Licence Creative Commons

[6] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.
Project Aura: Toward Distraction-Free Pervasive
Computing. IEEE Pervasive computing, 1(2):22–31, April–
June 2002.

[7] U. Hengartner and P. Steenkiste. Protecting access to
people location information. In D. Hutter, G. Müller, W.
Stephan, and M. Ullmann, editors, SPC, volume 2802 of
LNCS, pages 25–38. Springer, 2003.

[8] G. Judd and P. Steenkiste. Providing contextual
information to pervasive computing applications. In
PERCOM ’03: Proceedings of the First IEEE International
Conference on Pervasive Computing and Communications,
page 133,Washington, DC, USA, 2003. IEEE Computer
Society.

[9] J. P. Sousa and D. Garlan. Aura: An architectural
framework for user mobility in ubiquitous computing
environments. In WICSA 3: Proceedings of the IFIP 17th
World Computer Congress - TC2 Stream / 3rd IEEE/IFIP
Conference on Software Architecture, pages 29–43,
Deventer, The Netherlands, The Netherlands, 2002.
Kluwer, B.V.

[10] P. Bellavista, A. Corradi, R. Montanari, and C. Stefanelli.
Context-aware middleware for resource management in the
wireless internet. IEEE Transactions on Software
Engineering, 29(12):1086–1099, 2003.

[11] H. A. Duran-Limon, G. S. Blair, A. Friday, P. Grace, G.
Samartzisdis, T. Sivahraran, and M. WU. Contextaware
middleware for pervasive and ad hoc environments, 2000.

[12] C.-F. Sørensen, M. Wu, T. Sivaharan, G. S. Blair, P.
Okanda, A. Friday, and H. Duran-Limon. A context-aware
middleware for applications in mobile ad hoc
environments. In MPAC ’04: Proc. of the 2nd workshop on
Middleware for pervasive and ad-hoc computing, pages
107–110, New York, NY, USA, 2004. ACM Press.

[13] L. Capra. Mobile computing middleware for context aware
applications. In ICSE ’02: Proceedings of the 24th
International Conference on Software Engineering, pages
723–724, New York, NY, USA, 2002. ACM Press.

[14] L. Capra, W. Emmerich, and C. Mascolo. Reflective
middleware solutions for context-aware applications.
Lecture Notes in Computer Science, 2192:126–133, 2001.

[15] L. Capra, W. Emmerich, and C. Mascolo. Carisma:
context-aware reflective middleware system for mobile
applications. IEEE Transactions on Software Engineering,
29(10):929 – 45, 2003/10/.

[16] J. Barton and T. Kindberg. The Cooltown user experience.
Technical report, Hewlett Packard, February 2001.

[17] P. Debaty, P. Goddi, and A. Vorbau. Integrating the
physical world with the web to enable context-enhanced
services. Technical report, Hewlett-Packard, Sept. 2003.

[18] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R.
Campbell, and K. Nahrstedt. A middleware infrastructure
for active spaces. IEEE Pervasive Computing, 1(4):74 –
83, 2002/10/.

[19] M. Román, C. K. Hess, R. Cerqueira, A. Ranganathan, R.
H. Campbell, and K. Nahrstedt. Gaia: A Middleware
Infrastructure to Enable Active Spaces. IEEE Pervasive
Computing, pages 74–83, Oct–Dec 2002.

[20] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. H.
Campbell, and M. D. Mickunas. Middlewhere: A
middleware for location awareness in ubiquitous
computing applications. In H.-A. Jacobsen, editor,
Middleware, volume 3231 of Lecture Notes in Computer
Science, pages 397–416. Springer, 2004.

[21] T. Gu, H. K. Pung, and D. Q. Zhang. A middleware for
building context-aware mobile services. In Proceedings of
IEEE Vehicular Technology Conference, May 2004.

[22] A. Chan and S.-N. Chuang. Mobipads: a reflective
middleware for context-aware mobile computing. IEEE
Transactions on Software Engineering, 29(12):1072 – 85,
2003/12.

[23] Kristian Ellebæk Kjær. A survey of context-aware
middleware. In Proceedings of the 25th conference on

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

24

IASTED International Multi-Conference: Software
Engineering Innsbruck, Austria ,Pages 148-155, 2007

[24] Dhouha Ayed, Nabiha Belhanafi, Chantal Taconet, Guy
Bernard. Deployment of Component-based Applications on
Top of a Context-aware Middleware. - The IASTED
International Conference on Software Engineering (SE
2005) - Innsbruck, Austria - February 15-17, 2005.
http://picolibre.int-evry.fr/projects/cadecomp

[25] MADAM Consortium. MADAM middleware platform
core and middleware services. Editor Alessandro Mamelli
(Hewlett-Packard), deliverable D4.2, 30 March 2007.
hppt://www.intermedia.uio.no/confluence/madam/Home

[26] C. Louberry, M. Dalmau, P. Roose – Architectures
Logicielles pour des Applications Hétérogènes Distribuées
et Reconfigurables – NOTERE’08 - 23-27/06/2008, Lyon.

[27] Robert Laddaga, Paul Robertson, Self Adaptive Software:
A Position Paper, SELF-STAR: International Workshop on
Self-* Properties in Complex Information Systems, 31 May
- 2 June 2004

[28] Holger Schmidt, Franz J. Hauck: SAMProc: Middleware
for Self-adaptive Mobile Processes in Heterogeneous
Ubiquitous Environments. 4th Middleware Doctoral
Symposium - MDS, co-located at the ACM/IFIP/USENIX
8th International Middleware Conference (Newport Beach,
CA, USA, November 26, 2007).

[29] Baresi, L.; Baumgarten, M.; Mulvenna, M.; Nugent, C.;
Curran, K.; Deussen, P.H.
- Towards Pervasive Supervision for Autonomic Systems -
Distributed Intelligent Systems: Collective Intelligence and
Its Applications, 2006. DIS 2006. IEEE Workshop on
Volume, Issue, 15-16 June 2006 Page(s):365 – 370.

[30] Emmanuel bouix, Philippe Roose, Marc Dalmau - The
Korrontea Data Modeling - Ambi Sys 2008 - International
Conference on Ambient Media and Systems - 11/14
february, Quebec City, Canada, 2008.

[31] E. Bouix, M. Dalmau, P. Roose, F. Luthon. A Component -
Model for transmission and processing of Synchronized
Multimedia Data Flows. In Proceedings of the 1st IEEE
International Conference on Distributed Frameworks for
Multimedia Applications (France, February 6-9 2005).

[32] D. Garlan, J. Kramer, and A. Wolf, editors. Proceedings of
the First ACM SIGSOFT Workshop on Self-Healing
Systems (WOSS ’02). ACM Press, 2002.

[33] [Roman, 2000] Roman G.C., Picco, G.P. Murphy A.L. –
Software Engineering for mobility : a roadmap – ICSE
2000 – ACM Press, New York, USA, p. 241-258 – 2000.

[34] A.K. Dey G.D. Abowd – Towards a better understanding
of context and context-awareness – CHI 2000 - Workshop
on the What, Who, Where, When and How of Context-
Awareness, The Hague, Netherlands, April 2000.

[35] Dey, A.K. and Abowd, G.D. ‘A conceptual framework and
a toolkit for supporting rapid prototyping of context-aware
applications’, HCI Journal, Vol. 16, Nos. 2–4, pp.7–166.

[36] T. Chaari, F. Laforest - L’adaptation dans les systèmes
d’information sensibles au contexte d’utilisation: approche
et modèles. Conférence Génie Electrique et Informatique
(GEI), Sousse, Tunisie, mars 2005. pp. 56-61.

[37] Matthias Baldauf, Schahram Dustdar, Florian Rosemberg -
A survey on context-aware systems – Int’l journal on Ad
Hoc and Ubiquitous Computing, Vol.2, N°4, 2007.

[38] T.A. Henzinger and J. Sifakis. The Embedded Systems
Design Challenge Invited Paper, FM 2006, pp. 1-15.

[39] Indulska, J. and Sutton, P. (2003) ‘Location management in
pervasive systems’, CRPITS’03: Proceedings of the
Australasian Information Security Workshop, pp.143–151.

[40] A. Ranganathan, J. Al-Muhtadi, S. Chetan, R. H.
Campbell, and M. D. Mickunas. Middlewhere: A
middleware for location awareness in ubiquitous
computing applications. Vol. 3231 of LNCS, pages 397–
416. Springer, 2004.

[41] Sophie Laplace, Marc Dalmau, Philippe Roose - Kalinahia:
Considering quality of service to design and execute
distributed multimedia applications - NOMS 2008 -
IEEE/IFIP Int'l Conference on Network Management and
Management Symposium - 7-11/04/2008 Salvador de
Bahia, Brazil, 2008.

[42] Bill Schilit, Marvin Theimer - Disseminating Active Map
Information to Mobile Hosts - IEEE Network, September,
1994

[43] Jason Pascoe , Nick Ryan, David - Using while
moving: HCI issues in fieldwork environments –ACM
Transactions on Computer-Human Interaction (TOCHI)
Vol. 7 , Issue 3 (09/2000) - Special issue on human-
computer interaction with mobile systems - 2000

[44] K.E. Kjær - A Survey of Context-Aware Middleware -
Software Engineering - SE 2007 - Innsbruck, Austria,
2007.

[45] Frédérique Laforest - De l’adaptation à la prise en compte
du contexte – Une contribution aux systèmes d’information
pervasifs – Habilitation à Diriger les Recherches,
Université Claude Barnard, Lyon I, 2008.

[46] Daniel Cheung-Foo-Wo, Jean-Yves Tigli, Stéphane
Lavirotte, Michel Riveill. “Contextual Adaptation for
Ubiquitous Computing Systems using Components and
Aspect of Assembly” in Proc. of the Applied Computing
(IADIS), IADIS, Salamanca, Spain, 18-20 feb 2007

[47] Guanling Chen, David Kotz - A Survey of Context-Aware
Mobile Computing Research - Dartmouth College
Technical Report TR2000-381, November 2000.

[48] H. Lieberman and T. Selker - Out of context: Computer
systems that adapt to, and learn from, context – IBM
System Journal - Volume 39, Numbers 3 & 4, MIT Media
Laboratory 2000.

[49] Pierre-Charles David, Thomas Ledoux - WildCAT: a
generic framework for context-aware applications,
Proceedings of the 3rd international workshop on
Middleware for pervasive and ad-hoc computing, ACM
International Conference Proceeding Series; Vol. 115

[50] A. Harter, A. Hopper – A distributed location system for
the active office. IEEE Networks, 8(1):6270, 1994.

[51] Want, R. Schilit, B.N. Adams, N.I. Gold, R. Petersen,
K. Goldberg, D. Ellis, J.R. Weiser, M. - An overview
of the PARCTab ubiquitous computing environment. IEEE
Personal Communications, 2(6): 2833, 1995.

Marc Dalmau is an IEEE member and Assistant Professor in the
department of Computer Science at the University of Pau, France.
He is a member of the TCAP project. His research interests
include wireless sensors, software architectures for distributed
multimedia applications, software components, quality of service,

IJCSI International Journal of Computer Science Issues, Vol. 1, 2009

25

dynamic reconfiguration, distributed software platform, information
system for multimedia applications.

Philippe Roose is an Assistant Professor in the department of
Computer Science at the University of Pau, France. He is
responsible of the TCAP project - Video flows transportation on
sensor networks for on demand supervision. His research interests
include wireless sensors, software architectures for distributed
multimedia applications, software components, quality of service,
dynamic reconfiguration, COTS, distributed software platform,
information system for multimedia applications.

Sophie Laplace is Doctor Biographies in the department of
Computer Science at the University of Pau, France. Her
researches interests include formal methodology, Quality of
Service design and evaluation. Her works mainly focus on
multimedia applications. She defended her PhD (Software
Architecture Design in order to integrate QoS in Distributed
Multimedia Applications) thesis in 2006

