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Abstract

We develop a general theory of reaction time (RT) distributions in psycho-
logical experiments, deriving from the distribution of the quotient of two
normal random variables, that of the task difficulty (top-down information),
and that of the external evidence that becomes available to solve it (bottom-
up information). The theory provides a unified account of known changes
in the shape of the distributions depending on properties of the task and of
the participants, and it predicts additional changes that should be observed.
A number of known properties of RT distributions are homogeneously ac-
counted for by variations in the value of two easily interpretable parameters:
the coefficients of variation of the two normal variables. The predictions
of the theory are compared with those of multiple families of distributions
that have been proposed to account for RTs, indicating our theory provides
a significantly better account of experimental data. For this purpose, we
provide comparisons with four large datasets across tasks and modalitities.
Finally, we show how the theory links to neurobiological models of response
latencies.
Keywords: Drift Diffusion Model; Ex-Gaussian; Ex-Wald; LATER; Power-
Law; Ratio Distribution; RT Distribution

Since its introduction by Donders (1869), reaction time (RT) has been an important
measure in the investigation of cognitive processes. As such, a lot of research has been
devoted to the understanding of their properties. An issue that has raised some attention
is the peculiar probability distributions that describe RTs, which have proved difficult to
account for by most general probability distribution families. This has in many cases led to
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the proposal of sophisticated ad-hoc distributions, specific to the domain of RTs (see Luce,
1986, for a comprehensive review of the field). A particular consequence of this is that
the proposed distributions have gone further than being specific to RTs, but have become
specific even to particular experimental tasks and modalities. In this study we attempt to
put these apparently different distributions under one general theoretical framework, show
that they can all be grouped together in a single general purpose probability distribution.
In addition, we discuss how this theory fits into both the high-level probabilistic models,
and lower-level neurobiological models of processing. The theory that we propose makes
new predictions, and has methodological implications for the analysis of RT experiments

Our theory can be stated in a relatively trivial form: RTs are directly proportional
to the difficulty of the task, and inversely proportional to the rate at which information
becomes available to solve it. To obtain a probability distribution from here one only needs
to add that both the task difficulty and the incoming information are normally distributed
and are possibly inter-correlated. As we will show, this simple statement has rich and
novel implications for the shapes that distributions of RTs should take. The theory that we
propose fully derives from the statement above without further additions.

We will discuss this problem in four stages. First, we provide an overview of one
particular theory on the distribution of RTs in decisional tasks. This is the LATER model
that was introduced by Carpenter (1981), and has since then received support from a range
of studies. In the following section we will show how a simple extension of LATER leads to
a surprisingly general model, capable of accounting for responses across participants, types
of tasks, and modalities. Here we also discuss how our theory can account for the known
properties of RT distributions. Having provided a basic description of our theory, we will
continue by showing that our theory can also be taken as a generalization of some current
neuro-biological models of decision making. We will pay special attention to the integration
of our theory with the family of Drift Diffusion Models (DDM; Ratcliff, 1978), as these have
proved very useful in explaining the RT distributions in many tasks, and offer a natural
link to the properties of neural populations. We continue by comparing our theoretical
predictions with those of other commonly used RT distributions, paying special attention
to the now very common Ex-Gaussian distribution (McGill, 1963). For this we make use
of several lexical processing datasets in across tasks and modalities. Finally, we conclude
with a discussion of the theoretical and methodological implications of our theory.

The LATER Model

The LATER model (“Linear Approach to Threshold with Ergodic Rate”; Carpenter,
1981) is one of the simplest, and yet one of the most powerful models of reaction time
distributions in decision tasks. Starting from the empirical observation that human response
latencies in experimental tasks seem to follow a distribution whose reciprocal is normal,
Carpenter proposed a remarkably simple model: He assumed that some decision signal
is accumulated over time at a constant rate until a threshold is reached, at which point
a response is triggered. Crucially, he added that the rate at which such decision signal
accumulates is normally distributed across trials (see Figure 1, left panel). Despite its
elegant simplicity, Carpenter and collaborators have – in a long sequence of studies – shown
that such a model can account for a surprisingly wide variety of experimental manipulations,
extending across different types of stimuli (auditory, visual, tactile) and response modalities
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Figure 1. Left panel : Schema of the LATER model. Evidence accumulates from an initial state
(S0) to a decision criterion (θ). The rate (r) at which the evidence accumulates varies according to
a normal distribution with mean µr and variance σ2

r , giving rise to the typical skewed distribution
of response latencies (left-bottom). Right panel : A “Reciprobit plot”. When plotted against the
theoretical quantiles of a normal distribution, the reciprocal response latencies (with changed sign)
appear to form a straight line. This is indicative of them also following a normal distribution. In
addition, a small population of early responses seems to arise from a different normal distribution.
Taken from Sinha et al., 2006 – permission pending.

going from button presses to ocular saccades (e.g., Carpenter, 1981, 1988, 2000, 2001;
Carpenter & McDonald, 2007; Carpenter & Reddi, 2001; Carpenter & Williams, 1995;
Reddi, Asrress, & Carpenter, 2003; Reddi & Carpenter, 2000; Oswal, Ogden, & Carpenter,
2007; Sinha, Brown, & Carpenter, 2006).

In mathematical terms, the model is rather easily specified. If the response is triggered
when the evidence – starting from a resting level (S0) – reaches a threshold level (θ), and
evidence accumulates at a constant rate (r) which, across trials, follows a distribution
N(µr, σ2

r ), the response latency (T ) is determined by:

T =
θ − S0

r
=

∆
r
. (1)

If one further assumes that both S0 and θ are relatively constant across trials, the distribu-
tion of the times is the reciprocal of a normal distribution:

1
T
∼ N

(
µr

θ − S0
,
( σr
θ − S0

)2
)
. (2)

This distribution is what Carpenter terms a Recinormal distribution (further details of the
Recinormal distribution are provided in Appendix A).

Probabilistic interpretation

LATER can be directly interpreted at the computational level as an optimal model of
hypothesis testing. The main parameters of the LATER model are the decision threshold
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(θ), the starting level for the evidence accumulation process (S(0)), and the mean and
standard deviation of the evidence accumulation rate (µr and σr). If we take S(0) to
represent the logit prior probability of an hypothesis (H) being tested (e.g. a stimulus is
present, the stimulus is a word, etc) on the basis of some evidence provided by a stimulus
(E) arriving at a fixed rate r, then we have by Bayes theorem:

S(T ) = log
P (H|E)

1− P (H|E)
= log

P (H)
1− P (H)

+
∫ T

0
log

P (E|H)
1− P (E|H)

dt = S(0) + rT. (3)

Therefore, interpreting the rate of information intake as the logit of the likelihood (i.e., the
log Bayes factor; Kass & Raftery, 1995) of the stimulus, and the prior information as the
logit of the prior probabilities (the log prior odds), the accumulated evidence is an optimal
estimate of the logit of the posterior probability of the hypothesis being tested (the log
posterior odds) in an optimal inference process.

Reciprobit plots

LATER proposes using the “Reciprobit plot” as a diagnostic tool to assess the con-
tribution of different factors to an experiment’s results. This plot is the typical normal
quantile-quantile plot (a scatter-plot of the theoretical quantiles of an N(0, 1) distribution,
versus the quantiles from the observed data) with the axes swapped (the data are plotted
on the horizontal axis and the theoretical normal on the vertical axis), and a (changed sign)
reciprocal transformation on the data (d = −1/RT ). In addition, the labeling of the axes
is also changed to the corresponding RT values on the horizontal axis, and the equivalent
cumulative probability on the vertical axis (see the right panel of Figure 1). Observing
a straight line in this plot is in general a good diagnostic of a normal distribution of the
reciprocal.

Variations in slope and intercept of the Reciprobit line are informative as to the
nature of the experimental manipulations that have been performed. The Reciprobit plot
is a representation of the distribution of the reciprocal of the RT:

1
T

=
r

θ − S(0)
=

r

∆
. (4)

If the rate r is normally distributed with mean µr and variance σ2
r , and ∆ is a constant,

then 1/T will also be normally distributed with mean and variance:

µ =
µr
∆
, σ2 =

σ2
r

∆2
, (5)

and the slope and intercept of the Reciprobit are given by:

slope =
1
σ

=
∆
σr
. (6)

intercept =
µ

σ
=

µr
σr
. (7)

Therefore, variation in the ∆ (prior probability or threshold level) will be reflected in
variation in the slope only, while variation in the µr, the rate of information income, will
affect only the intercept of the Reciprobit plot.
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These consequences have been experimentally demonstrated. On the one hand, vari-
ations in top-down factors such as the prior probability of stimuli, result in a change in the
slope of the Reciprobit plot (Carpenter & Williams, 1995). In the same direction, Oswal
et al. (2007) manipulated the variability of the foreperiod (i.e., the SOA) by controling the
hazard rate of stimulus appearance (i.e., the probability that a stimulus is presented at any
moment in time given that it has not appeared before). They found that the instantaneous
hazard rate correlated with the slope of the corresponding Reciprobit plots, giving further
evidence that the expectation of observing a stimulus affects the starting level (S0) of the
decision process. Similarly, Reddi and Carpenter (2000) observed that if one manipulates
the response threshold by introducing a variation in the time pressure with which partici-
pants perform the experiment, one also obtains a variation in the general slope of the line.
However, Montagnini and Chelazzi (2005) provide evidence that manipulations in urgency
can also affect te intercept of the reciprobit plot. On the other hand, Reddi et al. (2003)
showed that changes in the information contained by the stimulus itself – the rate at which
the evidence is acquired – are reflected in changes in the intercept of the Reciprobit plot.
This was shown by proving that the proportion of coherently moving points in a random
dot kinematogram are reflected in the intercept value on the Reciprobit plot.1

Neurophysiological evidence

In addition to providing a good fit to experimental data, some neurophysiological
evidence has been presented that can support this type of model. Hanes and Schall (1996)
found that, before saccadic onset, visuomotor neurons in the frontal eye fields show an
approximately linear increase in activity. The rate of this increase varies randomly from
trial to trial, and the time at which the saccade actually occurs has a more or less constant
relation to the time when the activity reaches a fixed criterion. Furthermore, neurons in the
superior colliculus also show rise-to-threshold behavior, with their starting level depending
on the prior probability of the stimulus (Basso & Wurtz, 1997, 1998), and this decision
based activity seems to be separate from that elicited by perceptual processes (Thompson,
Hanes, Bichot, & Schall, 1996; see Nakahara, Nakamura, & Hikosaka, 2006, for an extensive
review of the neurophysiological literature that provides support for LATER).

As it can be appreciated in the Reciprobit plot of Figure 1, there appears to be an
additional population of very fast responses which do not follow the overall Recinormal
distribution of the remaining latencies. These short responses are attributed to a different
population of sub-cortical neurons that – very rarely – would overtake their cortical coun-
terparts in providing a response (Carpenter, 2001; Carpenter & Williams, 1995; Reddi &
Carpenter, 2000; but see also Johnston & Everling, 2008 for evidence that these express
responses might not be of subcortical origin).

General Theory of RT Distributions

We have seen that RTs appear to follow a Recinormal distribution. However, this
result holds only as long as the difference between the resting level and the threshold

1Carpenter and colleagues in fact assume a constant vertical intercept at infinite time, and variation in
the horizontal intercept only. In our opinion this is not so clear or informative, therefore we concentrate on
variations on the intercept in general.
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(∆ = θ − S0) remains fairly constant. For several reasons, it is difficult to assume that
this quantity will remain constant in a psychological experiment. First, most interesting
RT experiments will involve different types of stimuli, and in most cases these stimuli will
be presented to multiple participants. Clearly, in many situations different stimuli will
have different prior probabilities. As discussed above, variation in prior probability leads
to variation in S0 (Carpenter & Williams, 1995; Reddi & Carpenter, 2000). Furthermore,
experimental participants themselves are also likely to show variations in both resting levels
and threshold, depending on factors like their previous experience, age, etc. Finally, even
in experiments of the type shown by Carpenter and colleagues, where the analyses are
performed on individual participants responding to relatively constant types of stimuli, it is
not difficult to imagine that there is a certain degree of variation in the resting level due to
– among other possibilities – random fluctuations in cortical activity, fatigue, and normal
fluctuations in the participants’ level of attention during an experimental session.

Therefore, in order to account for most of the experimental situations of interest in
psychology, it will become necessary to explicitly include the possibility of fluctuations in
both the information gain rate (r) and in the resting level to threshold distance (∆). To
keep consistency with LATER, we assume that ∆ is also normally distributed with mean
µ∆ and standard deviation σ∆. If we keep the linear path assumption of LATER – we will
show below that the distributional properties are not dependent on this particular path –
the RT will be given by:

T = ∆
r , r ∼ N(µr, σ2

r ), ∆ ∼ N(µ∆, σ
2
∆) . (8)

Therefore, once we also allow for normal variation in the in ∆ factor, the RT will follow a
distribution corresponding to the ratio between two normally distributed variables. Notice
that, under this assumption, both the RTs and the inverse RTs will in fact follow the same
type of distribution: that of the ratio between normally distributed variables.

A further complication needs to be addressed. Up to the moment, and in line with
other models that also propose to take this variation into account (Brown & Heathcote,
2008; Nakahara et al., 2006), we have implicitly assumed that the values of r and ∆ are
statistically independent of each other. In reality, this seems over-optimistic. It is not rare
that the perceptual properties of stimuli are in fact correlated with their prior probabilities.
The correlation between these factors will result in a correlation between both normal
distributions in the ratio. Therefore, an additional parameter ρ representing the correlation
between r and ∆ needs to be taken into account.

Fieller’s normal ratio distribution

The distribution of the ratio of possibly correlated normal variables is well-studied
and known in analytical form. Fieller (1932) derived the expression for its density function,
and Hinkley (1969) further studied it, crucially providing a normal approximation with
explicit error bounds and conditions of application (See Appendix B for more details on
this distribution.). I will henceforth refer to this distribution as Fieller’s distribution.

Fieller’s distribution is fully characterized by four free parameters.2 If the random
2This can be reduced to three free parameters if we are only interested in the shape of the distribution

and not on its scale (i.e., median value) which is given by the κ parameter. In this case, RTs that have been
normalized (i.e., divided) by their median value require only the λ1, λ2, and ρ parameters
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variables X1 and X2 follow a bi-variate normal distribution with means µ1 and µ2, variances
σ2

1 and σ2
2, and a Pearson correlation coefficient of ρ, then the ratio between them follows

a distribution:
X1

X2
∼ Fieller(κ, λ1, λ2, ρ)

κ =
µ1

µ2
, λ1 =

σ1

|µ1|
, λ2 =

σ2

|µ2|
. (9)

The shape parameters λ1 and λ2 represent the coefficients of variation (CoV) of each of the
normal variables. As we will see below, their values have important consequences for the
predictions of our model.

Special cases of Fieller’s distribution

An interesting property of Fieller’s distribution is that, for particular values of its
CoV parameters λ1 and λ2, it reduces to more familiar probability distributions. Table 1
shows the most notable of these cases. The most salient – and least interesting – reduction
happens when both CoV parameters take a value of zero. This indicates that neither the
numerator nor the denominator exhibit any variation, that is, the RT is a constant (i.e.,
it follows a degenerate distribution with all probability mass concentrated in one point, a
Dirac impulse function).

More importantly, when the CoV of the denominator (λ2) is zero, Fieller’s distribution
reduces to a plain normal distribution with mean κ and variance ((κλ1)2). This corresponds
to the intuitive notion that if λ2 is zero, the denominator is just a plain constant that divides
the normal distribution on the numerator. In the reverse case, when λ1 is the one that is zero
(i.e., the numerator is constant), Fieller’s distribution reduces to Carpenter’s Recinormal
distribution, with reciprocal mean 1/κ and reciprocal variance (λ2/κ)2. Finally, when both
the CoV parameters λ1 and λ2 approach infinity, the situation is that of a ratio between
two zero-mean distributions. In this case Fieller’s distribution converges rather fastly to
a Cauchy distribution (also known as Lorentz distribution). The convergence of the ratio
distribution to Cauchy for high values of the CoV parameters is well-known in the theory of
physical measurements. These four particular cases of Fieller’s distribution are summarized
in Table 1.

These particular cases of Fieller’s distribution can be safely extended to the thresh-
old shown in parentheses in Table 1. Independently of the value of λ1, if λ2 < .22, the
distribution is in all respects normal. In what follows we refer to this as the normal zone.
Conversely, if λ1 < .22, the distribution is in indistinguishable from a recinormal, thus we
refer to this as the recinormal zone. As soon as both λ1 and λ2 rise above around .443 the
distribution approaches Cauchy distribution so we refer to this as the Cauchy zone. When
either λ1 or λ2 lie between .22 and .4, there is a linear, rapidly growing deviation from
(reci-)normality towards the Cauchy distribution. We refer to this area of the plots as the
linear zone. In sum, as long as λ1 or λ2 remains below .22, we will be able to safely analyze
our data using the respectively the Recinormal or normal distribution.

Hazard functions

When comparing the properties of different candidate probability distributions to de-
scribe RTs in auditory tasks, Burbeck and Luce (1982) suggested that crucial discriminating
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Table 1: Particular cases of Fieller’s distribution. The numbers in brackets indicate estimated
thresholds below or above which the reduction still applies.

Value of λ1 Value of λ2 Distribution Normal QQ-plot

0 0 Dirac(κ)

any 0 (< .22) N
(
κ, (κλ1)2

)
straight line

0 (< .22) any ReciN
(

1
κ ,
(
λ2
κ

)2
)

straight line
(on reciprocal plot)

∞ (> .443) ∞ (> .443) Cauchy
(
ρκλ1

λ2
, λ1
λ2
κ
√

1− ρ2
) horizontal line and

two vertical lines
at edges

information is provided by the hazard functions, that is, the probability of a particular re-
action time given that it was not shorter than that particular value:

h(t) = −d log (1− F (t))
dt

=
f(t)

1− F (t)
, (10)

where f(t) and F (t) are respectively the probability density function of the times and
its cumulative probability function. Burbeck and Luce remarked that the shape of this
function is notably different for different RT distributions. In particular, they contrast
distributions that show a monotone non-decreasing hazard function such as the normal,
the Gumbel, and the Ex-Gaussian distributions, those that show a constant value as the
exponential distribution, distributions that depending on their parameter values can show
either increasing of decreasing hazard functions as is the case with the Weibull distribution,
and those that show a peaked hazard function such as the Fréchet, the log-normal, the
inverse Gaussian, and the RT distribution predicted by Grice’s non-linear random criterion
model (Grice, 1972).

Strictly speaking, the RT distribution that we are advocating belongs to those that
have peaked hazard functions, although some considerations need to be made. As with the
rest of the distribution’s properties, the shape of the hazard function is determined by the
CoV parameters λ1 and λ2 and the correlation coefficient ρ. In particular, as λ2 approaches
zero, the peak location goes to infinity, ultimately becoming a monotonically increasing
function – a Gaussian hazard.

Right tails

Perhaps the most valuable information in order to discriminate between competing
probability distributions is contained in the shape of their right tail, that is, the very slow
responses. In fact, considering only the relatively fast reaction times located in the vicin-
ity of the mode of a distribution can lead to serious problems of ‘model mimicry’, that is,
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Table 2: Classification of RT distributions according to the shape of their right tails. The DDM-large
corresponds to the ‘large-time’ infinite series expansion of the first passage times of the (linear) Drift
Diffusion Model (Feller, 1968). The DDM-small is the ‘small time’ expansion of Feller (1968). The
DDM-Approximate corresponds to the closed-form approximation given by Lee et al., (2007). The
‘Cocktail’ model refers to the piecewise distribution recently proposed by Holden et al. (2009).

Distribution Type Dominant term
Shape Shape

(on log scale) (on log-log scale)
Exponential

Exponential e−λt, λ > 0 Linear decrease Exponential decrease (slow)

Gamma
Inverse Gaussian

Ex-Gaussian
Ex-Wald

DDM-large
DDM-approximate

Normal Quadratic-exponential e−kt
2 Quadratic decrease Exponential decrease (fast)

Log-normal Log-normal 1
t e
−(log t)2 Quasi-linear decrease Quadratic decrease

Pareto
Cauchy

Power-law
t−α Logarithmic decrease Linear decrease

Recinormal α > 1 (from tmin) (from tmin)
Fieller’s

‘Cocktail’ model

DDM-small Power-law (with cut-off)
t−αe−λt Power-law until tmax Power-law until tmax

α > 1, λ > 0 and linear from tmax and exp. from tmax

Weibull Stretched exponential
tβ−1e−λt

β

Above-linear decrease Below-linear decrease
λ, β > 0

completely different models can give rise to distributions that are in practice indistinguish-
able around their modes (e.g., Ratcliff & Smith, 2004; Wagenmakers, Ratcliff, Gomez, &
Iverson, 2004). This problem is greatly attenuated when one examines the right tails of the
distributions. In this area, different distributions give rise to qualitatively different shapes.
It is therefore important to describe what our theory predicts in terms of the shape of the
right tail of the distribution, and how does this contrast with other theories.

Clauset, Shalizi, and Newman (2007) provide a useful classification of possible shapes
of the right tails of distributions. Table 2 classifies several common RT distributions ac-
cording to Clauset and colleagues’ taxonomy.3 The classification has been performed by
considering the dominant term in the probability density functions of each distribution.
The great majority of distributions that have been propose to describe RTs, have exponen-
tial type tails, including the Gamma distribution (e.g., Christie, 1952; Luce, 1960; McGill,
1963), the Inverse Gaussian or Wald distribution (e.g., Lamming, 1968; Stone, 1960), the
Ex-Gaussian (e.g., McGill, 1963; Hohle, 1965; Ratcliff & Murdock, 1976; Ratcliff, 1978),
the Ex-Wald (Schwarz, 2001), the ‘large-time’ series describing the first passage times in
the diffusion model (e.g., Luce, 1986; Ratcliff, 1978; Ratcliff & Smith, 2004; Ratcliff &
Tuerlinckx, 2002; Tuerlinckx, 2004), and the closed form approximation to the DDM intro-
duced by Lee, Fuss, and Navarro (2007). In general, any distribution that results from the

3We have added a class to accommodate the Gaussian (Clauset and colleagues consider only thick-tailed
distributions
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convolution of an exponential with another one will belong to this group, except in cases
where the other distribution in the convolution is of a power-law or stretched exponential
type.

Some theories have proposed RT distributions whose tails are heavier than exponen-
tial. Among these, the Instance Theory of Automaticity proposes that RTs should have
Weibull (stretched exponential) tails (Colonius, 1995; Logan, 1988, 1992, 1995). Stretched
exponential distribution can show – for certain values of its shape parameter4 – thicker
than exponential right tails. Heavy tails can also result from log-normal type distributions
which have been proposed as models of RTs (Luce, 1986; Woodworth & Schlosberg, 1954).
Few models predict even heavier power-law right tails. Recently, Holden, Van Orden, and
Turvey (2009) have proposed a ‘Cocktail’ model which provides a piece-wise description of
the RT distribution as a combination of a log-normal distribution describing the core of
the data, and a thick power-law becoming dominant from a certain point in the right tail.
Also, although not stated explicitly by Carpenter and colleagues, the LATER model would
also predict a power-law type of right tail, which is also characteristic of the extension we
propose here. More precisely, the right tail of Fieller’s distribution (subsuming LATER’s
recinormal) converges – from a certain variable value tmin – to a power-law with a scaling
paramater value (α) of exactly two (Jan, Moseley, Ray, & Stauffer, 1999; Sornette, 2001).
The value of tmin is determined by the values of the CoV parameters λ1 and λ2, with a
limiting case of tmin going to infinity as λ2 goes to zero (which would correspond to a plain
normal distribution).

As we have seen, our theory predicts much thicker right tails than would be predicted
by most current theories, except for the few heavy-tailed distributions mentioned above.
By definition, events in the right tail are very rare, but still we are predicting that they
should happen much more often than one would expect in most theories. This also implies
that we should avoid truncating RT data on their right tail, as this can often contain the
only information that enables discrimination among theories. Unfortunately, RT are in
most situations truncated to a maximum value during data collection, so in many cases
our power to examine the right tail will be severely hampered. However, the common
practice of discarding RTs longer than 3,000 ms. (e.g., Ratcliff, Van Zandt, & McKoon,
1999), 2,500 ms. (e.g., Wagenmakers, Ratcliff, Gomez, & McKoon, 2008) or even a short
as 1,500 ms. (e.g., Balota, Yap, Cortese, & Watson, 2008). In this respect, it is important
to contrast our proposal, with the outlier cleaning recommendations of Ratcliff (1993) who,
based on simulations using the Ex-Gaussian and Inverse Gaussian distributions (both of the
exponential tail type) recommended truncating the data at a fixed cut-off between 1,000
ms. and 2,500 ms. In the data analysis sections we will test these predictions.

‘Express’ responses

Carpenter’s motivation for positing the presence of a separate population of very
fast responses in the LATER model comes from the apparent deviations from recinormality
that are observed in some experimental situations (Anderson & Carpenter, 2008; Carpenter,
2001; Carpenter & Williams, 1995; Reddi & Carpenter, 2000). Figure 2 reproduces some
results of Reddi and Carpenter (2000) in this respect. Notice that, specially in the time

4In particular, Weibull distributions will exhibit heavy tails when their shape parameter has a value
smaller than one.
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Figure 2. Evidence for the presence of a separate population of express responses. Notice that each
of these Reciprobit plots can clearly be fitted by two straight lines, one for a minority of very fast
responses, and one for the bulk of experimental responses. The open circles represent a condition in
which participants responded under time pressure, while the filled dots plot the results of responding
without such pressure. Figure taken from Reddi and Carpenter (2000) – permission pending.

pressure condition, a separate population of fast responses seems to arise, represented by
the lower slope regression lines.

Carpenter and colleagues attribute these ‘express responses’ to units in the superior
colliculus responding to the stimuli before the cortical areas that would normally be in
charge of the decision have responded. The fast sub-population arises more frequently in
some conditions than others. First, as it is evident from Figure 2, the differentiated fast
responses arise more clearly in participants or conditions that elicit faster responses. In
Reddi and Carpenter’s study, these were more apparent in the condition including time
pressure than in the condition that did not include it. In addition, from the graph it
appears that the less accurate participants showed a greater presence of these responses.
Second, Carpenter (2001) showed that variability in the order of stimuli can also affect the
proportion of very fast responses. Ratcliff (2001) showed that Carpenter and Reddi’s data
were also well modeled by the DDM, and also accepted the need for a separate population
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of slow responses.
Although the neuro-physiological mechanism that is argued to justify the very short

latencies is very plausible, there is some indication that make it difficult to believe that this
mechanism is responsible for the greater part of these short latencies. Following Carpenter’s
argument, one would expect that such sub-population only accounts for a very small per-
centage of responses. However, as can also be seen in their graph, in Reddi and Carpenter’s
results the fast sub-population accounts for over 40% of the responses in the time-pressure
situation of participants AC and AM (in fact participant AC seems to show a majority
of short responses in the time pressure condition), and similar very high percentages of
fast responses are found in other studies (e.g., Anderson & Carpenter, 2008; Carpenter &
McDonald, 2007; Montagnini & Chelazzi, 2005).

What the high proportions of fast responses seem to suggest, is that those fast re-
sponses actually belong to the same distribution that generates the slower ones. In this
direction, Nakahara et al. (2006) suggested that this deviation would partially arise in an
extension of the LATER model – ELATER – that allows for uncorrelated variations in the
starting level to threshold distance (∆).

Figure 3 illustrates the typical effect of taking a Fieller-distributed variable from the
recinormal zone into the beginning of the linear zone. The points were randomly sampled
from a Fieller’s distribution with parameter λ1 = .3 (the other parameters were kept to
realistic values taken from the analysis of an English lexical decision experiment). The
population of short responses arises very clearly, and the resulting reciprobit plot seems
to be well-fitted by two straight lines, just as was observed in the experimental data. We
can see that a small modification of the LATER model predicts that the majority of fast
responses belong to the same population as the slower ones.

‘Non-decision’ times

Most models of reaction times in psychological tasks include a component of time
that is unrelated to the actual task. This ‘non-decision’ time comprises the delays that arise
from physiological factors such as neural conduction delays, synaptic delays, etc. Taking
this into account, we say that the total time T is the sum of a non-decision component
(Tn), which can either be constant or be itself a random variable with little variability, and
a decision component (Td) that arises from the evidence accumulation process. The decision
component of the time is derived from the ratio betwen ∆ and r. Taking these processes
together, the expression for the response time becomes:

T = Tn + Td = Tn +
∆
r

=
∆ + Tn · r

r
, (11)

which is also an instance of Fieller’s distribution, enabling us to perform the analysis without
its explicit consideration.

Errors and Alternative Responses

An issue that has become crucial when comparing theories of RTs in choice tasks is
the success with which they are able to predict the proportion of errors in an experiment,
and their RT distributions relative to the correct responses. This particular aspect has led
to some serious criticism of many models. In particular, LATER has not fared particularly
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Figure 3. Typical Reciprobit plot of Fieller’s distribution bordering the Recinormal zone. The data
were sampled from a Fieller’s distribution with parameter λ1 = .3, that is, outside the Recinormal
zone, but not yet reaching the Cauchy zone. The horizontal lines mark the median and 95% interval.
The parameters used to generate the dataset were taken from the analysis of lexical decision latencies,
with the only modification of λ1. The remaining parameter values were κ = 695, λ2 = .38, and
ρ = .6. After sampling, the data were were truncated, keeping only the values in the interval from
1 ms. to 4000 ms., as typically happens in experimental situations.
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well in this part of the debate (e.g., Ratcliff, 2001). Although Hanes and Carpenter (1999)
provide some evidence that a race between multiple, laterally inhibited, accumulators could
hypothetically explain error responses, they provided no detailed quantitative description
of it.

Recently, Brown and Heathcote (2005, 2008) proposed a family of ‘ballistic’ accumu-
lator models that seem well-suited to account for error responses both in their proportion
and in their RT distribution. The Linear Ballistic Accumulator (LBA; Brown & Heathcote,
2008) model is in fact very much the same as LATER, with only an additional component
of uniformly distributed variation in the resting level of the system (S0). As Hanes and Car-
penter (1999) had proposed, LBA relies on a race between competing accumulators, and
errors are produced when this race is won by the “wrong” accumulator. Importantly, the
LBA model assumes that the separate accumulators are independent, that is, they are not
bound by any inhibitory mechanism. In the theory that we propose, errors also arise from
the competition between multiple accumulators. However, in contrast with the LBA model,
we propose that some inhibition mechanism binds the accumulators together. Whether this
mechanism is central, lateral, or feed-forward is not relevant at our level of explanation,
as they all can reduce to equivalent models (Bogacz, Brown, Moehlis, Holmes, & Cohen,
2006). Different accumulators simultaneously integrate evidence, and the first one to reach
a threshold triggers a response.

In terms of number of errors, the predictions of our model do not differ much from
the predictions of the LBA, and the same tools can be used to predict the number of errors.
However,the distribution of RTs predicted by our model is significantly different than that
predicted by the LBA. In the former case, by the Theory of Extreme Values, the competition
of independent accumulators will give rise to a distribution that asymptotically converges
to a Weibull distribution (see Colonius, 1995 and Logan, 1995 for a detailed mathematical
discussion of this point). However, in our case, the inhibitory mechanisms that bind the
accumulators break the independence pre-condition for application for the distribution of
minima as predicted by the Theory of Extreme Values, and the distribution will be – as we
argue above – more related to a power-law type.

In a simple two-alternative choice task, two accumulators A and B are integrating
evidence. An error will be produced whenever the incorrect accumulator (B) reaches the
threshold before the correct one (A) does. The development of the theory for the two-choice
case is valid without significant alterations for the general multiple choice or recognition
cases. In these cases, there is either one correct response among a finite set of possible
candidates, or there is a preferred candidate among a finite set of possible responses, all of
which could be considered correct as is the case in the picture naming example that we will
discuss below.

Neurophysiological Plausibility and Relationship to the DDM

The Drift-Diffusion Model (DDM; Ratcliff, 1978) is perhaps the most successful fam-
ily of rise to threshold models. As noted by Ratcliff (2001) in his response to the Reddi
and Carpenter (2000) study, LATER and the DDM share many common characteristics, to
the point that they might be considered convergent evidence models. In his letter, Ratcliff
additionally points out that the DDM presents a number of advantages over LATER. The
first of these if that the DDM also provides a direct mechanism to account and predict error



A THEORY OF RT DISTRIBUTIONS 15

probabilities and their latencies. The use of to opposed thresholds is crucial for this. To this
point, Carpenter and Reddi (2001) reply that the results of Hanes and Carpenter (1999)
show that a race between two accumulators would be able to explain error responses. A
second factor that seems to favor the DDM account over LATER is its suggestive approx-
imation of the behavior of neural populations. Indeed, neural populations are very noisy
and it is difficult to assume that they will show a constant rate increase in activities or firing
rates. More likely, they will show a seemingly random fluctuation that, when sampled over
a long time or across many measurements, will reveal the presence of a certain tendency
or drift that pushes the level of oscillations up or down. These highly random fluctuations
on a general accumulation can be observed both in animal single-cell recordings (Hanes
& Schall, 1996) and in human electro-physiological data (cf., Burle, Vidal, Tandonnet, &
Hasbroucq, 2004; Philiastides, Ratcliff, & Sajda, 2006). DDM-style or random walk models
are naturally suited to deal with this random variations in the neural signal, and studies
have demonstrated that the DDM can account well for the behavior of single neuron data
(Ratcliff, Cherian, & Segraves, 2003; Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves,
2007) although the introduction of non-linearities might be necessary (Roxin & Ledberg,
2008).

LATER’s trajectory does not need to be linear

A first issue that could cast doubts on the plausibility of LATER as a model of
activity accumulation in neurons (or more likely neural populations) is the constrained linear
trajectory of the accumulation of evidence. Even if we overlooked the noisy fluctuations
that are observed in actual neural accumulations, the shape of the average accumulation
itself does not seem to be linear, but rather seems to follow some type of exponential law.

Fortunately, despite its explicit linear assumption, the predictions of LATER do not
depend on the linear trajectories (Kubitschek, 1971). In fact, any function f that is defined
in the positive domain, and for which an inverse function f−1 exists, could serve as a model
of the trajectory of LATER giving rise to an identical distribution of RTs, as long as the
accumulated evidence is a function of the product of r and t. To see this, consider that the
evidence at time t accumulates as a function f of the product of the rate and time rt:

S(t)− S0 = f(rt). (12)

Then, we can apply the inverse function on the left hand side of the equation, to obtain:

t =
f−1(S(t)− S0)

r
(13)

Therefore, having any linear, non-linear, or transcendental invertible function (of the rt
product) will produce identical results to those predicted by LATER as long as the “rate”
parameter is normally distributed (which has a less clear interpretation in this generalized
case).

To illustrate this point, consider that neural activity actually accumulates as an ex-
ponential function (as would for instance posterior probabilities). Then the equivalent
expression for LATER would be:

S(t) = S0ert. (14)
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Then we could use the logarithmic transformation to obtain:

t =
log (S(t))− log(S0)

r
. (15)

In this case, it would be useful to define the starting level in a more appropriate way. If
we define s(t) = log (S(t)), then we can work with a new formulation of the resting level
s0 = log(S0):

s(t) = s0 + rt. (16)

In this formulation, as long as r, s(t) and s0 are normally distributed (i.e., S(t) and S0 are
log-normally distributed), t will follow Fieller’s distribution.

LATER reduces to a variant of the DDM

We propose that LATER provides a description at the algorithmic level, of what the
DDM family describes at a more implementational level in the sense of Marr (1982). For
this to be the case, we need to show how LATER can be implemented using a DDM process.
The accumulation of evidence by a linear DDM (i.e., a Brownian motion with a drift and
an infinitesimal variance) at any time point t is described by a normal distribution with
mean S0 + υt and variance s2t, where S0, υ, and s respectively denote the resting level
(i.e., the prior or starting value of the process), the mean drift and infinitesimal variance of
the process. Similarly, the average accumulation of evidence by a LATER-style model with
mean rate r is also described by a normal distribution centered at a mean S0 + rt (we will
start our analysis using the constant ∆ case and then extend it to the general case). Thus,
equating the average drift υ with the average rise rate r will result on the same average
accumulation of evidence. However, the variance at time t of the accumulated evidence in
a LATER process with a variation in rate σr is σ2

r t
2. It is clear from this that there is no

possible constant value of sigma that will reduce LATER to a classical DDM. Notice also
that a compression of time will not produce the desired result, as it would also affect the
mean accumulation. The most evident solution to achieve the same results is to define it
as a diffusion model described by the Itô stochastic differential equation (SDE):{

dS(t) = r dt + σr
√

2t dW (t),
S(0) = S0

(17)

where S(t) denotes the accumulated evidence at time t and W (t) is a standard Wiener
process. At time t the accumulated evidence S(t) is follows the desired normal distribution
with mean S0 +rt and variance σ2

r t
2. We will refer to this reformulation of LATER in terms

of the diffusion process as LATER-d. In turn the Itô SDE describing the classical DDM is:{
dS(t) = υ dt + sdW (t),
S(0) = S0.

(18)

Comparing both equations, the only difference lies in the diffusion coefficient of both pro-
cesses. While the DDM has a constant expression for it (s), that of LATER-d is a function
of time (σr

√
2t). This expresses that the magnitude of the instantaneous fluctuation (i.e.,

the ‘average step size’) at any point in time, in the LATER-d case is a function of time itself,
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Figure 4. Comparison of LATER and DDM. The left panel overlaps 500 trajectories of the DDM
(grey paths; υ = 1, s = 12.02), with 500 trajectories of a LATER model (black paths; r = 1, σr =
.38). The right panel plots the same DDM trajectories (grey paths), with trajectories sampled from
LATER diffusion (black paths) equivalent to the process in the left panel. The solid white line marks
the mean evidence. The dashed lines mark the 1 SD intervals of the DDM, and the dotted white
lines show the 1 SD interval of the LATER models.

whereas in the original DDM it remains constant. Therefore, although at the beginning of
the process the variance of the accumulated evidence is likely to be smaller in LATER-d
than in the classic DDM, with time LATER-d’s variance overtakes that of the DDM.

This last point is schematized in Figure 4. The left panel compares 500 trajectories
randomly sampled from a DDM with 500 “ballistic” trajectories sampled from a LATER
model. The parameters in the models were chosen on a realistic LATER scale, and were
fixed to result in equal variances for both processes at time 1000. For visibility purposes,
we have overlaid the LATER trajectories on top of the DDM’s in the early times, and the
DDM’s on LATER’s at times greater than 1000. It is apparent that, while LATER shows
a triangular pattern of spread, the DDM results in a parabolic pattern, were the speed of
growth of the spread decreases with time. The right panel shows how LATER-d has an
identical behavior to the original fixed-trajectory version.

It remains only to extend LATER-d to consider the possibility of variability in ∆
giving rise to Fieller’s distribution of RTs. This is now trivial, the only thing that one needs
to add is either variation in the resting level (S0) or in the response threshold level (θ), or
possibly in both. Figure 5 illustrates the effects of adding these additional noise components
into the model. On the one hand, we can add a (normal) variation into the threshold level
that is constant in time. We have represented this case as making the threshold fluctuate
according to a distribution N(θ, σ2

θ), whose standard deviation is plotted by the grey dashed
line in the picture. On the other hand, variation can be put directly in the starting point
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Table 3: Datasets used in the analyses.

Experiment Language Stimuli Response
Dominant Number Number of
component of items participants

visual lexical decision
English visual button-press decision 37,424 816

(Balota et al., 2007)

word naming
English visual vocal recognition 40,481 450

(Balota et al., 2007)

auditory lexical decision
Danish auditory button-press decision 156 22

(Balling & Baayen, 2008)

picture naming
French visual vocal recognition 512 20

(Moscoso del Prado et al., in prep.)

(i.e., resting level) of the system. Then, at time zero, the accumulated evidence will follow
a distribution N(S0, σ

2
s). As time progresses, at any point in time this variation combines

with the variation of the drift (black dotted lines in the figure). Taking into account that
the drift and the resting level can be correlated (the parameter ρ of Fieller’s distribution)
the accumulated evidence follows a distribution N(S0 + rt, σ2

s + σ2
r t

2 + 2ρσsσrt), which is
depicted by the grey dash-dotted lines in the figure. The only constraint is that both of
these variances must sum up to the overall variance of the resting level to threshold distance
(σ2

∆ = σ2
s +σ2

θ). As described in the previous section, the first crossing times of this system
will follow Fieller’s distribution.

An notable issue that becomes apparent in Figure 5 is that the longer the reaction
time, the lesser the influence of the variation in ∆. For graphical convenience, consider the
case where we place all of σ∆ in σs, leaving σθ = 0. It is clear from the Figure that the
additional variance added by σs on the increasing variance caused by σr becomes very small.
This can be observed in the asymptotic convergence between the black dotted lines and the
grey dash-dotted line. This has the implication, that, for tasks with very long reaction
times, or for long responses in a particular task, there will effectively be little deviation
from the Recinormal case presented by Carpenter. This also explains why the “express
responses” arise more often in the left side of the Reciprobit plot than on the right side,
and why the faster conditions clearly show more of it than the slower conditions.

Empirical Evidence

In this section, we proceed to analyze experimental data to see if the predictions of the
theory hold in real-life datasets, and how well it compares to other proposals for RT distribu-
tions. We will investigate four experiments which involve stimuli in two different modalities
(visual and auditory), two types of responses (button presses and vocal) and – importantly –
two different kinds of experimental tasks (decision-dominated and recognition-dominated).
The datasets employed are summarized in Table 3.
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Figure 6. Reciprobit plots (upper panels) and log-likelihood (lower panels) of the power parameter in
the Box-Cox transformation for each of the four individual trial aggregated datasets. The horizontal
lines in the Reciprobit plots represent the median and 95% intervals of each dataset. Recinormal
distributions are characterized by straight lines in these plots. The vertical lines in the Box-Cox plots
indicate the maximum likelihood estimates and estimated 95% confidence interval for the optimal
value of the parameter.

Aggregated datasets

In this section we provide a detailed analysis of the aggregated datasets, that is, all RT
measurements have been lumped together, irrespective of the participant or the stimulus.
As we discussed above, if the data follow Fieller’s distribution the aggregated data should
also be described by an instance of Fieller’s.

We begin our aggregated analyses by inspecting the Reciprobit plots and the esti-
mated parameter of the Box-Cox power transformation (Box & Cox, 1964) . These are
presented in Figure 6 for each of the four datasets. The first thing that one notices is that
the shapes of the Reciprobit plots in the upper panels are dramatically different between
the medium/small scale datasets (Auditory Lexical Decision and Picture Naming), than for
the two massive datasets from the ELP (Visual Lexical Decision and Word Naming). On
the one hand, both smaller datasets present a clearly Recinormal trace with straight lines
on their Reciprobit plots. Only the slowest responses (i.e., above 3 s.) from the picture
naming dataset deviate from the main line. In fact, this corresponds to the responses when
the participants implicitly received additional pressure to respond (at this point the picture
disappeared from the screen, although RT recording continued for 1 additional second).
On the other hand, the two ELP datasets present the characteristic bi-linear pattern that
Carpenter attributes to a separate minority populations of “express” responses. This cor-
responds to the lower slope lines depicted in each of the Reciprobit plots, which includes
less than 5% percent of the data points in each dataset. This contrast between small and
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Table 4: Comparison of estimated maximum likelihood fits to individual trials in the four datasets.
The fits were obtained in the same manner as for the by-item datasets.

Distribution Stat. Word Nam. Pic. Nam.Lex. Dec. Lex. Dec.
(Auditory) (Visual)

Range (ms.) 446 – 2,327 1 – 3,997 1 – 3,997 370 – 3893

Ex-Gaussian
AIC 43,555 16,177,435 13,965,705 105,427
BIC 43,573 16,177,471 13,965,740 105,448

Fieller
AIC 43,583 16,151,249 13,830,087 105,580
BIC 43,607 16,151,297 13,830,135 105,608

Ex-Wald
AIC 48,709 16,599,825 14,658,385 108,633
BIC 48,728 16,599,860 14,658,421 108,654

Log-normal
AIC 43,873 16,374,800 14,287,700 106,242
BIC 43,886 16,374,824 14,287,724 106,256

large datasets is also reflected in the Box-Cox estimates shown in the bottom panels of the
figure. For both small datasets we estimate optimal values of the power parameter close to
−1, as is characteristic of Recinormal distributions. However, the optimal estimates for the
two large datasets are in fact close to typically log-normal value of zero. In addition, the
shape of the log-likelihood is now changed, now taking high values also into the positive
domain. Notice that, in this case, it becomes clear that the contrast between datasets has
nothing to do with the recognition or decision component of the datasets, and it is solely
determined by the mere size of the datasets.

We can also compare how well different candidate distributions fit these aggregated
data. Table 4 compares the quality of the best fits in terms of Akaike’s Information Criterion
(AIC) and Schwartz’s “Bayesian” Information Criterion (BIC; cf., Liu & Smith, 2009). The
table compares fits using the Ex-Wald distribution (i.e., an Inverse Gaussian distribution
convoluted with an Exponential to allow for a variable shift; Schwarz, 2001). We could not
find any variable shift version of the Weibull, and we have thus not included it (fitting a
2 parameter version led to extremely poor fits). Finally, for reference purposes, we have
also included a log-normal. The picture presented by the table is very similar to what
we concluded from the Reciprobit plots and Box-Cox methods. Fieller’s distribution is
necessary to explain the large number of extremely long or short responses that happen in
the large ELP datasets. In the smaller datasets, where extreme responses (either long or
short) are very unlikely to occur in a significative number, it appears that the Ex-Gaussian
distribution does slightly better than Fieller’s. However, the evidence from this datasets is
much weaker than the evidence presented by the large ELP data. We can thus conclude that,
in order to distinguish between different distributions, we need a large set of data points, so
that events in the tails become sufficiently frequent. For large aggregated datasets, Fieller’s
distribution provides a significantly better fit than any of the alternatives.

We have seen that in terms of quality of fits, Fieller’s distribution seems like a good
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Figure 7. Estimated hazard functions for each of the aggregated datasets.

candidate to account for the aggregated distributions of RTs in large datasets, both in
recognition and decision tasks. An additional piece of evidence comes from the shape of the
hazard functions. As discussed in the theoretical section, different distributions give rise to
characteristic shapes of the hazard function (see Burbeck & Luce, 1982 and Luce, 1986 for
details).

Figure 7 presents the estimated hazard rates (using the method described by Burbeck
& Luce, 1982) for the four datasets under consideration. The two small datasets show
slightly peaked hazard functions. Notice however, that the peaks seem very weak. In our
own experience, if one generates Ex-Gaussian distributed random numbers, and then re-
estimates the hazard function from the generated points, one often finds that the estimators
have produced small peaks of the kind found in both small datasets. Therefore, these hazard
estimates could be consistent both with monotonically increasing and with peaked hazard
rates. The large datasets however, provide a much clearer peak, followed by decreasing
phases. These cannot be the consequence of a monotonic hazard function. Therefore,
they provide strong qualitative evidence against a Weibull or Ex-Gaussian distribution,
much favoring a peaked type distribution (e.g., Log-normal, Inverse Gaussian, Recinormal,
Fieller’s, etc.).

We have discussed in the theoretical sections that, with respect to the tails, our theory
predicts two clear things: there will be a higher number of anticipations with respect to
other theories, and the log right tail of the distribution should follow a power-law pattern
(i.e., linear in log-log scale), rather than the log-linear decrease that would be predicted by
distributions with exponential tails.

Figure 8 compares the quality of the fits provided by the Ex-Gaussian (dark grey
solid lines), Ex-Wald (light grey solid lines) and Fieller’s distribution (black solid lines) to
the visual lexical decision (upper panels) and word naming (lower panels) datasets from the
English lexicon project. The right panels show that, when comparing these estimates of the
density with a Gaussian KDE of the same data (dash-dotted grey lines), both distributions
seem to provide very good fits, with hardly any difference between them, although the
Fieller’s fit already seem a bit better. However, when one examines in detail the log-densities
of the distributions, one finds that the Ex-Gaussian fits radically diverge from the KDE
estimates at both tails. Here, the Ex-Gaussian distribution underestimates the densities
by many orders of magnitude (i.e., logarithmic units). In contrast, Fieller’s distribution
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Figure 8. Comparison of the fits provided by Fieller’s distribution (black solid lines), the Ex-
Gaussian distribution (grey solid lines), and the Ex-Wald distribution (light grey solid lines) to
Kernel density estimates (KDE; grey dashed lines) of the aggregated visual lexical decision (top
panels) and picture naming (bottom panels) latencies from the English lexicon project. The left
panels show the estimated densities, and the right panels show the corresponding log-densities.
Notice that the differences on the tails are only visible on the log-scale plots.
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Table 5: Comparison of the estimated AIC and BIC for participant-specific maximum likelihood
fits of the Ex-Gaussian distribution and Fieller’s distribution, across all participants in the ELP
visual lexical decision and word naming datasets for which both fits converged. Positive values in
the difference row favor Fieller’s fits, and negative values favor the Ex-Gaussian.

Distribution Statistic
Lexical Decision Word Naming

Mean ± Std. error Median Mean ± Std. error Median

Ex-Gaussian
AIC 19, 151± 56 19, 202 30, 351± 98 30, 433
BIC 19, 167± 56 19, 217 30, 368± 98 30, 450

Fieller
AIC 19, 000± 77 19, 158 30, 086± 98 30, 182
BIC 19, 021± 77 19, 179 30, 109± 98 30, 205

Ex-Gaussian - Fieller AIC +152± 55 −12 +265± 32 +155
(paired) BIC +146± 55 −17 +259± 32 +150

Number of participants 759 432
Correct resps. / participant 1,414 2,323

provides an excellent fit of both datasets up to the far right tail, and a significantly more
accurate fits of the left tail. Similar to the Ex-Gaussian, the Ex-Wald distribution also
shows too light tails relative to the data.

The problems of using exponential tail distribution as a model of aggregated RTs is
further highlighted by Figure 9. The figure compares on a log-log scale the fit of a power-
law tailed distribution (Fieller – solid black lines), and an exponential-tailed distribution
(Ex-Gaussian, solid grey lines, we have not plotted the Ex-Wald fits as they were clearly
worse in all aspects) to the Gaussian KDE estimates for the lexical decision (top panel)
and word naming datasets (bottom panel) – . The log-log scale emphasizes the problem of
truncating the distributions. The vertical dotted lines show typical truncating points at 300
ms. and 2,000 ms., as recommended by Ratcliff (1994). Notice, that within that interval,
there is basically no difference between exponential-tailed and power-law distributions. It is
however precisely beyond these cutoff points where one finds information that can reliably
discriminate between both types of distributions (and the underlying models that each
implies).

Individual participants analyses

In the previous section, we have validated that the aggregate distribution of data
is in accord with Fieller’s distribution. However, this is in a way indirect evidence in
support of the theory. It could well be the case that, although the aggregate RTs are
Fieller distributed, the responses by each individual participant are not. For instance, a few
atypical participants producing more long responses than the rest could have bent the tail
of the aggregate distribution.

We now analyze in more detail the distribution of responses of each individual par-
ticipant in the ELP datasets. In these datasets, each participant responded to a relatively
large number of words (an average of 1,414 correct responses to words per participant in the
lexical decision dataset, and of 2,323 correct responses per participant in the word naming
dataset), thus enabling separate fits to each participant. Table 5 summarizes the results



A THEORY OF RT DISTRIBUTIONS 25

Figure 9. Log-log scale comparison of the fits provided by Fieller’s distribution (black solid lines)
and the Ex-Gaussian distribution (grey solid lines) to the KDE estimates of the aggregated visual
lexical decision (top panel) and picture naming (bottom panel) latencies from the English lexicon
project. The vertical dotted lines indicate typical cut-off points of 300 ms. and 2000 ms. The fits
have been extrapolated up to 10,000 ms. to stress the different predictions that each makes.
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of fitting distributions individually to each participant. For simplicity we have only in-
cluded the two distributions that produced the best fits for both datasets, Fieller’s and the
Ex-Gaussian, as they provide examples of distributions with power-law (Fieller’s) and ex-
ponential tails (Ex-Gaussian). From the tables, it appears that both in the lexical decision
and in the word naming datasets, Fieller’s distribution overall outperforms the Ex-Gaussian
in terms of average quality of fit. However, the lexical decision averages are misleading. No-
tice that, although in the mean, Fieller’s distribution appears to provide a better fit to the
data, further examination of the paired median difference reveals that both distributions
are even, in fact with the possibility of a slight advantage for the Ex-Gaussian. The origin
of this discrepancy lies in the distribution of the participant-specific differences between
the information criteria for both fits. While in the picture naming dataset there was a
clear preference for the Fieller’s fit in most participants, in the lexical decision datasets
there was a huge inter-participant variability on the differences between estimated fits.
We confirmed this interpretation using linear mixed effect model regressions with the esti-
mated AIC values as dependent variables, including fixed effects of distribution (Fieller’s
vs. Ex-Gaussian), a random effect of the participant identity, and a possible mixed-effect
interaction between the distribution and the participant. In the picture naming data there
was a significant advantage for Fieller’s fits (β̂ ' 265, t = 8.4, p < .0001, p̂mcmc = .0234)
and no significant mixed effect interaction between the participants and the fixed effect
(χ2

6,2 = .61, p = .74). In contrast, in the lexical decision data there might have been a
slight trend in favor of the Fieller’s fits (β̂ ' 151, t = 2.38, p = .0174, p̂mcmc = .2150) but it
did not reach significance according to a Markov Chain Montecarlo estimate of the p-value,
and there was a clear mixed effect interaction between participant identity and preferred
distribution (χ2

6,2 = 73.55, p < .0001).5

We interpret the above results as clear evidence in favor of Fieller’s fits in the picture
naming datasets, but roughly equal performance in the lexical decision dataset – if anything,
a marginal advantage for Fieller’s fits – and substantial differences across participants.
This is not difficult to understand. The lexical decision datasets included much fewer
responses than does the word naming one, and it is thus less likely for a participant to
elicit relatively long responses than it is in the larger samples of the word naming dataset.
As the main difference between Fieller’s distribution and the Ex-Gaussian is found in the
heavier right tails, only participants that showed some of the very rare long RTs would be
better accounted for by Fieller’s. An additional issue that needs to be considered in this
respect is that the method for data collection used in the ELP included truncation of the
responses at 4,000 msec., thus significantly reducing the information on the right tails (and
thus favoring the lighter-tailed distributions such as the Ex-Gaussian).6

Figure 10 illustrates the estimated RT distributions of an ideal ‘prototypical’ partic-

5We report both t-based (p) and Markov Chain Montecarlo estimates (p̂mcmc) of the p-values because
we found the former to be too lax in this dataset, as it can be observed in the estimates for visual lexical
decision regression (see Baayen, Davidson, & Bates, 2008 for a detailed discussion of this issue). The response
variable AIC was squared prior to the analysis, as a Box-Cox transformation estimate suggested this would
be most adequate. In addition, to avoid numerical error from large numbers, the AIC values were divided
by 10,000 prior to squaring. The effect estimates (β̂) provided have been back-transformed to the original
AIC scale.

6To perform our analyses we excluded all responses at 4,000 msec. or above, as these corresponded either
to measurement or coding errors in the file, or to truncations of slower responses.
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ipant in each of the tasks.7 These are plotted by the solid black lines in the figures. The
dashed lines on the logarithmic plots are linear regressions on the log-tails, used to under-
line how both ideal distributions deviate from an exponential tail (which would fall onto
the straight lines) that would be characteristic of most usually advocated RT distributions.
Notice also that, in consonance with the individual participant analyses, the deviation from
exponentiality is more marked (starts earlier) in the picture naming than in the lexical
decision dataset.

Using these prototypical densities we can also inspect their corresponding hazard
functions (see Figure 11). Note that both estimated hazard functions are of the peaked type
(although the peak is admittedly lighter in the lexical decision curve). Only distributions
that can have peaked hazards could account for these data. Therefore, the evidence from
hazards also seems to rule out Ex-Gaussian and Weibull type distributions to account for
the data.

Interpretation of the parameter values of Fieller’s distribution

Above we have seen that Fieller’s distribution presents an overall advantage over the
other candidates to account for the distribution of RTs for individual participants in terms
of quality of fits, shape of the right tails, and hazard functions. A crucial point about this
distribution is that its estimated parameter values are informative as to the properties of
the task. We now proceed to interpret the estimated parameter values.

The estimated values of the parameters of the Fieller fits to the aggregated data
were (κ̂ = 695 ms., λ̂1 = .27, λ̂2 = .38, ρ̂ = .6) for the lexical decision dataset, and (κ̂ =
681 ms., λ̂1 = .40, λ̂2 = .44, ρ̂ = .84) for the word naming dataset. This puts both datasets
in the linear zone in Fieller’s distribution. However, the relatively high value of λ̂1 for the
word naming dataset in fact makes this distribution approach the Cauchy zone. This is
indicative of a very high variability in the numerator of the ratio that gives rise to the
distribution. If, following Carpenter and Williams (1995) we attribute this variability to
variability in prior expectations, this fact becomes meaningful. While in the lexical decision
experiment there were only two possible responses, which were matched in prior probability,
in the word naming dataset different words will have a different prior expectation, causing
a much greater variability across items. As we can see, this difference in the tasks is readily
reflected in the fits of Fieller’s distribution. This last issue is explored in more detail in
Figure 12. The figure displays the estimated values of the λ1 and λ2 parameters in the
separate individual participant fits. In the lexical decision data, the typical participant will
show an estimated λ1 value of around .05, with the vast majority of participants having

7To obtain these curves, we estimated the cumulative density functions of the RTs individually for
each participant in each task (without any smoothing). From these we interpolated 50 points from each
participant (the grey points in the figures) uniformly sampled in the interval between 0 ms. and 4000
ms. In order to do this, we fixed the values of the cumulative density at zero at 0 ms, and at one at
4000 ms. to enable extrapolation outside an individual participant’s range of responses. Estimation without
extrapolation would have overestimated the densities at the right tail, as these would be estimated only from
the participants that produced them, ignoring that most participants in fact did not. This would exaggerate
the power-law appearance, biasing in favor of Fieller’s distribution. The interpolated probabilities were
probit-transformed, and we performed a non-parametric locally weighted regression on the probit values.
Finally, the resulting smoother in probit-scale was back-transformed to standard normal probability density
scale, and then renormalized to integrate to one in the interval from 0 to 4000 ms.
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Figure 10. Ideal ‘prototypical’ participant in the lexical decision (top panels) and word naming
(bottom panels) datasets. The left panels depict the densities, and the right panels are their equiva-
lents in log-scale. The grey points are samples of 50 density points for each participant. The solid
black lines plot the estimate prototypical density. The dashed black lines in the logarithmic plots
correspond to linear regressions on the log right tail, showing what an exponential tailed fit to these
data should look like.
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Figure 11. Estimated hazard function for the ‘prototypical’ participants. The curves where esti-
mated using the non-parametric method described by Burbeck and Luce (1982) on the estimated
quantiles of the prototypical distributions.
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Figure 12. Values of the CoV parameters λ1 and λ2 obtained by fitting Fieller’s distribution to
each individual participant in the visual lexical decision (left panel) and word naming datasets (right
panel) of the ELP. Each point represents the fit obtained for an individual participant. The contours
represent a 2-dimensional KDE of the density. The horizontal and vertical grey dashed lines indicate
the phase-change boundaries of Fieller’s distribution. Points lying outside the centered 95% with
respect to either λ1 or λ2 have been excluded from both graphs in order to avoid the large value
outliers resulting from non-converging fits.

an estimated value below the critical .22. This indicates that, in visual lexical decision
the responses of each individual participant are well-described by a recinormal distribution,
and thus the larger value of λ1 in the overall fit is due only to inter-participant variation in
threshold or resting levels.

The situation is different in in the word naming participants. In this dataset the
typical participant shows an estimated λ1 just above the critical .22, already into the linear
zone of Fieller’s distribution, with a great proportion of the participants being significantly
above this value. This indicates that in this case, there is a much greater heterogeneity in
the threshold or resting levels from item to item. Interestingly, there is also a clear corre-
lation between the estimated λ1 and λ2 values (ρ = .76, t(421) = 24.09, p < .0001). This
correlation reflects the interrelationship between the top-down and bottom-up properties of
the stimuli (e.g., frequency and word length). In these experiments, each participant saw a
different subset of the stimuli, and thus there will be variation in both top-down and bottom
up properties of the stimuli and these seem to be related to each other. In sum, variation in
the prior probability of stimuli makes the intra-participant values of λ1 greater in word nam-
ing than in visual lexical decision. In contrast, the estimated values of λ2 are very similar
in both experiments, being either just below or just above .3 in each experiment, indicating
that both experiments exhibit a similar degree of variation in the bottom-up/perceptual
properties of the stimuli, which are indeed identical in both experiments.
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Figure 13. Lexical decision data from the ELP (∼ 1.3 million individual responses) fitted as an
inhibition-free competition between accumulators. The solid lines represent the predicted densities
(right panel) and log densities (left panel) of the fitted model (the model was fitted with fixed
variances for both accumulators). The discontinuous lines plot Gaussian kernel density estimators
for log-densities and densities. Black lines plot correct responses, and grey lines plot error responses.

Distributions of correct and incorrect responses

As we have seen, the right tails of the distributions in both datasets are significantly
thicker than one would predict by any theory that relies on an exponential-tailed distri-
bution, and seem better described by theories that propose a power-law type of right tail
(perhaps with a cutoff). However, as we noted in the theoretical section, distributions of
the stretched exponential type, as is the Weibull proposed by Logan (1988), can also give
rise to heavier than exponential tails. In our theoretical analysis we advanced that these
distributions would still predict too thin tails, below linear in log-log scale. We now proceed
to investigate the distributions of correct and incorrect reponses that would arise using a
race model. For this, we investigate in more detail the conditional distributions of correct
and incorrect responses to words in the ELP visual lexical decision dataset.

Figure 13 illustrates the RT distribution that would be predicted by a race of inde-
pendent accumulators of the type proposed by Brown and Heathcote (2005, 2008). The
right panel shows that a relatively good fit of the density is obtained in comparison with
KDE of the same distributions. However, when one examines in detail the quality of the
fit in logarithmic scale (left-panel), one finds that the lack of inhibition has led to three
important problems. The first of these problems is that the ‘pointiness’ of the mode is
lost, giving rise to the more bell-shaped profile characteristic of a Weibull distribution. The
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Figure 14. Lexical decision data from the ELP (∼ 1.3 million individual responses) fitted as a
competition including inhibition between accumulators. The solid lines represent the predicted den-
sities (right panel) and log densities (left panel) of the fitted model (the model was fitted with fixed
variances for both accumulators). The discontinuous lines plot Gaussian kernel density estimators
for log-densities and densities. Black lines plot correct responses, and grey lines plot error responses.

second is that, as predicted, the lack of any inhibition process has considerably thinned
the right tail of the distribution, grossly underestimating the log-probability of responses
above 1500 ms. Finally, the third problem lies in the diverging ratio of errors to correct
responses. Whereas the empirical data seem to have a constant ratio (save for the very fast
‘express’ responses) of errors to correct responses, apparent in the parallel pattern of the
KDE-estimated densities, the model desities have instead an initial diverging phase.

Figure 14 shows the effect of considering that, due to the compensation of the com-
petition that would be provided by inhibition and decay mechanism, both the distributions
of correct responses and errors can be modelled as plain instances of Fieller’s distributions.
To enable direct comparison with the fits of Figure 13, the parameters were fitted under
identical constraints of equal variances and thresholds for both accumulators. Note that
the three problems that were apparent in the free competition are greatly attenuated. The
pointiness around the mode is now clear, and the ratio of errors to correct responses is now
more or less constant. Finally, the fit of the right tail of the distribution is now very precise
even in the logarithmic scale. There is still an apparently excessive ‘bending’ of the left
tail relative to the KDE fits, but most of this is actually due to the population of very fast
responses which is visible in the shoulder of the left tail of the logarithmic plots.
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Very early responses

As can be appreciated in Figures 8 and Figure 9, neither our distribution nor the
exponential tail variants accurately models the very fast responses on the left tails of the
curves. Even though Fieller’s distribution provides a much better fit of these points also,
it is still around two orders of magnitude below the KDE estimate from the data. Once
again, despite being very rare (around 1% of the data counting all responses faster than 250
ms.), there are still a large enough number (around 13,000 in each dataset) of these short
responses to provide sufficiently good estimates of their distributions by KDE. However, it
is evident in both logarithmic plots that these points form clearly separate ‘bumps’ in the
log-density fit, giving rise to obvious shoulders in the distributions. In turn, this suggests
that these points, or at least a great proportion of them, are indeed outliers in the sense that
they originate from a different distribution than the one generating the rest of the points –
they are generated by another process. Therefore, as we advanced above, these can indeed
correspond to the ‘express’ responses hypothesized by Carpenter and Williams (1995) and
Reddi and Carpenter (2000). Two things are noteworthy though. First, these responses
are truly a minority. Most of the short responses that Carpenter and colleagues attribute
to separate processes are in fact part of the general RT distribution and there is therefore
no reason to believe they came from a different process. The second issue is that these
responses are in fact not completely random. That is, even though they are very short,
they are still more accurate than one would expect by chance. There are a total of 7437
correct responses and 4701 erroneous ones below 250 ms. This is a significant difference
(χ2

1 = 616.72, p = .0000).
The data presented here correspond to the words in the ELP lexical decision dataset.

The above-chance level of correctness of the very short responses could be due to the
participants having an overall bias favoring ‘yes’ responses, even if the experiments had
been balanced in the number of words and pseudo-words that were presented. In fact,
analyzing the pseudo-words together with the words one finds that there was indeed a bias:
participants responded ‘no’ significantly more often than they responded ‘yes’ (1,329,459
‘yes’ responses vs. 1,423,209 ‘no’ responses; χ2

1 = 3192.92, p = .0000 across the whole
dataset). This completely discards the possibility that the significant correctness of the
very short responses is due to a bias in favor of ‘yes’ responses.

The left panel of Figure 15 zooms into the very early visual lexical decision responses
of Figure 14. The solid lines plot the predicted log-densities of correct (black) and incorrect
(grey) responses, and the solid lines represent the observed log densities (estimated by
KDE). The first thing that becomes apparent is that, although the number of erroneous
responses is notably increased with respect to the rest of the distribution, there are still
significantly more correct than incorrect responses all the way through the interval. The
prior expectation for words and non words was even in these experiments. Therefore, this
advantage for correct responses can only be due to influence from the actual presentation of
the words. The synaptic and conduction delays between optical presentation of a stimulus
and the performance of a manual response, have been estimated to lie between 180 ms. and
260 ms. in monkeys, and an additional increase of one third is suggested to account for
these times in humans (cf., Ledberg, Bressler, Ding, Coppola, & Nakamura, 2007; Thorpe
& Fabre-Thorpe, 2001). This would estimate a non-decisional task component in humans
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Figure 15. Early visual lexical decision responses.

in the range of 240 ms. to 350 ms. However, as can be seen in the figure, even much earlier
than this, participants are providing responses that are influenced by the stimulus. This
suggests that non-decisional times are also variable. This is not very surprising, one would
expect that the neural processes involved also reflect stochastic rise to threshold mechanism
for triggering the final motor response and on the perceptual side. The cases when the
non-decisional task components were shorter than usual should then be characterized by
the general distributions of correct and error responses, which are depicted by the solid
lines in the figure. These could explain around 9,756 of the total of 12,138 responses below
250 ms. An additional very small percentage would correspond to the cases where the
accumulator was accidentally above the response threshold before the presentation of the
stimulus. These would be fully random responses. We can estimate their number at around
576 additional random responses. Putting these two together, there remain around 1,806
responses that cannot be accounted for neither by the general distributions nor by the
predicted anticipations. This is approximately 15% of the very short latencies, and 0.1%
of all responses, and they can indeed correspond to Carpenter’s express responses of sub-
cortical origin. The correctness of these responses will be at random, resulting in a stronger
increase in the number of erroneous responses. The right panel in Figure 15 illustrates this.
When one compares the log-ratios of observed to predicted short responses, one finds that
there is a much more marked increase in errors than in correct ones, and the difference
between these log-ratios is constant over time.
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General Discussion

The central piece in the theory that we have proposed is the distribution of the
quotient of two correlated normal variables, Fieller’s distribution. The empirical evidence
that we have examined seems to support this distribution as a description of RTs across
tasks and modalities.

Heavy right tails

We have presented evidence in support of an RT distribution with a very heavy right
tail. RT distributions, whether individually computed for single participants in a given task
and condition, or aggregated across participants and experimental stimuli have significantly
thicker tails than one would predict by any of the distributions that have traditionally been
put forward to describe RTs. This includes distributions with exponential tails such as
the Ex-Gaussian (e.g., Balota et al., 2008; Hohle, 1965; McGill, 1963; Ratcliff & Murdock,
1976; Ratcliff, 1978), the Ex-Wald (Schwarz, 2001), the Inverse Gaussian (e.g., Lamming,
1968; Stone, 1960), the Gamma (e.g., Christie, 1952; Luce, 1960; McGill, 1963), and the
distributions that describe the first passage times through a threshold of (linear versions of)
the DDM (Ratcliff, 1978, and follow-up studies) whether in exact forms (e.g., Luce, 1986;
Ratcliff, 1978; Ratcliff & Tuerlinckx, 2002; Smith, 2000) or in approximate forms (e.g., Lee
et al., 2007; Navarro & Fuss, 2008). Although stretched exponential type distribution such
as the Weibull (Colonius, 1995; Logan, 1988, 1992, 1995) or the distributions that arise
from the ‘ballistic’ models recently proposed by Brown and Heathcote (2005, 2008) also
can give rise to heavy tails, in the data that we have analyzed these seem still too thin.The
patterns observed in the data seem more consistent with a power-law – straight in log-log
scale – type distribution, such as the one that would be predicted by Holden et al. (2009)’s
Cocktail model, or the distributions that are predicted by both LATER (Carpenter, 1981,
and follow-up studies) and its generalization as introduced in this study. Admittedly, the
evidence for a power law should be taken with care since a full ‘demonstration’ of power-law
behavior would require to have data spanning at least one more order of magnitude beyond
what we have available. However, the qualitative evidence from the visual inspection of the
tails, and the quantitative evidence such as the goodness of fit statistics (AIC and BIC),
both point in this direction when sufficiently large datasets are examined.

Flexible hazard functions

The shapes of the hazard functions of RT distributions (Burbeck & Luce, 1982; Luce,
1986) provide further evidence in support of Fieller’s. We have shown that, in the tasks that
we have examined, hazard functions are of the peaked type. In addition, after the peak,
the functions seemed to take the monotonically decreasing shape of what is commonly
termed an ‘infant mortality’ type of process. In contrast, Burbeck and Luce showed that
responses to low intensity auditory stimuli can give rise to monotonically increasing hazard
functions, perhaps with a final plateau. Taken together, these pieces of evidence discard
most existing distributions as candidates for a general model of RT distribution. On the
one hand, distributions like the Ex-Gaussian or the Weibull can only give rise to monotonic
patterns (restricted to increasing in the case of the Ex-Gaussian), and are thus uncapable
of accounting for any of the datasets we have analyzed. On the other hand, most other
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RT distributions such as the Inverse Gaussian, Ex-Wald, and Log-normal are restricted to
peaked hazard functions. This makes them unsuitable to account for Burbeck and Luce’s
low signal intensity data. As demonstrated by Holden et al. (2009), the Cocktail model’s RT
distribution enables this flexibility of hazard functions including both peaked and monotonic
types. The distribution that is central to the theory that we are proposing, Fieller’s, is also
characterized by a relatively flexible shape of the hazard function. Strictly speaking our
distribution is of a peaked hazard type, followed by a linear decreasing phase (corresponding
to its power-law right tail). However, as the value of the λ2 parameter approaches zero, the
distribution converges on a normal distribution, which is characterized by a monotonically
increasing hazard rate. This is to say, as λ2 goes to zero, the location of the peak goes to
infinity. This enables the distribution to account for both monotonically increasing hazards
and for peaked ones.

Larger number of fast responses

Nakahara et al. (2006) noticed that adding normal variation in the threshold level of
LATER could give rise to a slight deviation in the lower part of the reciprobit plot. Our
studies of Fieller’s distribution have confirmed the intuition of Nakahara and collaborators.
Normal variation in either the starting level or the threshold level can give rise to exactly
the type of deviations from recinormality that Carpenter and colleagues attribute to sub-
cortical responses. In Carpenter’s experiments, the faster conditions elicited more of the
express responses. Notice that this seems rather counterintuitive. If these fast guesses
were in a race with the actual cortical responses, one would expect that the longer the
delay of the cortical response, the higher the chances of the sub-cortical having time to
reach the threshold, opposite to what Carpenter and collaborators observed. Our theory
provides the tools to predict when and how this population will arise. In Figure 5 we
illustrated that the effect of the variation in ∆ on the overall distribution is attenuated
for longer RTs. For these, the accumulated variation converges to the same that would be
produced by variation in r alone. Therefore, as Carpenter and his colleagues repeatedly
observed, conditions that on average elicit longer responses, will tend to show less of this
deviation from recinormality. Another property of the express responses is that variability
in the order of stimuli increases their proportion (Carpenter, 2001). This type of variability
would be reflected in variation in the predictability of stimuli. As we have argued, this
type of variation is reflected in the value of the λ1 parameter, the greater the variation the
greater λ1 and the larger the deviation from recinormality. Generally, the values of the CoV
parameters of Fieller’s distribution (λ1 and λ2) provide a compact way of predicting the
detailed shape of the distribution. For instance, the deviation from recinormality is fully
accounted for by the value of the λ1 parameter.

An important issue is that most of these fast responses are accounted for by the
general RT distribution (save for a residual one per thousand). The implication of this
is that they are not completely random. As illustrated in Figure 15, we have seen that
performance is above chance up to the very early times below 100 ms.

Need for inhibition

Bogacz et al. (2006) demonstrated that different versions of linear accumulator models
can all, under certain conditions, be reduced to the classical linear DDM, as long as some
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inhibition mechanism is present in the system. Importantly, they find that ‘pure race’
models without any significant contribution of inhibition produce different predictions from
those of the DDM. As noticed by Colonius (1995) and Logan (1992, 1995), this type of race
models necessarily lead to Weibull type RT distributions. As discussed above, Weibull-type
show too thin right tails. The presence of inhibition attenuates the general speed-up caused
by the competing accumulators, resulting in a higher number of long responses than would
be predicted by models such as that of Logan (1988) or the ones recently proposed by Brown
and Heathcote (2005, 2008).

In their recent study, Brown and Heathcote (2008) noticed that a setback of their
LBA model is that it cannot account for Hick’s Law (Hick, 1952): The fact that the time to
choose among a number of candidates is directly proportional to the log number of possible
alternatives. In their view, under the pure – inhibition free – race model, increasing the
number of accumulators would lead to faster responses (as the probability of one of them
crossing the threshold at any point would increase), and larger error rates (as there are
more accumulators that can possibly win the race). To solve this problem, they refer to
some parameter adjustments that could eventually address this problem. In our model, if
starting levels interpreted as prior odds and the incoming evidence interpreted as a Bayes
factor is in itself dependent on the presence of inhibitory mechanisms: if the probability
of one option grows, on average the probability of the others need to decrease, and this
decrease is linear in logarithmic scale, thus naturally accounting for Hick’s Law.

Issues of model ‘simplicity’ and falsifiability

A common argument used to support different models of RT distributions is the
relative simplicity of a model against others. In many cases, simplicity in this field is
understood as synonimous to ‘number of free parameters’. For instance, in their discussion
of the LBA model, Brown and Heathcote (2008) argue that their model is simpler than other
equally performing theories, since it would require only four free parameters to account for
the distribution of responses in a single experimental condition. Likewise, Holden et al.
(2009) make a similar argument, their model requires the fitting of six free parameters,
in comparison to the seven to nine that would be required to fit a DDM. In this sense,
our model is also made of four free parameters, as is the LBA. In our opinion, parameter
counting might be a too näıve way of assessing model complexity, and one may need more
sophisticated information theoretical tools to make model complexity assessments.

Our theory can in fact be considered a more strictly specified version of Holden and
colleagues’ Cocktail model. As in theirs, ours exhibits both flexible hazard functions, and
power-law behavior from a task dependent point. In addition, the log-normal mixture
component that the Cocktail model uses to account for the bulk of the responses, can
very well be equivalent to the shape of Fieller’s distribution around its mode. Note, that
although both models can to a large extent be considered equivalent, in our case we achieve
the description of the whole set of latencies using a single function. The values of the CoV
and correlation parameters fully determine the shape of the distribution. In addition, while
allowing the whole richness of the Cocktail mode, the theory that we have presented also
provides a plausible algorithmic level model: a simple rise to threshold mechanism with
inhibition linking the accumulators

Furthermore, whereas the the scaling parameter of the power-law in the right tail of
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the Cocktail model is a free parameter, our model makes a stricter prediction (and thus
falsifiable in the Popperian sense) that the value of this scaling parameter should be exactly
two. This precise value is a keystone of ratio distributions: They cannot give rise to any
other value. Finding that any particular experimental task or condition elicits a power-law
right tail whose scaling parameter is reliably different than two would lead to the complete
rejection of our theory. Thus, not only does the theory account for RT distributions but,
perhaps more importantly, it also predicts what types of RT distributions are altogether
impossible. This is not a common feature of all theories of RT distributions.

Levels of explanation and ‘optimality’

As argued by Marr (1982), there are three levels at which models of cognitive function
can explain cognitive phenomena. A computational level presents a formal description of
the problem, an algorithmic level, in which a description of the method used to solve it is
described, and an implementational level which describes how such computations can be
performed in term of neural structures. An important point that was also made by Marr
is often overlooked. There needs to be an explicit link between the explanations offered at
the different levels.

In this sense, the model that we have introduced constitutes a description of the
origin of RTs at an algorithmic level. In addition, we have also explicitly linked the model
to computational and implementational descriptions. On the one hand, as has been noticed
by proposers of LATER and of the DDM, our theory fits into a general Bayesian inference
framework.

Different models, making slightly different predictions, claim to describe the behavior
of the optimal decision maker, the ‘ideal observer’. This could seem like a contradiction. In
our opinion, this is not a very informative question. The issue is not whether the decision
process is optimal. As forcefully argued by Jaynes (2003, p. 133), it must at least approach
optimality. The crucial point is to find what is it that is being optimized and under which
conditions. For instance, despite their different formulations and predictions, both LATER
and the classical DDM are optimal. In both cases, the assumption is that the optimized
function – the cost function – is a function of time. In the case of the DDM, the quality of a
response is directly proportional to the time it took. In the case of LATER the cost function
is non-linear with respect to time. In addition, both models make different assumptions on
how the evidence becomes available, either at a constant rate or at a randomly changing
one.

On the other hand, we have seen that the model can be reduced to a non-linear
instance of the DDM family of models. In our formulation, we have introduced the non-
linearity by making the volatility rate or diffusion coefficient proportional to time. Working
from the opposite direction, that is, building up from the known properties of neurons,
Roxin and Ledberg (2008) have reached similar conclusions. They show that the behavior
of realistic neural network models can be reduced to a one dimensional non-linear diffusion
equation. In particular, they arrive at a diffusion equation in which the drift rate has a cubic
dependence on the value of the accumulator at any point in time. It remains to be seen
whether the distribution we have proposed can be generated by such type of equation, but
a general need for non-linearity is apparent from both our theory and Roxin and Ledberg’s
neural network models. Bogacz, Usher, Zhang, and McClelland (2007) have also suggested
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that extending the Leaky Competing Accumulator model (LCA; Usher & McClelland, 2001)
to include the nonlinearities that are observed in neural populations might lead to a better
account of experimental data by the LCA model.

The inclusion of LATER into the DDM family also enables our model to inherit
some of the known properties of the DDM. Importantly, the DDM has proven of great
value to account for a large set of experimental phenomena on which LATER has not been
explicitly tested. Most salient among these phenomena are speed-accuracy trade-offs. Our
model being a particular instance of the DDM enables us to take advantage of the DDM
ability to explain such phenomena.

Recognition vs. decision

In their response to Ratcliff (2001), Carpenter and Reddi (2001) argue that LATER
is a model that applies to different processes than the DDM. Whereas the former would
describe processes dominated by a decisional component, the later would describe the RTs
in processes that are dominated by recognition components. In our opinion, this is not a
satisfactory difference. For instance, as argued by Ratcliff (2001), the DDM has in fact
been most applied to decisional processes such as the lexical decision task (Ratcliff, Gomez,
& McKoon, 2004), or same/different two choice decisions (Ratcliff, 1985; Ratcliff & Smith,
2004). Furthermore, the difference between “recognition” and “decision” seems to us a
rather vague one. One can think of any recognition process as a plain decision, in which
evidence is accumulated until a threshold is reached. In that sense, we have seen that, as
Ratcliff (2001) suggested, LATER can be regarded as a non-linear version of the DDM. We
think that Carpenter might have underestimated the power of LATER to account for all
types of processes.

Implications of the power-law

The power-law signature of the right tail of Fieller’s distribution does not come with-
out implications. Power-law distributions occur in a very diverse range of natural phenom-
ena. The origin of this type of distributions has attracted a fair amount of interest from
physicists. Generally speaking, power-laws are the typical footprint of systems in a state of
“self-organizing criticality” (SOC; cf., Bak & Paczuski, 1995), but note that several other
mechanisms, including ratio distributions such as Fieller’s, can give rise to power-laws with-
out any explicit need for self-organization (Newman, 2005; Sornette, 2001). SOC systems
are complex systems, the behaviour of any part is dependent on the whole, so that per-
turbations (e.g., presentation of stimuli) affect the whole system. It is not surprising that
the brain may be one of such systems. Indeed, recent work in neurophysiology has shown
that brain oscillations also show 1/f ‘pink’ noise patterns that are indicative of a complex
SOC system (cf., Buzsáki & Draguhn, 2004). Furthermore 1/f noise characteristics have
also been reported for RT distributions by some researchers (Gilden, 1997, 2001; Gilden,
Thornton, & Mallon, 1995; Thornton & Gilden, 2005, 2007; Van Orden, Holden, & Turvey,
2003, 2005; but see also Farrell, Wagenmakers, & Ratcliff, 2006; Wagenmakers, Farrell, &
Ratcliff, 2004, 2005; Wagenmakers, Grünwald, & Steyvers, 2006 for views questioning the
evidence for 1/f noise patterns). We have not explored further ther SOC implications of
the power-law, but this may provide a useful way of linking properties of RT distributions



A THEORY OF RT DISTRIBUTIONS 40

with the neurophysiology of the brain. In addition, further predictions on the properties of
RT data could hypothetically be derived from the properties of complex systems.

Large datasets, long responses, and data trimming

The power-law properties of the right tails also stress the importance of the size of
datasets that are used to compare theories. The most conclusive evidence that is contrastive
among theories comes from these tails. The greater part of the advocated RT distributions
are sufficiently flexible as to be able to replicate the patterns shown around the distributional
mode, giving rise to the model mimicry problem discussed by Ratcliff and Smith (2004),
Van Zandt and Ratcliff (1995), and Wagenmakers, Ratcliff, et al. (2004). As we have seen,
comparing models using relatively small datasets – up to somewhere over 1,000 responses
per participant – gives an unrealistic bias in favor of exponential-tailed distributions. Very
late responses happen very rarely, and without those, exponential tails appear to give the
best fits to the data. As soon as a sufficient number of these responses has appeared, the
picture changes drastically. Power-law type distributions begin to offer by far the best fits.
Proportionally, the differece in favor of the power law found in large datasets is substantially
larger than the equivalent advantage of exponential tails in the smaller datasets, thus the
positive average values for both information criteria in Table 5.

This also speaks to the damage resulting from truncating long and short responses
as ‘outliers’. This has been both the recommended technique (e.g., Luce, 1986; Ratcliff,
1993; Van Zandt, 2002; Whelan, 2008) and the ‘standard practice’ in the field. As we have
argued, trimming the long responses results in the loss of crucial information and should
therefore be avoided in as much as possible (a certain amount of trimming will remain
from the fact that the measurement of RTs stops after some deadline in most experiments).
This problem is in fact not exclusive to the analysis of RT data. As discussed by Bak
and Paczuski (1995), Mandelbrot (1983), and Newman (2005), these ‘contingent’ events
are also erroneously discarded by attribution to ‘special’ causes in areas such as market
fluctuations or earthquakes. However, they are but consequences of the power-law that
governs these phenomena. As our analyses show, very long RTs are not events from some
other distributions, but plain events in the general one. This is to say, long RTs are just
long, not ‘weird’ at all but rather their frequency (but not their actual occurrence) is well
predictable. These very large rare events are the hallmark of self-organizing – emergent –
systems, that are governed by power-laws.

Conclusion

We return to the statement advanced in the introduction. RTs are directly propor-
tional to the difficulty of the task, and inversely proportional to the rate at which informa-
tion becomes available to solve it. Both task difficulty and rate of information income are
normally distributed.
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Appendix A
The Recinormal distribution

We define the Recinormal distribution as the distribution of a random variable X
whose reciprocal Y = 1/X is normally distributed with mean µ and standard deviation σ.
If φ(y|µ, σ2) is the density function of Y , as Y is monotonically related to X, the density
function of X is:

fr(x|µ, σ) = φ(y|µ, σ2)
∣∣∣∣dydx

∣∣∣∣ = φ

(
1
x

∣∣∣∣µ, σ2
)

1
x2
. (19)

Developing the normal density function and simpliflying the above expression, we obtain
the density function of the Recinormal:

fr(x|µ, σ) =


1

x2
√

2πσ2
e−

(1−µx)2

2σ2x2 if x 6= 0.

0 if x = 0,

, (20)

where the value at zero has been added by by taking the limits of the general function value.

Appendix B
Fieller’s Normal Ratio Distribution

Let X1 and X2 be normally distributed random variables with respective means θ1
and θ2 and standard deviations σ1 and σ2 and a Pearson correlation coefficient of ρ. Let
W be the random variable resulting from the quotient of X1 and X2 (W = X1/X2). The
distribution of W is given by the probability density function (Fieller, 1932; Hinkley, 1969):

f(w) =
b(w)d(w)

σ1σ2a3(w)
√

2π

[
Φ

(
b(w)

a(w)
√

1− ρ2
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− Φ
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− b(w)

a(w)
√

1− ρ2

)]
+

√
1− ρ2

πσ1σ2a2(w)
e
− c

2(1−ρ2) , (21)

where

a(w) =

√
w2

σ2
1

− 2ρw
σ1σ2

+
1
σ2

2

,

b(w) =
θ1w

σ2
1

− ρ(θ1 + θ2w)
σ1σ2

+
θ2

σ2
2

,

c =
θ2

1

σ2
1

− 2ρθ1θ2

σ1σ2
+
θ2

2

σ2
2

,

d(w) = e
b2(w)−ca2(w)

2(1−ρ2)a2(w) , (22)

and Φ is the cumulative distribution function of the standard normal distribution.
Although in the original characterization given above this distribution appears to have

five free parameters, in effect four parameters are sufficient to fully describe it; the crucial
values that determine the distribution are the correlation coefficient, the ratio between
the normal means, and the scale of the variation parameters relative to the corresponding
mean. Therefore, we can describe any instance of Fieller’s distribution with four degrees of
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freedom, correspoding to the parameters:

κ =
θ1

θ2
,

λ1 =
σ1

|θ1|
,

λ2 =
σ2

|θ2|
,

−1 < ρ < 1. (23)


