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Abstract

This report analyses the aplicability of the principles of consciousness developed
in the ICEA project to three of the most relevant cognitive architectures. This is
done in relation to their aplicability to build integrated control systems and study-
ing their support for general mechanisms of real-time consciousness.

To analyse these architectures the ASys Framework is employed. This is a concep-
tual framework based on an extension for cognitive autonomous systems of the
Generel Systems Theory (GST).

A general qualitative evaluation criteria for cognitive architectures is established
based upon: a) requirements for a cognitive architecture, b) the theoretical
framewrok based on the GST and c) core design principles for integrated cognitive-
conscious control systems.
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Chapter 1

Introduction
Technical systems are quickly growing in complexity to address the rising
demands of functionality and performance, while preserving or increasing
other non-funtional requirements such as resilience and autonomy [Sanz et al., 2007].

Airplanes, cars or chemical plants, besides to electricity networks, telecom-
munications and other supporting facilities are some examples of this. All
these systems include as a necessary component embedded control, which
is nowadays mostly computer or software based. Therefore control systems
are becoming extremely complex. In addition, isolated systems are becom-
ing rare, systems are frequently communicated with others and integrated
within larger ones, and so their control systems, which are very commonly
distributed.

1.1 New Challenges for control systems

From an engineering perspective we are facing new challenges:

• Increase in complexity supposes a necessary increment in effort and
costs to build the control system and a need for new development and
management practices.

• Increase in size supposes that software code is growing larger and larger.
This is prone to errors that can result in system failures, in this case com-
ing from the control system itself.

• Increase in complexity causes a decrease in designability –the capacity
of effectively predict the characteristics of the system once build–. This
may result in a decrease in performance, but more worrying for safety-
critical systems or real time-systems, a major decrease in dependability.

• Integration adds a new possible cause for system failure and that is of
failure due to its integration with other systems that fail.
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1.2 The Architectural approach

Focusing on systems architecture is focusing on the structural properties of
systems that constitute the more pervasive and stable properties of them. Ar-
chitectural aspects are what critically determine the final possibilities of any
computer based technology.

Architecture-based development offers the following advantages:

• Systems can be built in a rapid, cost-effective manner by importing (or
generating) externally developed components.

• It is possible to predict the global qualities of the final system by analysing
the architecture.

• The development of product lines sharing the same architectural design
is easier and cheaper.

• Restrictions on design variability make the design process more pro-
ductive and less prone to faults.

1.3 Limits of extant control technology

Up to date control techniques, from PID to AI tools do not suffice. From the
earlier 80’s with the industrial application of expert systems, AI techniques
such as fuzzy, neural networks and expert systems themselves have been be-
ing successfully used to build control systems with higher performance and
capable of addressing a wider range of control problems. These tools and
other control techniques such as model based predictive control that exploit
knowledge about the plant –the controlled system– have improved adaptiv-
ity and robustness, allowing control systems to handle to some extent unex-
pected events in the plant.

Let’s review briefly the evolution of control techniques.

1.3.1 Feedback controllers

The most common control strategy uses a simple linear feedback to compen-
sate errors, speed of change and accumulated error. The most popular in
industry is the PID controller –Proportional-Integral-Derivative– referring to
the three terms operating on the error signal to produce a control signal. A
PID controller has the general form shown in 1.3.1. The PID contains a basic
model of the controlled plant implicit in its parameters.
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Figure 1.1: The PID controller

1.3.2 Model-predictive control

Model-predictive control (MPC) is a strategy based on predicting the future
trajectory of a system based on a model of it, and using this anticipatory ca-
pability to determine, at present time, the control action necessary for taking
the system to a certain state in a precise future instant. This control supposes
a qualitative improvement over feedback control: it exploits explicit knowl-
edge about the plant to anticipate its future behaviour and act upon it. Feed-
back control that bases its action on error between desired state and actual is
always behind the plant and this strategy cannot be applied to timely criti-
cal systems; MPC can overcome this. Besides, predictive capabilities allow to
generate acting strategies that optimise a certain function, such as actuation
power consumption or error minimisation.

Plant
Feedback

Controller
MPC

Plant 

Model
Disturbance

OutputReference

+

!

Figure 1.2: Schema of a model-predictive cotrol

1.3.3 Intelligent control

The term intelligent control is usually reserved for control systems that use
AI tools. The control techniques we have presented so far are based on math-
ematical formulations, using mathematical models of the systems to be con-
trolled. However, there are many systems which are not easily modelled with
these formulations. AI has provided several tools to develop other types of
control techniques that can be applied in these cases. Expert systems and
fuzzy controllers allow to use other type of knowledge –that of experts, based
on rules and not clearly defined– to implement controllers. Neural networks
uses large quantities of experimental data –which sometimes at disposal– in-
stead of an explicit model which may not exist or is not reliable, and allow
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learning.

1.3.4 Model-reference adaptive control

Adpative control techniques allow to modify or change the controller based
on knowledge about the plant response to inputs and control actions. An
example of this is the model reference based adaptive control (MRAC). This
controller has a control law that is used to control the plant and at the same
time uses a model of the plant to determine to what extent the real plant is
departing from what was thought. The behavioural differences between the
real and the expected are then used by the adaptation mechanism to re-tune
the control law parameters to increase it adequacy to the real plant.

Plant

Adaptation

Mechanism

Controller

Reference

Model

Output
Reference control

signal

control
parameters

y(t)

ym(t)

Figure 1.3: Architecture of a MRAC controller

While this implies a certain level of metacontrol, in the sense that it can be
seen as a control loop over the controller that modifies it according to the cur-
rent plant situation, it is not sufficient because it does not present a solution
for the mentioned problems of complexity and failure in the control system
itself. It exploits knowledge about the plant, but not about the control system
itself.

However, this improvement has also lead to an increase of complexity in
the controllers. We are always meeting a trade-off between controller per-
formance and complexity.

A possible path to the solution of the increasing control software complexity
is to extend the adaptation mechanism from the core controller to the whole
implementation of it1.

Adaptation of a technical system like a controller can be during construction
or at runtime. In the first case the amount of rules for cases and situations
results in huge codes, besides being impossible to anticipate all the cases at
construction time. The designers cannot guarantee by design the correct op-
eration of a complex controller. The alternative is move the adaptation from
the implementation phase into the runtime phase. To do it while addressing

1The percentage of code that corresponds to the implementation of the real controller is less
that 1% for simple controllers. The rest of the code is supporting and peripheral –integration–
software.
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the pervasive requirement for increasing autonomy the single possibility is to
move the responsibility for correct operation to the system itself. During the
runtime the control system must be able to perceive changes –not only in the
plant– and adapt to these changes to keep the mission assigned to it during
the design phase.

1.4 Why consciousness in control?

Analysing the characteristic of this problem –action by reflection upon oneself—
similarities between the mentioned desiderata for new intelligent controllers
and the properties related to consciousness in cognitive science have arisen.
Self-awareness is a potential solution for intelligent complex controllers ad-
dressing dependability and integration requirements. This will be presented
and argued in chapter 7.

We have shown the improvement that knowledge exploitation can provide
to control some systems that are complex or impossible to model mathemat-
ically. Thus cognitive capabilities are required to develop better control sys-
tems.

Besides, we have also presented the necessity of an architectural approach to
the design of large complex control systems. Nowadays there already exist
control systems that combine these two visions: the cognitive architectures.
Many of them are intended to model the human mind, but their application
as control systems of robots, simulators and other software based assets has
been being investigated for at least two decades.

In this report some cognitive architectures will be analysed to study their ap-
plication as cognitive control systems addressing the technical requirements
commented and that will be further addressed in Chapter 2.
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Chapter 2

Engineering Requirements
In the previous introductory chapter the need for providing technical systems
with cognitive capacities was motivated, introducing the cognitive architec-
tures as a possible solution. Now in this chapter we will analyse from an
engineering perspective the theoretical requirements a cognitive architecture
must address independently of the domain, the specific purpose and the final
implementation it is intended for. Previously we will introduce some ideas
about autonomy and cognitive architectures.

2.1 Autonomous Systems

2.1.1 Autonomy

The term autonomous has a concrete meaning if we analyse its etymology:
“having its own laws”, from the Greek autos ‘self’ + nomos ‘law’. Thus an
autonomous system is that which fixates its own laws. However, when ap-
plying the term to real systems several interpretations may arise:

• A system is autonomous if it can fixate its own objectives.

• A system is autonomous if performs its function in absence of human
intervention.

These definitions separately do not capture well the concept of autonomy de-
spite there is a feeling both address a part of it. We may give an engineering
definition for autonomy as:

The quality of a system of behaving independently while pursuing the objectives it
was commanded to.

There are still many open issues in the varios fields of competence involved in
the different technical processes that subserve complex system engineering.
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Two of these issues are specially relevant and shall be considered transversal
as they potentially affect many of the systems of tomorrow:

• The maximal desideratum of production engineers is both simple and
unrealizable: let the plant work alone.

• The maximal desideratum of automation engineers is both simple and
unrealizable: make the plant work alone.

Working alone –i.e. being autonomous– seems to be at the very central objec-
tives of most engineers. Autonomy is one of such transversal issues that may
potentialy affect most future systems.

The search for autonomy has many reasons and implications but the con-
crete research target of this field is not clear at all as demonstrates the fact
that even the very term autonomy has many interpretations. But the search
for autonomoy is a major thrust in systems innovation. This is generally true
for two main reasons: economical and technical.

Economical motivation is a major force because automated plants are less
costly from an operational point of view (human personnel cost reduction,
improved operating conditions implying less failures, etc. But technical rea-
sons are, in some cases, no less important because automated plants can be
more productive, can operate fast processes beyond human control capabili-
ties, can be made safer, more available, etc.

2.1.2 Bounded autonomy

When confronting the challenge to build an autonomous system, engineers
are not pretended to build a system with full universal autonomy, that is, a
system capable of achieving and/or maintaining a certain any of itself and
the environment in the desired time without human intervention. That sys-
tem would need unlimited resources and is not even physically realisable.
What is looked for is a system that would perform as autonomously as possi-
ble a certain task in a certain environment. This triad system-task-environment
is what defines the problem of engineering an autonomous system[Sanz et al., 2000].

Building a fully autonomous system for a certain task in a given environment,
however, is in the general case, in which the environment and the system to
be controlled present uncertainty, a daunting task. There are many issues
to take into account and usually a less than complete knowledge on how to
handle them. It may be not easy to achieve technologically or not profitable
economically.

• Engineers want made-to-fit autonomy.
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In addition, for industrial applications such as production systems, nobody
wants the plants to be fully autonomous because of trust. Not just due to the
perceivable higher robustness of human behaviour but because in general
full autonomy would mean that the systems were not complying with the
owner objectives but with theirs. We want to be able to make the system
being autonomous up to the level where this autonomy do not violate some
constraints imposed by design.

• Engineers want bounded autonomy.

In conclusion, what we as automation engineers is bounded and made-to-fit
autonomy.

2.1.3 Uncertainty

Let’s analyse with more detail one of the main problems of autonomy and
control in general: uncertainty. Taking the triad system-task-environment,
we can agree that uncertainty comes from the environment and the system,
being the task well defined. Traditionally uncertainty has been regarded as
affecting the environment, since artificial systems were considered as per-
fectly defined in both static structure and dynamic operation by definition.
This was so even when referring to large production plants in which chemical
processes were and remain not so well known, because considering as system
only the control system and including the plant as part of the environment
seemed to keep uncertainty bounded to environment. Notwithstanding, we
have showed in the previous chapter that when control system became con-
siderably large and complex it is unavoidable uncertainty coming from the
system itself.

In control engineering uncertainty refers to the operation of the controlled
plant departing from its model, due to unmodelled dynamics that are con-
sidered as perturbances.

From a general perspective we shall distinguish two main types of uncer-
tainty: intensive and qualitative.

Intensive uncertainty refers to the deviation of the controlled variables from
their desired values. Feedback control mechanisms enable correction of
this deviations. An impressive example of this is a humanoid robot
walking with an accurate gait to maintain balance.

Qualitative uncertainty refers to the occurrence of unexpected events that
qualitatively change the situation. Take the example of the previous
robot stepping on a ball.
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2.1.4 Intelligence for autonomy

Classical control strategies have been successfully dealing with intensive un-
certainty, from simple feedback controllers to complex robust control strate-
gies. However, they are limited by the mathematical formulation that fre-
quently cannot model reality adequately. This is the reason of the existence
of qualitative uncertainty. Intelligent systems, which permit to exploit knowl-
edge to the control system itself at runtime and not only at the design stage,
are capable of dealing with qualitative uncertainty to some level.

Qualitative uncertainty requires that the system interprets the unexpected sit-
uations evaluating them with respect to the system’s objectives and reacting
to it dynamically in real time. Exploiting knowledge is regarded as a promis-
ing –and many claim the single– way to cope with it. Therefore intelligence
or cognitive capabilities are desirable to reach higher levels of autonomy, al-
lowing the handle of qualitative uncertainty as well as intensive.

2.2 Cognitive Architectures

A cognitive architecture is a blueprint for intelligent agents. It proposes (ar-
tificial) computational processes that act like certain cognitive systems, most
often, like a person, or acts intelligent under some definition. Cognitive archi-
tectures form a subset of general agent architectures. The term architecture’
implies an approach that attempts to model not only behavior, but also struc-
tural properties of the modelled system. These need not be physical prop-
erties: they can be properties of virtual machines implemented in physical
machines (e.g. brains or computers).

We shall distinguish three main categories of cognitive architectures accord-
ing to their purpose:

• Architectures that model human cognition. One of the mainstreams
in cognitive science is producing a complete theory of human mind
integrating all the partial models, for example about memory, vision
or learning, that have been produced. These architectures are based
upon data and experiments from psychology or neurophysiology, and
tested upon new breakthroughs. However, this architectures do not
limit themselves to be theoretical models, and have also practical ap-
plication, i.e. ACT-R is applied in software based learning systems: the
Cognitive Tutors for Mathematics, that are used in thousands of schools
across the United States. Examples of this type of cognitive architec-
tures are ACT-R and Atlantis.

• Architectures that intend general intelligence. This are related to the
first ones but, despite of also being based upon the human mind (as the
only agreed intelligent system up to date), do not constraint to explain
the human mind in its actual physiological implementation. They ad-
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dress the subject of general intelligent agents, mainly from a problem-
solving based perspective. Example of these architectures are Soar and
BB1.

• Architectures to develop intelligent control systems. This architec-
tures have a more engineering perspective, and relate to those address-
ing the general intelligence problem, but focusing of applying it to real
technical systems. They are intended as more powerful controllers for
systems in real environments, and are mainly applied in robotics and
UAV’s and UGV’s 1. Some examples of this architectures are 4D/RCS
and Subsumption architectures, despite some debate on the last ones
about if they can be considered ‘cognitive’.

We are interested in cognitive architectures in the third case of using them to
build controllers so as to achieve higher degrees of autonomy.

2.2.1 Classification of cognitive architectures

Cognitive architectures is an interdisciplinary research area in which con-
verge the fields of artificial intelligence, cognitive psychology/cognitive sci-
ence, neuroscience and philosophy of mind. Cognitive architectures can be
divided between the two main paradigms that exists in these fields:

Connectionist approach

The central connectionist principle is that mental phenomena can be described
by interconnected networks of simple units. The form of the connections
and the units can vary from model to model. For example, units in the net-
work could represent neurons and the connections could represent synapses.
Another model might make each unit in the network a word, and each con-
nection an indication of semantic similarity.

Computationalism or symbolism

the computational theory of mind is the view that the human mind is best
conceived as an information processing system very similar to or identical
with a digital computer. In other words, thought is a kind of computation
performed by a self-reconfigurable hardware (the brain).

There are of course hybrid architectures that have a part of each paradigm,
such as ACT-R, with its symbolic and subsymbolic levels.

Another classification related to the field of intelligent agents distinguish be-
tween deliberative and reactive architectures.

1UAV: Unmanned Aerial Vehicle; UGV: Unmanned Ground Vehicle.
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Deliberative architectures. These architectures come from the GOFAI (Good
Old-Fashioned Artificial Intelligence) paradigm. The working of a de-
liberative agent can be described in terms of a sense-model- plan-act
cycle. The sensors sense the environment and produce sensor-data that
is used to update the world model. The world model is then used by
the planner to decide which actions to take. These decisions serve as in-
put to the plan executor which commands the effectors to actually carry
out the actions.
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Figure 2.1: The common structure of a deliberative architecture.

Reactive architectures. Reactive architectures appeared in the 80’s in oppo-
sition to GOFAI, claiming that there is no need of representation of the
world for an intelligent agent having the own world at disposal[Brooks, 1991].
Reactive architectures are designed to make systems act in response to
their environment. So instead of doing world-modeling and planning,
the agents should just have a collection of simple behavioral schemes
which react to changes in the environment in a stimulus-response fash-
ion. The reference for reactive architectures is Brooks’ Subsumption
architecture [Brooks, 1986].
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Figure 2.2: The reactive architecture

There are also in this case hybrid architectures that combine both reflective
and reactive capabilities, like RCS or ATLANTIS. in fact for a cognitive archi-
tecture to be useful for real technical systems the hybrid approach seems not
only appropriate but necessary.

It is also remarkable that the symbolic paradigm is strongly related to deliber-
ative architectures and the connectionist with the reactive approach, despite
there is a full gradation between the extremes and in practice most architec-
tures used in real systems, and not only simulated environments, are hybrids
to some extent.
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2.3 Requirements for a cognitive architecture

For us a cognitive architecture is a matter of interest from a control engineer-
ing perspective. It provides the architecture for intelligent control systems. In
this section we will analyse the requirements a cognitive architecture should
meet to be of applicability in the development of complex cognitive control
systems.

2.3.1 Technical Systems

In the ASys and ICEA projects we are looking for the application of cognitive
architectures to build more powerful controllers for complex systems, in the
sense of being more robust, dependable and provide better performance and
autonomy.

Cognitive architectures, as large and complex control systems, are software
based implemented. A cognitive architecture desired for developing better
controllers should then meet the requirements demanded to real-time and
safety-critical software systems.

Dependability

Dependability considerations have always been a matter of worries for real-
world engineers. But today, in many complex technical systems of our en-
vironment –transportation, infrastructure, medical, etc.– dependability has
evolved from a necessary issue just in a handful of safety-critical systems to
become an urgent priority in many systems that constitute the very infras-
tructure of our technified world: utilities, telecoms, vetronics, distribution
networks, etc.

These systems are complex, large-scale and usually networked structures
built to improve the efficiency of human individuals and organizations through
new levels of physical integration, cognitive integration, control and com-
munication. However, the increased scalability, distribution, integration and
pervasiveness is accompanied by increased risks of malfunction, intrusion,
compromise, and cascaded failures. Systems do not only fail due to their de-
fects or their mismatches with reality but due to their integration with others
that fail. Improving autonomy into these systems can mitigate the effect of
these risks in system dependability and even survivability.

Now we present the requirements related to dependability considerations
that we require a cognitive architecture to meet:
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Availability

Availability can be simply defined as the proportion of time a system is in a
functioning condition. It is critical for supportive infrastructures such as elec-
tric networks or air traffic control systems, were human lives could depend
on it, and for many industries such as those of continuum process.

Safety

The architecture must contribute to guarantee that in the case of failure, per-
sonal harm and equipment damage is not occurring or to be minimised.

Reliability

Reliability is the ability of a system or component to perform its required
functions under stated conditions for a specified period of time.

It is a measure of the success with which it conforms to some authoritative
specification of its behaviour. It is also referred to as fault-tolerance and in-
volves fast failure detection and localisation, fault confinement or graceful
degradation.

Maintainability

The architecture must be designed in a way so it may undergo repairs of
evolution. As systems grow in complexity maintainability becomes a critical
property. Large-scale production systems, for example, undergo during its
operating life changes of many of its elements, from simple valve and sensor
replacement to the substitution of the field buses or SCADA systems.

Scalability

The cognitive architecture shall be designed in such a way that it would be
easy to add new resources to the system, would they be physical such as
new sensors, actuators or communication systems, or cognitive, such as new
algorithms. Scaling the system must be possible not only from its developer
but also for the system itself.

Integration

Integration is a critical requirement derived from scalability, but also from
the non-isolation of today technical systems, which are usually connected to
other system from whom receive or to whom they provide external function-
ality. Two systems realised with the architecture should be able to integrate
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without no more human intervention than physical installation. The archi-
tecture must provide adequate interface adaptation so as to allow successful
interaction and co-operation for systems within the same application but in-
dependently developed.

Survivability

Survivability emerges as a critical property of autonomous systems. It is the
aspect of system dependability that focuses on preserving system core ser-
vices, even when systems are faulty or compromised. As an emerging dis-
cipline, survivability builds on related fields of study (e.g. security, fault tol-
erance, safety, reliability, reuse, verification, and testing) and introduces new
concepts and principles.

A key observation in survivability engineering –or in dependability in general–
is that no amount of technology –clean process, replication, security, etc. – can
guarantee that systems will survive (not fail, not be penetrated, not be com-
promised). Of special relevance in the case of complex autonomous information-
based systems is the issue of system-wide emerging disfunctions, where the
root cause of lack of dependability is not a design or run-time fault, but the
very behavior of the collection of interacting subsystems. In this case we can
even wonder to what degree an engineering-phase approach can provide any
amount of increased survivability or we should revert to the implementation
of on-line survivability design patterns than could cope in operation time
with the emerging disfunctions.

2.3.2 Real-time operation

To be used for controlling systems operating in real environments, the cog-
nitive architecture must meet the same requirements as other real-time soft-
ware intensive systems, providing predictable responses in guaranteed time
to externally generated input.

Predictability

Despite the desiderata of autonomy to be achieved, the cognitive architecture
must provide a priori guarantee of behaviour bounded within safety limits.
Due to the probabilistic nature of some methods in AI, this is a hard require-
ment for a cognitive system to be achieved. However, to be of application
in safety-critical system, the architecture must be designed in a way that the
resultant behaviour in the system is to be predicted within appropriate safe
limits.
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Guaranteed response times

The architecture must guarantee adequate response time to extern inputs.
There is no point for an architecture in providing mechanisms for powerful
deliberative and predicting functionality if meanwhile the system can not re-
spond properly to the fast changing environment.

A derived requisite for the cognitive architecture is concurrence and parallel
operation to realise the previously presented compromise between anticipa-
tory and deliberative control and reactive control.

2.3.3 Generality

The architecture should be the more general as possible to be applicable in
the design of systems ranging from the largest and more complex ones, i.e.
the control system of a nuclear plant, to the simpler ones, i.e. a thermostat.
There is obviously no benefit in designing an isolated thermostat with such
a complex and powerful tool as a cognitive architecture is. There already ex-
ist well known and appropriate techniques for that. But what about if that
thermostat is to be integrated in a large chemical plant? Then, designing the
plant and the thermostat with the same architecture will ease the task consid-
erably. This directly relates to integration and scalability. The requirement
for generality spreads across many dimensions:

• Space (localisation): from localised systems to complex wide-area plants.

• Time (multiple time-scale loops): from slow to fast and to hard real-
time.

• Rationality (levels of thought): from minimal intelligence to human-
level and beyond.

• Size (problem dimension): from embedded to mainframe hosts.

• Precision (uncertainty): from crisp to fuzzy processing.

These problems have been addressed by diverse design strategies, but they
have all presented problems with scalability while preserving survivability.
This is the reason why we have added a new aspect into the ASys core re-
quirements: the capability of the technology to handle itself. This require-
ments translate into the following requirement for a cognitive architecture.

• Self-x: refers to the capability of the architecture to operate on itself.
This requirement will be further decomposed and analysed in the fol-
lowing section.
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2.4 Capabilities and properties of Cognitive Architectures

Now we will comment the capabilities and properties a cognitive architecture
should exhibit so as to be of applicability to build better control systems, in
terms of addressing the requirement previously commented.

2.4.1 Perception

Systems operating in the real world must be provided with appropriate mech-
anisms so as to keep accurate knowledge about the external situation, by us-
ing the informational flow from sensors. This is the goal of the perpective
processes. Perception can be considered as divided in two parts: the first one
is the extraction of useful information from the sensory flow, the second, the
integration of that information with the knowledge of the system. Related to
this second part, the following mechanisms are necessary to optimise it.

Recognition

Identifying patterns in sensory inputs as known entities in the system’s knowl-
edge database.

Generalisation

The system must be able to extract common patterns from several inputs to
create a category or label and facilitate knowledge reutilisation and exploita-
tion.

Categorisation

Categorisation is closely related to recognition and generalisation. It is the
assignment of perceived objects, situations and events to known categories
or concepts.

2.4.2 Problem solving and action execution

Planning

The desired cognitive architecture must provide support for planning. Pre-
building sequences of actions to reach a certain goal is sometimes the only
way to achieve it, since it is usually not reachable in a single action step.
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Prediction

Prediction is a derived requirement of planning capabilities. Planning is only
possible when it is possible for the system to predict the effects of its actions.
In addition to anticipating results from its own actions, prediction also al-
lows the system to anticipate the future consequences of present sensory in-
puts from the environment, thus allowing fast response times than when not
acting until those consequences are sensed.

Reactive behaviour

The architecture must also support closed-loop strategies for action execu-
tion, since they are the single alternative to guarantee error minimisation.
Predictive open-loop strategies can not guarantee it in general because de-
pend on the identity between the model (knowledge) used to predict and
reality, which can never been guaranteed.

2.4.3 Knowledge

Representation

The cognitive architecture must be independent of the formalism chosen to
represent its knowledge, since the last one could depend on the domain and
final application of the architecture in each case.

The architecture should be able to maintain knowledge in different forms of
encoding or different formalisms–i.e. 2D maps, productions, fragmented im-
ages, semantic networks–, and keep it connected in an unified knowledge
base. An ontology, which would vary depending upon the particular appli-
cation of the cognitive architecture shall be used with this purpose within the
architecture.

Implicit and Explicit

Implicit knowledge is embedded in the algorithms used by the architecture.
To use an analogy from control, i.e. implicit knowledge about the plant is em-
bedded in the parameters of a PID controller. Knowledge is explicit when it
is separated from the algorithm that uses the knowledge. In this text when
we talk about implicit or explicit knowledge we refer to the encoding of that
knowledge.

Implicit knowledge has the advantages of simplicity and efficiency, and can
be related to faster response times since it is ’wired’ in the algorithm or the
architecture. However it is not flexible and do not permit manipulation or de-
liberation upon it. On the other hand explicit knowledge is less efficient but

26 of 131 R-2008-004 v 1.0 Final / Consciosusness in Cognitive Architectures / ASLab.org



allow manipulation independently of its content and other meta-knowledge
operations.

Procedural and Declarative

Declarative knowledge is knowledge that represents fact. Procedural knowl-
edge represents skills. In the literature they are usually identified with ex-
plicit –for declarative– and implicit –for procedural– knowledge, because
declarative knowledge has usually been encoded explicitly as labels or con-
cepts and relations between them, and procedural knowledge has been equated
to algorithms. However this categorization merges to two different issues
about knowledge, which are how it is encoded and what its contents are.
Declarative knowledge can also be implicit, i.e. in a PID controller the values
of the systems poles are implicit in its parameters, and procedural knowledge
can also be explicit, i.e. productions in production systems. The cognitive ar-
chitecture must be able to support both types of knowledge.

Meta-knowledge

Knowledge on how to apply knowledge, or on how to evaluate it in terms
of utility or reliability is essential for a cognitive architecture intended to be
used for constructing systems with higher levels of intelligence. It relates to
scalability properties and optimization of cognitive operation.

2.4.4 Learning

Learning is a critical aspect to be supported in the cognitive architecture to
provide increased autonomy. Implicit learning, identified with algorithm pa-
rameters tuning and refinement, allows improvement in system performance
without external intervention. Explicit learning in the sense of augmenting
knowledge, both declarative and procedural allows the system to adapt to
novel situations and improve time response when encountered again.

2.4.5 Self-x

Biologically inspired, self-x consists of a set of capabilities of the cognitive
architecture operating on the system, including the architecture itself.

Self-monitoring

The architecture must be able to supervise the system operation, including
the architecture’s own operation.
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Self-reflection

With the information provided by self-monitoring, the architecture must be
able to drive mechanisms of reflection over its own operation, to detect both
the entailments of past decisions on the present state and operation and fu-
ture consequences of present decisions and infer possible ways to improve
and eventually optimise operation.

Self-repairing

The architecture must be able to detect errors in its ‘mental’ operation, and
take appropriate actions to prevent functional degradation and eventually
eliminate the errors.

Self-maintenance

To address the growing complexity and size of technical systems, an archi-
tecture should provide mechanisms for the system to handle its own mainte-
nance.

Self-reconfiguration

The architecture must be able to change its operation and even its configura-
tion to adapt to unexpected and new situations.

The whole previous self-functionality is biologically related to self-awareness
a more general property, synthesising all the previous ones, that allow the ar-
chitecture not just to monitor its own state, but to understand the functional
implications of the observed state and take appropriate actions actions over
itself.
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Chapter 3

ASys Theoretical Framework
In this chapter we present some of the core ideas of the ASys theoretical
framework that we are using for analysing cognitive architectures.

Most extant cognitive architectures are biology-based and may involve is-
sues from other different fields: AI, computer science, psychology, control,
etc. In addition, we are interested in them for its application to engineer au-
tonomous systems for different domains. Therefore, a general framework is
needed. The General Systems Theory has been selected and an extension and
particularisation of it, the General Cognitive Autonomous Systems model
that is part of the ASys Framework —under development at the Autonomous
Systems Laboratory— will be presented in this chapter.

3.1 General Systems Theory

3.1.1 Overview

Systems theory is an interdisciplinary field of science and the study of the
nature of complex systems in nature, society, and science. More specificially,
it is a framework by which a system is understood as a set of elements, each
with its own properties, and a set of relations between them that causes the
system to present properties that can not be inferred by only analysing its
elements separately. The system could be a single organism, any organisa-
tion or society, or any electro-mechanical or informational artifact. Ideas in
this direction have been pointed out back to personalities such as Leonardo
or Descartes. However, Ludwing Von Bertalanffy with his works on General
System Theory [von Bertalanffy, 1969] in the middle of the 20th century is re-
garded as the pioneer formulating the concept as it is understood nowadays.
For the formulation of our framework for cognitive autonomous systems we
have chosen the formulation by George J. Klir [Klir, 1969], which is a precise
one we have found desirable for its application in an engineering domain.
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3.1.2 Fundamental concepts

Through the following sections we will present the basic ideas and concepts
of the General Systems Theory by George J. Klir.

Let us think about what we understand by system, by considering it in rela-
tion to what surrounds it. If all possible entities form the universe, a system
can be regarded as a part of it, which is considered isolated from the rest for
its investigation. All which is not system is called environment. The different
disciplines of science share this general understanding in particular ways,
usually differentiated from each other in the criteria for separating the sys-
tem from the universe.

The observer selects a system according to a set of main features which we
shall call traits. They will be characterised by the observer through the val-
ues of a set of quantities. Sometimes, these values may be measured, being
the quantities physical, such as length or mass. Other times quantities are ab-
stract, and they cannot be measured. The instants of time and the locations in
space where quantities are observed constitute the space-time resolution level.
The values of the quantities over a period of time constitutes the activity of
the system.

In general, analysing a system one may find that observed quantities are not
sufficient to explain its behaviour. There must exist other quantities, which
we shall call internal, which play a mediatory part. The observed quantities
of the system will be called external. We shall call the set formed by all the
values of the system quantities at a certain instant the state of the system, dis-
tinguishing between internal state and external state.

The main task of the observer is to explain the activity of a system. This will
be accomplished by identifying patterns in the activity of the system. The
quantities of the system may satisfy time–invariant relations, by which the
values of some quantities may be expressed as function of others. The set of
all time–invariant relations is the formal notion of behaviour of the system.

We may realise that the behaviour is due to the properties of the system. In
other words, a system with different properties would exhibit a different be-
haviour. The set of all properties will be called the organisation of the system.

3.1.3 Defining Systems

In this section, we are going to present fundamental concepts of systems from
two points of view. First, by considering its constant parts. Then, by consid-
ering the system from the point of view of its evolution in time. Finally, we
shall enumerate the requirements for defining a system.
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The study of a system as a whole may result difficult due to complexity or
to non-observability of some parts. In order to analyse complex systems, the
set of quantities is divided into groups, and each studied separately from the
rest, as if it were a system on its own. Generically, each of these groups will be
called subsystem. A subsystem is also called element of the system, to indicate
that it is considered a component of it. There may be elements which share a
group of quantities. This group is called coupling between the elements.

ENVIRONMENT

SYSTEM

quantities

coupling

system-environment

elements

coupling

time-invariant-relations

Figure 3.1: System, environment, quantities, time-invariant relation, ele-
ments and couplings.

If we conceive the system in terms of its elements, we realise that it is formed
by a set of elements, which we shall call universe of discourse, and a set of cou-
plings. Elements and couplings are structured following a particular topol-
ogy which we shall call structure of universe of discourse and couplings of the
system, and abbreviate by UC-structure. However, the system is not perfectly
determined by its UC-structure, for the dynamic aspects of the system are
unspecified. In order to complement the description of a system given by
its UC-structure, it is necessary to analyse the evolution of the values of its
quantities.

If we imagine a system at a certain point of its activity, we will find its quan-
tities at certain values, forming its state. At the next instant of observation,
the system will have evolved to a different state. We shall call this evolution
a state transition. We may assume that, given the system at a certain state, not
any transition is possible, or, in other words, that only a set of other states is
reachable from the original one.
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We may understand that each state is associated to a set of possible transi-
tions. The set of all possible states of the system and their respective tran-
sitions form the state–transition structure of the system, abbreviated by SC-
structure.

The necessary information for perfectly defining a system consists of its pri-
mary traits [Klir, 1969]:

1. The set of external quantities together with the resolution level.

2. A given activity.

3. Permanent behaviour.

4. Real UC–structure.

5. Real ST–structure.

If a definition contains only some of the five primary traits, it results in a
partial definition, that leaves aspects undetermined. In this case, we consider
it defines a class of systems instead of a system in particular.

3.1.4 Kinds of Behaviour and Organisation

If we consider a particular system during a particular activity, we may ob-
serve that some of the time-invariant relations between its quantities may
hold for a certain interval but eventually change. We shall say that these re-
lations correspond to the local scope. Observing the same system during a
different activity, we may observe that some of the time-invariant relations
hold. If we again observe the system during a third activity, we could find
that some of these relations would have changed. We would say they are of
relatively permanent, for they hold for only some of the activities of the sys-
tem. If we were to observe the system during an infinitely large number of
activities, we would find that a particular set of relations would always hold
between its quantities. They would be permanent. Accordingly, we can dis-
tinguish three kinds of behaviour [Klir, 1969]:

• Permanent behaviour.

• Relatively permanent behaviour.

• Temporary behaviour.

The first may also be called real behaviour. The second, known behaviour. Tem-
porary behaviour refers to the local scope, for it holds only for sections within
a particular activity.
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We may observe that permanent and relatively permanent behaviour may
not be clearly distinguished from each other when analysing systems. This is
due to the impossibility to test the temporal persistence of relations beyond a
restricted range of activities.

Let us return to the organisation of the system. We may realise that the differ-
ent behaviours derive from different kinds of properties. We may distinguish
two main kinds, which we shall call program and structure. The temporary be-
haviour of a system derives from its program, which is the set of properties
of local scope. Permanent and relatively permanent behaviours derive from
the structure of the system, which we may in turn classify in real structure and
hypothetic structure, [Klir, 1969], so that the causal relations are as follows:

organisation −→ behaviour

real structure −→ permanent behaviour
hypothetic structure −→ relatively permanent behaviour

program −→ temporary behaviour

PROGRAM

HYPOTHETIC

STRUCTURE

REAL

STRUCTURE

Figure 3.2: Organisation of a system

3.1.5 Example: Quantities, Environment, UC and ST-structures

Let us imagine we design a simple mechanical oscillator as the one in figure
3.3. When excited, the mass will describe harmonic motion at a frequency of
2π

√
k
m . This frequency is fixed for constant values of the spring constant, k,

and the mass, m, and it can therefore be used as a time reference for a larger
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Figure 3.3: Mechanical Oscillator. A mass m, coupled to a spring of rigidity
constant k, coupled to a fixed support.

system. This principle is used in mechanical watches and clocks.

UC-structure

We may distinguish three elements in the system, which define the universe
of discourse. They are: mass, spring and support. The couplings between
them are as follows: the mass transmits a force F to the spring. The spring,
in turn, fixes the position of the mass, x, relative to the spring’s equilibrium
point. The spring transmits the force to the support, which returns an equal
and opposed reaction force FR to the spring. On the other hand, the support
transmits force F to the environment, which returns a reaction force FR.

The three elements and their couplings define the structure of universe of dis-
course and couplings of the system (UC-structure) shown in figure 3.4.

There is one coupling between system and environment which, for clarity,
has not been shown. It is the action of the operator or device (part of the en-
vironment) that sets the initial conditions for the system.

Figure 3.4: Oscillator UC-structure.
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ST-structure

In order to analyse the state–transition structure of the system, let us divide
operation of the system in three regions, as shown in figure 3.5.

Figure 3.5: Regions of Operation of Oscillator. lc– length at maximum com-
pression, when the spires of the spring are adjacent to each other. leq– length
at the equilibrium point of the spring, x = 0. lt– length at the limit of elasticity
of the spring.

In region 1, the spring admits no further compression, imposing the con-
straint x = xc. In region 2, the spring follows Hooke’s law, and therefore its
force is proportional to the displacement from the equilibrium point, x. In
region 3, the spring is over its limit of elasticity (at x = xt) and can be as-
sumed as a rigid rod, therefore imposing x = 0 and ẍ = 0. Although it is not
represented in the figure, if x >> xt, the spring would break (region 4.)

These constraints define the states and transitions of the system in regions 1
and 3. Region 2 can be determined by state–space analysis. In this region, the
system is described by:

m · ẍ + k · x = 0
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The dynamics of the system is given by this equation and a set of initial con-
ditions. We can consider two state variables, x1 and x2, so that1:

x1 = x

x2 = ẋ1

The equation of the system can then be expressed in the classical form ẋ =
Ax + Bu, where x is the state vector, A and B are matrices and u represents
the input to the system:

[
ẋ1

ẋ2

]

=
[

0 1
− k

m 0

]

·
[

x1

x2

]

i.e.

We observe that the system is autonomous, i.e.: it has no B matrix and no
inputs (u).

This system is represented in the phase plane by concentric ellipses (circles
if suitable values of k and m are chosen) as shown in figure 3.6.2 If the mass
is set loose at a certain initial position, x0, the state variables will follow the
ellipse containing x1 = x0.

The frequency in which a trajectory is repeated is f = 2π
√

k
m , for the solution

of the system equation is:

x = x0 · sin

√
k

m
· t

However, this only holds for region 2. Globally, we may understand the
phase portrait of the system will be as shown in figure 3.7. The system cannot
exist in coloured regions.

To the left of xc, the spring can be compressed no further. We shall assume
that the support will absorb the energy that would push the mass further to
the left, to a hypothetical position xfc:3

1We might realise that the choosing of state variables is arbitrary. A different x1 and x2

could have been chosen leading to a different, but equivalent, analysis. These correspond to
the classical analysis of this system.

2We realise that building phase plane representations (also called phase portrait) of systems
might not be straightforward. Tools such as Matlab provide means for this. By hand, two
methods are described in [Slotine and Li, 1991, pp.23-29].

3This is an ideal case. In reality, the energy absorbed by the support, the environment
or both would be between 0 and this value. It would be determined by the elasticity of the
materials involved.
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Figure 3.6: Oscillator Phase Portrait in Region 2.

∫ xfc

xc

kx · dx

To the right of xt, the spring is a rigid rod. Any initial conditions x0, such as
points d, are equilibrium points.4

In region 2, between xc and−xc, the system follows Hooke’s law and the tra-
jectories are elliptical, as explained above. For initial conditions in (−xc, xt),
such as points a, b and c, the system follows the corresponding ellipse until
the spring can be compressed no further. It then evolves toward the ellipse
passing through xt. This ellipse is, therefore, a limit cycle.

Let us consider a set of typical states within the continuum of the figure, as
indicated in figure 3.8. The structure of states and transitions for this set is
represented in figure 3.9.

As we have mentioned previously, the definition of a particular oscillator
is completed by a set of initial conditions. The system portrayed in figures
3.4, 3.8 and 3.9, which stands for many possible initial conditions, stands,
therefore, for many particular systems. We can say that these figures define a
class of systems. In other words, they define a general system, which can exist
in multiple, different forms.

4We have simplified the problem in this region for clarity, by assuming a sudden pass
from a spring constant k to a rigid rod. An intermediate region would exist in reality, in
which plastic deformations of the spring would occur, by which the system would not recover
its position at equilibrium, x0 (ellipses would progressively shift to the right.) As a result,
the dynamics of the system would grow more complex and the phase portrait would show
phenomena out of the scope of this text.
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Figure 3.7: Oscillator Phase Portrait.

In order to use our oscillator in a real mechanical device, we must define a
starting point for its oscillation, in other words, a set of initial conditions.

These are the initial values for x1 and x2. Physically, initial position and speed
of the mass. In figures 3.8 and 3.9, we have portrayed the system under dif-
ferent initial conditions assuming x2 = 0. This is not necessary. For non–zero
x2, the system would follow the corresponding ellipse through (x01, x02). Me-
chanically, it is more complicated to build such device, and therefore we shall
continue assuming x2 = 0.

Let us now consider a particular oscillator, under specific initial conditions,
(x0, 0) so that x0 ∈ (−xc, xt). Its phase portrait and ST–structure, subsets of
figures 3.8 and 3.9, are shown in figure 3.10.

Quantities, State

In order to analyse the ST–structure of the system, we have used two state
variables, x1 and x2, which have proved advantageous, allowing us to apply
powerful methods of system modelling to provide a state–space description
of the system. However, we might realise that our definition of state, in sec-
tion ??, does not correspond to these chosen state variables. In fact, in our
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Figure 3.8: Oscillator Typical States.

diagram of the structure of universe and couplings, figure 3.4, they do not
even appear. Let us see how both views, the (x1, x2) on one side, and the
(x, F ) on the other, come together.

Instead of adopting the point of view of the designer, we shall imagine that
we are to analyse an oscillator which is already constructed and working.
We are going to imagine that we chose to observe quantity x only (external
quantity.)

The relation between x and the state variable is straightforward: x1 = x. The
external state of the system is therefore equal to x1.5

We should find, however, that the external quantity x would not explain all
the aspects of the system. Experimenting with the system, we would find
that the part played by k and m would be undetermined. If we stroke the
mass during its motion, we would not be able to explain the following values
of x.

We could deduce from this that there would exist internal aspects of the sys-
tem which would remain hidden from out observation. They would disap-
pear if we would consider an internal quantity which would reflect in some
way the inertia of the mass or its momentum. We could well consider the
speed of the movement, ẋ, or its acceleration, ẍ. We could then arrive to a

5We also consider the quantities k, and m, although we shall not mention them explicitly
for clarity, understood their values remain constant.
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Figure 3.9: Oscillator ST–structure.

Figure 3.10: ST–structure of a Particular Oscillation.
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set of time–invariant relations between its quantities, which would hold in the
region of operation of the oscillator:

m · ẍ + k · x = 0
xc < x < −xc

In conclusion, the state of the system would be given by (x1, x′
2), where x′

2

would stand for our chosen internal variable. Continuing the analysis from
this point, we would arrive to a ST–structure which would be analogous to
the above, in terms of x2. In fact, there would always exist a transformation
allowing to represent the system in terms of (x1, x′

2) or (x1, x2) indistinctively.

3.1.6 Classification of Systems

The concepts of quantity and structure introduced in the previous sections
may lead to a classification of systems. We shall consider the short classifica-
tion of systems illustrated in figure 3.1.6.

Systems
〈

physical
〈 real → (∗)

conceptual
〈 bounded → (∗)

unbounded → (∗)

abstract
〈 bounded → (∗)

unbounded → (∗)

(∗)
〈 controlled

neutral

Figure 3.11: Short classification of systems, adapted from [Klir, 1969].

Let us briefly explain the categories of systems. We have seen that quantities
whose values are measurable are physical quantities, and the rest are abstract.
Accordingly, systems formed by physical quantities are physical and the rest
are abstract. If we focus on physical systems, we may distinguish two kinds.
If quantities really exist, the system is real. If the quantities are only assumed,
as in the case of systems which are modelled or imagined, the system is con-
ceptual.

As to the number of quantities and structure a system has, we may distin-
guish two cases. First, that the system has a finite number of quantities and a
finite structure. In this case, it would be a bounded system. Otherwise it would
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be an unbounded system. We may see that real physical systems are always
bounded, while conceptual or abstract systems may be unbounded.

Finally, if we analyse the quantities of a system, we may find that they can
be of two kinds. First, they can adopt values independently from the sys-
tem, given by the environment. In this case, they are independent quantities.
Second, their values might depend on the values of other system quanti-
ties, and they are called dependent quantities. When analysing real systems,
discriminating between dependent and independent quantities is frequently
impossible in practice. However, if dependent and independent quantities
are known to the observer, the system is a controlled system. Otherwise it is a
neutral system.

3.2 The General Cognitive System

In this section we present a theoretical framework based upon the GST for
the concrete domain of cognitive systems, which will be the systems to be
analysed in this work. We call call this framework the General Cognitive Sys-
tem.

3.2.1 Cognitive Subsystem

We may assume that, in the most general case, a cognitive autonomous sys-
tem operation can be analysed at two levels. The first, which we may call
physical, answers to physical laws: gravity, magnetism, etc. Indeed, an impor-
tant part of the system’s operation is its physical action on the environment;
for example a robot picking up objects, or a mobile robot exploring new terri-
tory. This kind of operation can be observed by measuring a certain amount
of quantities, representing speed, temperature, force, etc. These are the physi-
cal quantities we referred in 3.1.

The other kind of operation in a general autonomous system is conceptual. A
conceptual quantity is a specific resource of the system whose state represents
the state of a different part of the universe [Klir, 1969]. For example, the area
of memory used for an integer may represent the speed of a robotic mobile
system, encoded in the state of its own bits.

We shall call the part of the system that performs conceptual operation the
cognitive subsystem. The cognitive architectures are cognitive subsystems. Of
course they are also systems, but when we analyse the whole system formed
by the cognitive and the physical parts, we will use the term cognitive sub-
system. The cognitive subsystem has the capacity to operate with conceptual
quantities, using them for representing objects in their environment, for sim-
ulating the effect of its own action over them, or for inferring new objects
among other examples.
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We shall differentiate the abstract quantities from other conceptual quantities.
Abstract quantities are not measurable and cannot relate to actual physical
quantities. Between the rest of conceptual quantities there will be some that
relate to real current physical quantities, we shall say they are instantiated
quantities, and those that are not but could eventually be; they are potentially
instantiated quantities.

SYSTEM

COGNITIVE SUBSYSTEM

sensing

perception

action

grounding*

instantiated 

quantities

abstract 

quantities

ENVIRONMENT

potentially 

instantiated 

quantities

Figure 3.12: Grounding involves sensing, perception, ground-
ing* and action

Grounding and embodiment

The relation between a conceptual quantity and its physical counterpart di-
rectly relates to the symbol grounding problem as analysed by [Harnad, 2003].
Leaving out of the discussion the hard problem of meaning, we shall define
the relation between the conceptual quantity (the virtual landscape) and the
physical one it refers to (the actual landscape in the world) as the grounding.
A conceptual quantity may refer to a physical quantity of the environment or
a physical quantity of the system.

The bidirectional nature of the relation is represented by the sensing-perception
and grounding-action cycle. Sensing relates a physical quantity in the environ-
ment with a physical quantity in the system. Perception relates the physical
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quantity with a conceptual quantity in the cognitive subsystem. The phys-
ical quantity may be in the environment, in which case we shall talk about
exteroception, or in the own system, then we shall talk about propioception.
We represent perception as a link between a physical quantity in the physical
subsystem and a quantity in the cognitive subsystem because in any case the
initial quantity must be mapped to one in the same substrate –embodiment–
that the cognitive subsystem, that is the physical part of the system. This
mapping is the sensing.

Grounding*6 is the process of making physical quantities correspond to their
conceptual counterparts. The other way round grounding* relates a concep-
tual quantity in the cognitive subsystem with a physical quantity in the sys-
tem, while action relates the quantity in the system with the sensed physical
quantity in the environment.

Let’s take the example from a mobile robotics application. The speed of the
robot (physical quantity of the coupling system-environment) is sensed in the
signal from the encoder (physical quantity in the system) and through per-
ception it is conceptualised in the conceptual quantity speed of the cognitive
subsystem. This conceptual quantity may be manipulated in cognitive pro-
cesses, such as planning, that result in an increase of the value of the quantity.
The conceptual quantity is grounded through the quantity voltage applied to
the motors, whose action finally results in an increase of the initial physi-
cal quantity speed. Only instantiated conceptual quantities can be updated
through perception and and/or grounded.

We call embodiment of a conceptual quantity to its physicalisation, that is to
say the relation between the conceptual quantity and the physical quantity
that supports it [Landauer, 1992], in which it is embodied, i.e. in our example
the relation between the robot speed and the memory bits used to represent it.

3.2.2 Objectives

In this section, we shall try to analyse objectives in cognitive systems. We
may understand an objective as a state of the system, of the environment or
of both, to which the system tends as a result of its behaviour.7 It can be
complete if it specifies all the aspects of the system and the environment, or
partial if it refers only to some aspects, leaving the rest unspecified. A partial
objective thus refers to a class of states.

6This grounding is intimately related to the previous grounding, but we use them with
a slight difference. Grounding refers to the whole relation between conceptual and physical
quantity, whereas grounding* refers to it in the direction from conceptual to physical

7Note that we refer to an objective of the system. We shall not refer to the objective of the
designer except stated explicitly. The text develops the notion of objective to which the system
converges and with which the system may operate.
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Figure 3.13: Grounding and embodiment

As we mentioned previously, the state of the system is the value of all its
quantities at a particular instant of time. On the other side, the state of the
environment represents its situation relative to the system. In other words,
it must represent a characterization of the environment according to the pa-
rameters which are observed by the system. These are the quantities of the
coupling system-environment. The state of the environment relative to the
system would therefore equal to the values of the quantities of the coupling.
We shall call this notion the strict state of the environment.

There exists a slight point to be specified with respect to this. We may as-
sume that the system perception of its environment will not be limited to the
quantities of the coupling. Upon them, the system may build developed, con-
ceptual quantities. This makes that, in reality, the state of the environment,
from the point of view of the system, will not only consist of the values of the
coupling quantities, but also of its conceptual representations of it. We shall
call this the subjective state of the environment. Unless stated otherwise, we
shall understand state of the environment in this sense.

An objective is therefore a desired sate of the pair (system, environment).

It must be observed that an objective is conceptual because it refers to a de-
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Figure 3.14: Example of grounding and embodiment concepts in
a mobile robotics application

sired state, which does not exist in reality. We shall see in the following sec-
tions how an objective may appear in the actual, physical operation of the
system.

Structure of Objectives

Systems of a certain degree of complexity may operate concurrently at differ-
ent levels of abstraction, showing a collection of objectives at each level. Usu-
ally, abstract objectives cannot be realized directly, and must be decomposed
into a collection of more particular ones, and these into new ones in turn.
This decomposition gives rise to a hierarchy of objectives as represented in
3.15(a well-known paradigm in artificial architectures).

Thus, the objectives contained in a given branch of the hierarchy follow a re-
lation of generality/specificity, which implies coherence between them. On
the other hand, there may exist three fundamental differences between any
two objectives of the hierarchy. First, they may belong to different levels of
abstraction (generality/specificity relation). Second, they may differ in their
content: in the finality they actually stand for. Third, they might differ in
their dependences within the hierarchy: belong to different branches. Let
us deduce some major implications of these differences. Differences in level
of abstraction usually equal to different temporal horizons [Albus, 1991]: a
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own element and in the rest of the system?

We may realize there is a straightforward answer: unified perception is given by the UC and ST-
structures, which stand for the restrictions to elements and their evolution. However, although this answer
is correct, in order to design knowledge-based systems we need to know how the organizational descrip-
tion of systems (elements, couplings, states and transitions) is related to their operational and cognitive
aspects: objectives, knowledge, inference capabilities, etc.

Systems of a certain degree of complexity may operate concurrently at different levels of abstraction,
showing a collection of objectives at each level. Usually, abstract objectives cannot be realized directly,
and must be decomposed into a collection of more particular ones, and these into new ones in turn. This
decomposition gives rise to a hierarchy of objectives as represented in figure 2 (a well-known paradigm in
artificial architectures).
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Figure 2. Representation of a hierarchy of objectives. Objectives are represented by circles. Some dependences have been represented
by lines. There may exist generality/specificity dependences like (1). Between objectives derived from a same parent objective it is

likely that there exist dependences of many kinds, and most probably regarding synchronization (2). There may also exist dependences
with other objectives of the same level (3).

Thus, the objectives contained in a given branch of the hierarchy follow a relation of generality/specificity,
which implies coherence between them. On the other hand, there may exist three fundamental differences
between any two objectives of the hierarchy. First, they may belong to different levels of abstraction
(generality/specificity relation). Second, they may differ in their content: in the finality [vB69] they actually
stand for. Third, they might differ in their dependences within the hierarchy: belong to different branches.

Let us deduce some major implications of these differences. Differences in level of abstraction usually
equal to different temporal horizons [Alb91]: a more abstract objective tends to take more time to be
achieved than a more specific one. Differences in content may imply that they require different, specific
processes and resources to be achieved, which cannot be interchanged. Finally, difference in dependences
implies a degree in mutual independence: the farther one objective is from another in the hierarchy, the
less the achieving of one affects in the achieving of the other.

We shall generically call the hierarchy of objectives of a system its objective structure. At a certain
instant in time, system resources are divided in achieving all objectives of the structure. In other words,
if we were to analyze the processes taking place in the system at that instant, we would also observe
that each process is dedicated to a particular objective. Thus, there exists a correspondence between the

Figure 3.15: Representation of a hierarchy of objectives. Objectives are repre-
sented by circles. Some dependences have been represented by lines. There
may exist generality/specificity dependences like (1). Between objectives de-
rived from a same parent objective it is likely that there exist dependences of
many kinds, and most probably regarding synchronization (2). There may
also exist dependences with other objectives of the same level (3).

more abstract objective tends to take more time to be achieved than a more
specific one. Differences in content may imply that they require different, spe-
cific processes and resources to be achieved, which cannot be interchanged.
Finally, difference in dependences implies a degree in mutual independence:
the farther one objective is from another in the hierarchy, the less the achiev-
ing of one affects in the achieving of the other. We shall generically call the
hierarchy of objectives of a system its objective structure.

At a certain instant in time, system resources are divided in achieving all
objectives of the structure. In other words, if we were to analyse the pro-
cesses taking place in the system at that instant, we would also observe that
each process is dedicated to a particular objective. Thus, there exists a corre-
spondence between the elements and the objective structure of a system: an
element stands for the set of processes and resources devoted to achieving a
particular objective of the structure. In summary, the UC and ST-structures
of a system reflect its objective structure. In other words, the elements of
the system and their couplings must follow equivalent coherence relations to
those that hold between objectives. The system achieves unified behaviour
from the individual element-behaviours because they are bound to the gen-
erality/specificity relations between objectives. The behaviour of an element
is the result of combining afferent, efferent and deliberative tasks.
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Directiveness

A cognitive system converges to its root objectives by realising lower ones,
which are simpler or of shorter term. The behaviour of the system tends to
progressively realise all the objectives in the structure. It follows the sequence
derived from the dependences between objectives. In this way, the objective
structure actually defines the trend in the evolution of the system, which con-
stitutes its directiveness. We may distinguish two types of directiveness.

Structural Directiveness . The patterns of behaviour of a system, derived
from a certain organisation. Structural directiveness depends on the
system and the environment. The objective is therefore implicit in the
system.

Purposive Directiveness . Capacity of the system to change its organisation,
and therefore its behaviour, in order to establish, maintain or improve
convergent evolution by explicit consideration of its objective, self and
environment.

Objectives and Organisation

As we mentioned previously, the behaviour of a system will direct its evo-
lution toward an objective. In artificial systems, the objective is set by the
designer. In natural systems it results from evolution.
The objective drives the composition of the system’s properties, which leads
to a corresponding behaviour. So in can therefore be established the follow-
ing relation of causality for autonomous systems:

objective→ organisation→ behaviour

We may realize that root objectives constitute a part of the definition of the
system itself. In artificial systems they stand for the primary objectives of the
designer. They underlie the longest time-scope of operation in the system
and they establish the highest level of abstraction. They are a constitutional
part of the system, as other fundamental properties, all of which form its real
structure:

root objectives→ real structure→ permanent behaviour

As the root objectives, real structure and permanent behaviour are constant
in time by definition; we may deduce that the adaptivity of the system relies
on the rest of objectives, the hypothetic structure, the program, and corre-
spondingly, the relatively permanent and temporary behaviours. We shall
call these objectives intermediate objectives. Local objectives are the intermediate
objectives of shortest scope. Intermediate and local objectives correspond to the
hypothetic structure and to the program of the system respectively, as the root
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objectives correspond to the real structure:

intermediate objectives→ hypothetic structure→ relatively p. behaviour
local objectives→ program→ temporary behaviour

System organization

PROGRAM

HYPOTHETIC

STRUCTURE

REAL

STRUCTURE

Objectives hierarchy

root objectives: 
system finality

local 
objectives

intermediate 
objectives

Figure 3.16: Correspondence between the hierarchy of objectives and system
organisation

Categories of Objectives

According to their morphology we can also categorise the objectives. We
could distinguish between implicit and explicit objectives. An implicit objec-
tive is an objective which has no explicit representation in the system. It is
very usual that the root objective of artificial systems (the general purpose of
the system from the designer’s point of view) is embedded in their real struc-
ture. Otherwise the objective is explicit.

Another useful distinction between objectives is that that adopts the com-
monly used terms of target, setpoint or reference and constraint. When using
target we define an objective as a desired final state (S, E), whereas by speci-
fying a set of constraints we restrict the states (S, E) in time and/or space to a
certain subset.

We shall say that an objective is a target if it is defined as one, imposing no
constraints on the organisation or the dynamics of the system associated to
the objective.

Now we shall categorised the objectives in function of their dynamical state.
As we have mentioned, the activity of an objective is the period during which
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Figure 3.17: Objectives can be a) a certain state in the system’s ST-structure
or b) a subprogram of it

the system organisation is directed toward it. In other words, the organisa-
tion is configured corresponding to the objective, and causes a coherent be-
haviour. The objective is therefore mapped onto the system embedded in a
real scenario of operation. In this case, the objective is instantiated, for the
conceptual, desired state it stands for corresponds to real quantities of the
system. Accordingly, we say the objective exists in real form. When we want
to refer to the state in which an objective finds itself, we shall use instantiated.
When we want to refer to the dynamic aspect of being instantiated, we shall
say it is activated, i.e. : its having an activity.

An objective, however, may eventually be inactive, in other words, not deter-
mining the behaviour of the system at present. In this case we shall say it is in
abstract form. Objectives in abstract form are part of the system knowledge.
They may be generated by problem solving, planning or other processes in
the system, or they may be set by the designer in artificial systems.

Objective Dynamics

The objective structure of a system exhibits a certain dynamics as a result of
the achievement of its intermediate and local objectives, and the generation
of new ones.

The dynamic aspects of the life of an objective are given by four types of
phases:

Generation Refers to the process by which an objective is generated and ap-
pears in the hierarchy as a result of the decomposition of a higher one
or is derivered by another one at its same level.

Activation Activation of an objective stands for the process of instantiating
an objective which exists in abstract form.

Activity The activity of the objective is the evolution of the system during
the time in which the objective is instantiated.

Deactivation or conclusion Eventually, an objective may be reached. We
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shall say that in this case, its activity concludes. However, a second ob-
jective might be instantiated before the conclusion of the first, overrid-
ing its organisation. In this case, the first objective is deactivated.

3.2.3 Autonomy of a Cognitive System

Uncertainty will affect the system in the form of perturbations. The system’s
program has a certain capacity to compensate these perturbations, mainly if
they are intensive. We will call performance to these capacities. Performance is
therefore the effectiveness of the temporary behaviour of the system. How-
ever, performance may be not sufficient to cope with certain perturbations,
typically the qualitative ones. In this case a program failure happens.

The consequences of a program failure may affect the hypothetic structure of
the system. At this level, mechanisms of purposive directiveness may acti-
vate to try reconfiguring the system to correct its behaviour. This may consist
of modifying algorithms or reconfigure a certain part of the structure of objec-
tives. We shall call this capacity of the system adaptivity. System’s adaptivity
can be structural, in the case it is a function of the current functional struc-
ture, or purposive, in the case it develops dynamically. In the second case it
implies conceptual operation. It may happens that system’s adaptivity could
not compensate the program’s failure. We shall call this situation structural
failure. Structural failure can propagate to the real structure of the system,
breaking partially or totally system’s cohesion.

For example, in a varying parameters PID, while the plant remains in a cer-
tain region the controller parameters do not change but the control signal do,
according to the error. That corresponds to the program and performance
of the system. By contrast, when the plant enters a different region of oper-
ation the PID parameters change accordingly, this stands for the hypothetic
structure of the system and its adaptivity.
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Chapter 4

General Principles for Cognitive
Controllers
In this chapter we will present the principles proposed in the ASys Frame-
work to guide the design of integrated cognitive control systems, and that
therefore should be addressed by any cognitive architecture intended with
that purpose. These principles, biologically inspired by the old metaphor –or
not so metaphor but an actual functional definition– of the brain-mind pair
as the controller-control laws of the body –the plant–, provides a base char-
acterisation of cognitive or intelligent control.

4.1 Model-based cognition

Principle 1: Model-based cognition — A system is said to be cognitive if it ex-
ploits models of other systems in their interaction with them.

This principle in practice equates knowlegde with models, bypassing the
problems derived from the conventional epistemological interpretation of
knowledge as justified true belief [Gettier, 1963] and embracing a Dretskean
interpretation where justification and truth are precisely defined in terms of
a strict modelling relation [Rosen, 1985]. Obviously, this principle takes us to
the broadly debated interpretation of cognition as centered around represen-
tation [Brooks, 1991], but with a tint; that of the predictive and postdictive
capabilities derived from the execution of such a model.

In what follows we will use the terminology presented in the previous chap-
ter but using the term cognitive system instead of subsystem since in the fol-
lowing dissertation we will only care about the conceptual part. We will
use the term object instead of GST element for the system or part of the envi-
ronment – environment of the cognitive system, which includes the physical
subsystem–, even when in some cases it may be also cognitive, because the
term element has some connotations in other fields which may lead to confu-
sion. But what we call now object corresponds exactly to the GST definition
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of element.

COGNITIVE SYSTEM

OBJECT

Object model

Figure 4.1: The cognitive relations of a
system with an object are mediated by
a model of the object. The relation be-
tween the model and the actual object
is the grounding as defined in page 43.

The idea that the mind uses models is not a new theory. The model-based
theory of mind can be traced back in many disciplines and the topic of men-
tal models have been a classic approach to the study of mind [Craik, 1943,
Gentner and Stevens, 1983] but this has just had an aura of methaphorical ar-
gumentation [Johnson, 1987] because of the lack of formalisation of the con-
cept of model and the less than rigorous approach to the study of its use in
the generation of mental activity.

Closer approaches are for example the emulation theory of representation of
Grush [Grush, 1995] or the model-based sensory-motor integration theory of
Wolpert [Wolpert et al., 1995]. Grush proposed the similar idea that the brain
represents external-to-mind things, such as the body and the environment,
by constructing, maintaining, and using models of them. Wolpert addresses
the hypothesis that the central nervous system internally models and simu-
lates the dynamic behaviour of the motor system in planning, control, and
learning.

We think that we can go beyond using the concept of model-based-mind as
metaphor or as de facto contingent realisations found in biological brains to
the more strong claim that cognitive controllers are necessarily model-based.

4.1.1 On models

This definition of cognition as model-based behavior many sound too strict
to be of general applicability; in particular it seems not fitting simple cogni-
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tive processes (e.g. it seems that we can have a stimulus input without having
a model of it). However, if we carefully analise these processes we will find
isomorphisms between information structures in the system’s processes –e.g.
a sense– and the external reality –the sensed– that are necessary for the pro-
cess to be succesful.

These information structures may be explicit and directly identifiable in their
isomorphisms or may be extremely difficult to tell apart. Models will have
many forms and in many cases they may even be fully integrated –collapsed–
into the very mechanisms that exploit them. The model information in this
case is captured in the very structure of the cognitive process. Reading an
effective cognitive system tells us a lot about its surounding reality.

The discussion of what is a proper charaterisation of the concept of model is
also very old and plenty of clever insights as that one of George Box: ”Es-
sentially, all models are wrong but some are useful” [Box and Draper, 1987].
It is this model usefulness what gives adaptive value to cognition as de-
mosntrated by Conant [Conant and Ashby, 1970].

There are plenty of references on modelling theory, mostly centered in the do-
main of simulation [Cellier, 1991, Zeigler et al., 2000] but it is more relevant
for the vision defended here the perspective from the domains of systems
theory [Klir, 2001] and theoretical biology [Rosen, 1993, Rosen, 1991].

This last gives us a definition of model in terms of a modelling relation that
fits the perspective defended here: a system A is in a modelling relation with
another system B —i.e. is a model of it— if the entailments in model A can be
mapped to entailments in model B. In the case of cognitive systems, model A
will be abstract and stored in the mind or the body of the cognitive agent and
system B will be part of its surrounding reality.

We must bear in mind, however, that models may vary widey in terms of
purpose, detail, completitude, implementation, etc. A model will represent
only those object traits that are relevant for the purpose of the model and this
representation may be not only not explicit, but fully fused with the model
exploitation mechanism.

4.1.2 Relations with other traits

Principle 1 grounds some common conceptions about cognitive systems; ob-
viously the most important is the question of representation. A cognitive sys-
tem —by definition of cognition— necessarily represents other systems. Even
more, these representations must have deep isomorphisms with the repre-
sented objects so the cognitive system can exploit formal entailments in its
models to compute entailments in the modelled object in order to maximise
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the utility of the interaction (more on this in section 4.2). Paraphrasing what
Conant and Ashby clearly stated [Conant and Ashby, 1970] –every good reg-
ulator must contain a model of the system it is controlling– we can say that
every well performing cognitive system must contain a model of the objects
it is interacting with.

Many other core issues of cognitive systems are addressed by Principle 1.
Two quite fashionable these days are the questions of situatedness –cognition
is necessarily interactive with an external world– and embodiment –the neces-
sary separation of the agent body from the rest as defined by the interaction
boundary–. Both are duly addressed by the modeling perspective of Principle
1 even when they are not as necessarily crisp as they may appear to roboti-
cists because the model can obviosly represent uncertainty and vagueness,
hence being able to handle even blurred bodies and fuzzy situations. Other
so-called cognitive traits are left out of this picture of cognitive systems.

4.1.3 On model generation

Model-based –cognitive– systems need not necessarily be learning systems
–even while learning will be a very common procedure for model genera-
tion. A cognitive system may operate using a static model –coming from any
source– as long as it is considered valid. i.e. as long as the modeling relation
with the external object still holds.

Obviously, from the consideration of how the cognitive system becomes cog-
nitive or maintains its cognitive capability learning becomes crucial. Some-
how the models must be put there, in the mind of the cognitive system. In
general –not just in the case of biosystems– the core infrastructures for model
construction fall in three categories:

Built-ins: In the sense described by Conant and Ashby [Conant and Ashby, 1970],
our feeding, homeostatic and kinestetic mechanisms contain models of
the surounding reality (e.g. genes codifying chemical receptors for the
nose).

Learned: The very subject matter of learning from experience.

Cultural: The well known topic of memetics [Dawkins, 1976, Blackmore, 1999]
or –more visually shocking– of Trinity “learning” helicopter piloting ex-
pertise in Wachowskys’ Matrix. 1

The learning and cultural mechanisms have the extremely interesting prop-
erty of being open ended. In particular, cultural model transmision is a form
of extended learning, where the cognitive system downloads models learned

1Supervised learning may be considered an hybrid of cultural and learned processes.
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by others hence reaching levels of model complexity and perfection that are
impossible for an isolated agent2.

In biological systems, the substrate for learning is mostly neural tissue. Neu-
ral networks are universal approximators that can be tuned to model any con-
crete object or objects+relations set. This property of universal approximation
combined with the potential for unsupervised learning make the neural soup
a perfect candidate for model boostraping and continuous tuning. The neu-
ral net is an universal approximator; the neural tissue organised as brain is
an universal modeller.

These are also the properties that are sought in the field of artificial neural
networks. It is not necessary to recall here the ample capacities that neural
networks –both artificial and natural– have shown concerning model learn-
ing. We may wonder to what extent model learning of an external reality can
be equated to the advances in modeling external realities demonstrated in the
so called hard-sciences (deep, first principles models).

What is philosophically interesting of this process of scientific model con-
struction is the fact that reality seems to have a mathematical-relational stuc-
ture that enables the distillation of progressively precise models in closed
analytical forms [Wigner, 1960].

We may think that culturally learnt first principles models3 are better than
neural network approximative modelling4; there are cases of exact conver-
gence of both modelling approaches but there are also cases where the math-
ematical shape of the principles limits their applicability to certain classes of
systems.

For example, in the field of model creation for control purposes, artificial neu-
ral networks have been compared favourably, in certain settings, with first
principles models in the implementation of nonlinear multivariable predic-
tive control [Henriques et al., 2002]. This neural network approach uses a re-
current Elman network for capturing the plant’s dynamics, being the learning
stage implemented on-line using a modified version of the back-propagation
through time algorithm [Elman, 1990, Rumelhart et al., 1986].

All this analysis takes us to the formulation of a second principle of cognitive
system construction:

Principle 2: Model isomorphism — An embodied, situated, cognitive system is
as good as its internalised models are.

Model quality is measured in terms of some definable isomorphism with the
2Indeed this is, plainly, the phenomenon of science.
3Only geniuses do incorporate first principles models by autonomous learning.
4A similar problem to that of having symbolic representations in neural tissue.
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modelled system as established by the modelling relation.

4.2 Reactive vs Anticipatory Control

Many control mechanisms follow the well known error-feedback paradigm
we already presented in 11. This control structure is so simple and robust
that almost all control loops are based on this approach. The strategy is sim-
ple and extremely effective [Wiener, 1961]: measure the difference between
what we want and what we have and make corrections based on this differ-
ence (see Figure 4.2).

PlantController

Disturbance

OutputReference

+

!

Error Control

Figure 4.2: Feedback controllers measure the difference (error) between what
we want (reference)and what we have (output) and make corrections (con-
trol) based on this difference.

These controllers are very effective but have a serious drawback: they are al-
ways behind the plant, i.e. they cannot make the plant strictly follow a reference
signal without a delay (except for special plants in special circumstances).
These controllers just act as reaction to plant output diverting from what is
desired (errors); so they will wait to act until output error is significant.

In order to have the plant in a certain state at a defined time, we need other,
more powerful approaches that can anticipate error and prevent it. Due to
the inherent dynamics of the plant, the only possibility of acting to make it
reach a final state sf at tf from an intial state si at ti is to act at ta before tf .

This kind of control is anticipatory in this strict sense of (ta < tf )5. The de-
termination of the action cannot come from the final state (as with classical
error feedback) because of anticipation and we need an estimate –prediction–
of this state ŝf at time ta.

These two alternative approaches were described by Conant [Conant, 1969]
as error-controlled regulation and cause-controlled regulation. The advange of this
second approach is that in certain conditions, it is often possible for the regu-
lation to be completely succesful at maintaining the proper outcome. Need-
less to say is that due to the non-identity between model and reality, this last

5This could be seen as acausal because the cause of the action –final cause in aristotelian
sense– is the final state sf , that is a future state.
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one may depart from what the model says. In these conditions only error-
driven control will be able to eliminate the error. This is the reason why,
in real industrial practice, model-predictive controllers are implemented as
mixed model-driven and error-driven controllers.

The previous analysis take us into the formulation of another principle:

Principle 3: Anticipatory behavior — Except in degenerate cases, maximal
timely performance can only be achieved using predictive models.

These predictive models can be explicit or implicit in the proper machinery of
the action generation mechanism [Camacho and Bordons, 2007]. Obviously
the degree to which a particular part of reality can be included in a model will
depend on the possibility of establishing the adequate mappings from/to re-
ality to/from model and the isomorphims between entailments at the model
level and at the reality level (according to a particular model exploitation
policy). The problems associted to inferred model quality have been widely
studied in relation with properties of statistical modelling, where we seek
a good model to approximate the effects or factors supported by the em-
pirical data in the recognition that the model cannot fully capture reality
[Burnham and Anderson, 2004]. This is also the world of systems identifi-
cation but in this case, the target model typically belongs to a very reduced
and precise class of models [Ljung, 1998, Nelles, 2000].

4.3 Integrated Cognitive Control

Reactive and anticipatory control are the core building blocks of complex con-
trollers. Reactive controllers are simpler and more easily tuneable. These are
the reasons for being the most used both in biological systems (they are easily
evolvable) and technical systems (they are easier to design and implement).

Complex controllers organise control loops in hierarchical/heterarchical ar-
rangements that span several dimensions: temporal, knowledge, abstraction,
function, paradigm, etc. [Sanz, 1990]. These organisational aspects lead to the
functional differences offered by the different achitectures.

In the performance of any task by an intelligent agent there are three aspects
of relevance: the task itself, the agent performing the task and the environ-
ment where the task is being performed [Sanz et al., 2000]. In the case of nat-
ural systems the separation between task and agent is not easily stated, but in
the case of technical systems this separation is clearer: artificial systems are
made on purpose and the task always comes from oustide of them, it comes
from the owner.
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The knowledge content of the models in highly autonomous cognitive con-
trollers should include the three aspects: system, task and environment. De-
pending on the situation in the control hierarchy, models may refer to particu-
lar subsets of these aspects (e.g. models used in intelligent sensors do address
only a limited part of the system environment; just environmental factors sur-
rounding the sensor).

System cohesion may be threatened in evolutionary terms and its preserva-
tion becomes a critical integrational requirement. The problem of model co-
herence across the different subsystems in a complex control hierarchy is a
critical aspect that is gaining increased relevance due to the new component-
based strategies for system construction. In the case of biological systems
and unified engineering artificial systems the core ontology –whether ex-
plicit or assumed– used in the construction of the different elements is the
same. But, in systems agregated from components coming from different
fabrication processes, ontology mismatches produce undesirable emergent
phenomena that lead to faults and even loss of system viability. This is clear
in biological systems (e.g. immunity-related phenomena) but is just becoming
clear in complex technical systems during recent times [Horn, 2001].

This analysis lead us to formulate an additional principle of complex cogni-
tive systems:

Principle 4: Unified cognitive action generation — Generating action based on
an unified model of task, environment and self is the way for performance maximisa-
tion.

Modeling the task is, in general, the easiest part6. This has been one of the
traditional focus points of classic AI and its problem-solving approach.

Modeling the environment in control systems has been generally done up to
the extent of addressing the interference it produces in the performance of
the task. This can be as simple as statistically modeling an interfering dis-
turbance in SISO controllers (See Figure 4.2) or as complex as simultaneous
localisation and mapping in autonomous mobile robotics.

The question of modelling the system is trickier and will be the focus of 7.
Let’s say that in conventional analyses of control systems these realisational
aspects are comonly neglected or reduced to considerations concerning de-
sign constraints derived from implementation limitations. The issue of em-
bedding system models –i.e. of the system knowing about its own body– has
been raised in many contexts but got wider audience in relation with robotics
embodiment considerations [Chrisley and Ziemke, 2002].

6But representing the task in the internalised model can be extremely complex when task
specification comes in natural language.
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Figure 4.3: Complex cognitive systems in integrated control architectures
need to exploit models in the performance of tasks at different levels of ab-
straction; from the immediate reaction to environment changes to the strate-
gic decision making relevant for the long term performance of the system.

4.4 The Perceiving Agent

As deeply analised by López [López, 2007] there are strong differences be-
tween sensing and perceiving, related to the expectation and model-driveness
of this last one.

The perceptual process is structured as a potentially complex pipeline of
two classes of processes that we could describe as sensor-driven and model-
driven. The perceptual pipeline can affect the perceiving system in two ways:
implicitly, through changes in operational states of other subsystems; and ex-
plicitly through cognitive integration of what has been perceived into inte-
grated representations.

This unified understanding of perception as a model-driven process [López et al., 2007a]
leads to the introduction of a new principle:

Principle 5: Model-driven perception — Perception is the continuous update of
the integrated models used by the agent in a model-based cognitive control architec-
ture by means of real-time sensorial information.

This principle implies that the result of perception is not a scattered series
of independent percepts, but these percepts fully incoprorated into an inte-
grated model. This means that it is possible to sense without actually per-
ceiving; e.g. if the cognitive –i.e. model-driven– sensory processing fails in the
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Figure 4.4: System perception
implies the continuous update of
the models that the system is em-
ploying in the generation of be-
havior.

integration.

To be integrable, the percept must follow some rules that are captured both in
the mechanics of cognitive perception and in the set of referents used in the
perception process. The mechanics typically will form part of the permanent
structure of the agent while some of the referents may be part of its program
(see [Klir, 1969] for details on the duality structure/program).

Even more, the perception mechanism is not restricted to process information
coming from the environment of the perceiving system but can exploit also
information coming from the inside of the system. Here authors will typi-
cally talk about two classes of preception, propioception –the sensing of the
body– and metaperception –the sensing of the mind– but both are, senso stricto,
the same class of perceptual processes. This unified perspective implies that
for explicit perception to happen in the inner environment, there must be a
model where percepts are to be integrated. These models obviously consti-
tute the very core of self.

4.5 Defining awareness

From the analysis of integrated cognitive controllers given in the previous
sections we can make a try into the formalisation of some consciousness as-
pects. We will make a distinction between awareness and consciousness, re-
serving the C-word for systems self-awareness.

Principle 6: System awareness — A system is aware if it is continuously perceiv-
ing and generating meaning from the countinuously updated models.
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The term meaning was introduced in this principle to define awareness and
this looks-like eluding the core definitional problem. However, the word
meaning implies that the main difference between perception and awareness
is the addition to the perceptual mechanics of a certain value system in the
global system process. So we can say that awareness implies the perception
of value to the system from its sensory flow.

The value system is established upon the objectives of the system. It evalu-
ates, computes a fitness of the perceptions according to its directiveness to-
wards the system objectives. As explained in the previous chapter, objectives
may be implicit or explicit. Since the core objectives define somehow the sys-
tem, if the system operates with an explicit representation of them that means
a certain self-modelling, and thus escape the range of awareness to enter that
of consciousness. We thus will reserve the term awareness for the generation
of implicit value in the model updating.

OBJECT

COGNITIVE SYSTEM

Object model

Meaning Engine/

Evaluator

Meaning/

Value

objectives

Figure 4.5: System awareness implies the generation of
value from model-update according to system’s objectives

The updated integrated model produced by perception is evaluated in terms
of a value system not only in the present state of affairs but in the potential
consequences derived from this state of affairs. Awareness implies the par-
titioning of predicted futures and postdicted pasts by a value function. This
partitioning we call meaning of the update to the model. In this context of inter-
pretation of the term meaning, we conclude that only pieces of information
that are model-integrable can have meaning, because for others, we cannot
compute futures nor pasts, less their value.
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System perception implies the continuous update of the models that the sys-
tem is employing in the generation of behavior; but this continuous update
is not just keeping in mind an updated picture of the status of part of the en-
vironment –like a photograph– but continuously restructuring and retuning
the dynamical model of the object used in the action generation process.

System awareness requires the additional steps of automatically predict and
evaluate. While many researchers claim for a –necessary– sensory-motor pro-
file of awareness and consciousness, action is not necessary for the definition
of awareness; but obviously when the models are used for action selection
and built by a process of sensory-motor interaction, action becomes critical
for the awareness architecture; but models can be built using other methods
(see Section 4.1.3) and this will be more manifest in artificial systems.

4.6 Attention

When engineering a system there always is, no matter what kind of system
nor the type of task it is intended for, a common constraint that must be taken
into account in all the stages, from requirements definition to final implemen-
tation and tests passing through design. This common constraint is the lim-
ited resources we have to build up the system with, and as a consequence,
the limited resources the system has.

We may distinguish two classes of limited resources: limited physical re-
sources and limited cognitive resources, not because they are different in their
very core nature (in the end they are both physical), but because of the part of
the system they support: the physicality of the system or the cognitive sub-
system.

Let’s have a glimpse at each of these two limitations, starting with the limited
physical resources. Cognitive systems are intended to operate in complex en-
vironments, eventually the real world, in its broader and fine detailed sense.
We will take the example of a mobile robotic system. There, the real world
environment potentially contains an infinite number of objects and events
–rocks, trees, roads, birds, grass, buildings– and in a practically infinite re-
gression of detail. However, the system will have in any case a limited set
of sensor, that can sense only certain kind of phenomena (i.e. reflections of
ultrasounds in a surface) and with a limited range –so that it can sense only
a part of the environment–, with a limited spatial scope –thus covering a
small portion of the phenomena present in the environment at a time– and
with limited precision –hence limited level of detail to be sensed–. We shall
call this the sensory limitation constraint. There is a core relation between the
range, scope and precision elements of the sensory limitation constraint be-
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cause of the very deep nature of most sensors. It can be considered that for
a given sensor there is function that maps a maximum level of detail to each
point in a scope-range map, typically associating greater levels of detail to
points near that one more far away from the limits of the sensor range and
scope, and lower levels of detail to points near the limits 7.

It seems clear that, once build up, the system has no way to eliminate the sen-
sory limitation constraint, but possessing scalability and integration proper-
ties to integrate new sensors if given. However, the system may be able to
mitigate the limitation, for example if it could direct its sensory resources to
those areas in the environment of particular interest, so as to obtain more
information through perception to improve its models of the environment.
This is the first type of attentional mechanisms a system may have, and we
shall define it as the ability of a system to allocate physical resources to maximise
model updating.

The interest of the system in a portion of the perceptive environment could be
triggered by a deliberative inner process –top-down mechanism– or directly
by a certain pattern in the sensory input –bottom-up mechanism–[Taylor, 2002].
For example, attentional mechanisms are triggered by strong and unexpected
inputs, such as a burst; or they can also be driven by inner top-down control
related to a required goal, i.e. searching for a friend in a crowd.

We may turn now to the problem of limited computational resources. The
limiting factor of data storage has these days became negligible in relation
with other factors, since nowadays storage media provides almost unlimited
space for example to store an almost unlimited quantity of models in the
system without much physical space waste. However, the amount of mod-
elling instantly instantiated, that is in the working memory, is much more
constrained by the RAM of today’s CPUs. By modelling here we are refer-
ring models quantity, the level of detail of them, and the number of delib-
erative processes exploiting them. So there is need for mechanisms in the
system which will decide which models and with which detail are worthy
running at each instant and which deliberative processes will be exploiting
them. Let’s go back to our mobile robotic system example. One of the pos-
sible tasks of the robot may involve traversing a room with obstacles. Once
the path planning algorithm initiated, an internal alarm could warn the sys-
tem of low battery. It could be the case that the current process could not
coexist in the working memory with the process to deal with low battery at
run time. Then the system would have to select between continuing with the
same planning process in the working memory or removing it and giving the
resources to the process dealing with low battery. So the second type of at-
tention a system can posses shall be defined as the ability of a system to allocate
cognitive resources to maximise model exploitation.

7The human retina with the fovea is a clear example of this

64 of 131 R-2008-004 v 1.0 Final / Consciosusness in Cognitive Architectures / ASLab.org



We shall conclude by summing up all these ideas in the following principle:

Principle 7: System attention — Attentional mechanisms allocate both physical
and cognitive resources for system processes so as to maximise performance.

4.6.1 Awareness and Attention

In the cognitive sciences as well as in common life the meanings of attention
and awareness are somehow intermixed. For example we could say that ’to
be aware of something you have to be paying attention to it’. There is a clear
deep relation between both concepts. According to our definitions we shall
establish that relation in a causality form: awareness, the generation of value
in the update of the model, causes a change in the organisation of the system
towards its objectives (remember the definition of structural directiveness),
adapting the system resources, therefore triggering the attentional mecha-
nisms.

From the previous comment about the relation between attention and aware-
ness it may seem that we are claiming that there is only top-down atten-
tional mechanisms; it is not. We claim that any attentional mechanism enters
awareness because value must be generated so as to the system shall allocate
resources in a useful way and not randomly. The difference lies in that in
bottom-up attention the new generation of value is due to the entering in-
put, whereas in the top-down mechanism it is a result of internal deliberative
operation not related to the current sensory input.
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Chapter 5

Evaluation Criteria
In this chapter we propose a semi-formal evaluation criteria to assess qualita-
tively any cognitive architecture. The first section is dedicated to review the
evaluation methodologies that are used to assess human intelligence, which
is the single available reference for machine intelligence. In the second sec-
tion a review of the state of the art in artificial intelligence evaluation is pre-
sented. Finally, the third section exposes the evaluation criteria developed in
this report to assess cognitive architectures in the view of the requirements
extracted in Chapter 2 and the principles presented for cognitive controllers.

5.1 Assessing Human Intelligence

Human intelligence is the single agreed intelligent system, in the higher sense
of intelligence. Therefore it is necessarily a reference model when addressing
any problem related to artificial intelligence or cognition. So it is when the
problem is that of evaluating intelligent systems, AI cognitive architectures
particularly.

Since there is still not a complete formal theory about human mind nor a full
neurophysiological substratal mapping for it, benchmarking is the single pos-
sibility to measure human intelligence. Given that there is no other intelligent
system different from human mind, there is no reference to compare general
human intelligence with. We only way we can evaluate the intelligence of a
person is through benchmarking. Large efforts by psychologists have been
done to improve tests and metrics for them with this purpose. The tests are
designed to assess performance in tasks that require intelligent capabilities.

Following we present a short review of these efforts to measure human intel-
ligence.
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5.1.1 IQ tests

An intelligence quotient or IQ is a score derived from one of several differ-
ent standardised psychometric tests attempting to measure intelligence. The
term “IQ,” a translation of the German Intelligenz-Quotient, was coined by
the German psychologist William Stern in 1912 as a proposed method of scor-
ing early modern children’s intelligence tests such as those developed by Al-
fred Binet and Theodore Simon in the early 20th Century. Stern proposed that
an individual’s intelligence level could be measured as a quotient of their es-
timated “mental age” and their chronological age. A further refinement of
the Binet-Simon scale was published in 1916 by Lewis M. Terman, from Stan-
ford University, who incorporated Stern’s proposal, and this Stanford-Binet
Intelligence Scale formed the basis for one of the modern intelligence tests
that remains in common use. Although the term “IQ” is still in common use,
the scoring of modern IQ tests such as the Wechsler Adult Intelligence Scale
is now based on a projection of the subject’s measured rank on the Gaussian
bell curve with a center value (average IQ) of 100, and a standard deviation
of 15 (different tests have various standard deviations, the Stanford-Binet IQ
test has a standard deviation of 16).

IQ scores are used in many contexts: as predictors of educational achieve-
ment or special needs, by social scientists who study the distribution of IQ
scores in populations and the relationships between IQ score and other vari-
ables, and as predictors of job performance and income.

5.1.2 General intelligence factor

Modern IQ tests produce scores for different areas (e.g., language fluency,
three-dimensional thinking), with the summary score calculated from sub-
test scores. The average score, according to the bell curve, is 100. Individual
subtest scores tend to correlate with one another, even when seemingly dis-
parate in content.

Mathematical analysis of individuals’ scores on the subtests of a single IQ test
or the scores from a variety of different IQ tests (e.g., Stanford-Binet, WISC-
R, Raven’s Progressive Matrices, Cattell Culture Fair III, Universal Nonverbal
Intelligence Test, Primary Test of Nonverbal Intelligence, and others) find that
they can be described mathematically as measuring a single common factor
and various factors that are specific to each test. This kind of factor analysis
has led to the theory that underlying these disparate cognitive tasks is a sin-
gle factor, termed the general intelligence factor (or g), that corresponds with
the common-sense concept of intelligence. In the normal population, g and
IQ are roughly 90% correlated and are often used interchangeably.

Tests differ in their g-loading, which is the degree to which the test score
reflects g rather than a specific skill or ‘group factor” (such as verbal abil-
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ity, spatial visualization, or mathematical reasoning). G-loading and validity
have been observed to be related in the sense that most IQ tests derive their
validity mostly or entirely from the degree to which they measure g.

5.1.3 Multiple intelligences

Dissatisfaction with traditional IQ tests has led to the development of a num-
ber of alternative theories, all of which suggest that intelligence is the result of
a number of independent abilities that uniquely contribute to human perfor-
mance. Most of these theories are relatively recent in origin, though it should
be noted that Louis Thurstone proposed a theory of multiple “primary abili-
ties” in the early 20th Century.

Howard Gardner’s Theory of multiple intelligences [Gardner, 1985] is based
on studies not only on normal children and adults but also by studies of
gifted individuals (including so-called ‘savants”), of persons who have suf-
fered brain damage, of experts and virtuosos, and of individuals from diverse
cultures. This led Gardner to break intelligence down into at least eight dif-
ferent components: logical, linguistic, spatial, musical, kinesthetic, naturalist,
intrapersonal and interpersonal intelligences. He argues that psychometric
tests address only linguistic and logical plus some aspects of spatial intel-
ligence; other forms have been entirely ignored. Moreover, the paper and-
pencil format of most tests rules out many kinds of intelligent performance
that matter in everyday life, such as giving an extemporaneous talk (linguis-
tic) or being able to find one’s way in a new town (spatial).

Robert Sternberg’s Triarchic theory of intelligence proposes three fundamen-
tal aspects of intelligence –analytic, creative, and practical– of which only the
first is measured to any significant extent by mainstream tests. His investiga-
tions suggest the need for a balance between analytic intelligence, on the one
hand, and creative and especially practical intelligence on the other.

Daniel Goleman and several other researchers have developed the concept
of Emotional intelligence and claim it is at least as important as more tradi-
tional sorts of intelligence. These theories grew from observations of human
development and of brain injury victims who demonstrate an acute loss of
a particular cognitive function –e.g. the ability to think numerically, or the
ability to understand written language– without showing any loss in other
cognitive areas.

5.1.4 Models of human mind

We have said that we cannot measure human intelligence yet. That is true be-
cause we have not a reference to compare with, less metrics for that. But from
the 20th century do we have partial models of how the human mind works
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that allow us to qualitatively evaluate human intelligence. Some examples
are Baddeley’s model of working memory, Atkinson & Shiffrin’s model of
model memory, Marr’s computational theory of vision, etc. . So from archi-
tectural point of view it is possible to qualitatively assess some functionality
of the human mind –intelligence–.

5.2 Metrics for Artificial Intelligence

From the earlier days of AI there has existed a concern on how it is possible
to determine if an artificial system built to be intelligent actually is, or to what
extent it is.

5.2.1 Turing Test

The Turing test is a proposal for a test of a machine’s capability to demon-
strate intelligence. Described by Alan Turing in the 1950 paper “Computing
machinery and intelligence” [Turing, 1950], it proceeds as follows: a human
judge engages in a natural language conversation with one human and one
machine, each of which try to appear human; if the judge cannot reliably tell
which is which, then the machine is said to pass the test. In order to keep the
test setting simple and universal (to explicitly test the linguistic capability of
the machine instead of its ability to render words into audio), the conversa-
tion is usually limited to a text-only channel such as a teletype machine as
Turing suggested or, more recently, IRC or instant messaging.

In order to pass a well designed Turing test, the machine would have to use
natural language, to reason, to have knowledge and to learn. The test can
be extended to include video input, as well as a “hatch” through which ob-
jects can be passed, and this would force the machine to demonstrate the skill
of vision and robotics as well. Together these represent almost all the major
problems of artificial intelligence.

The test has been criticised on several grounds:

The test is explicitly anthropomorphic. It only tests if the subject resembles a
human being. It will fail to test for intelligence under two circumstances:

• It tests for many behaviors that we may not consider intelligent, such
as the susceptibility to insults or the temptation to lie. A machine may
very well be intelligent without being able to chat exactly like a human.

• It fails to capture the general properties of intelligence, such as the abil-
ity to solve difficult problems or come up with original insights. If a
machine can solve a difficult problem that no person could solve, it
would, in principle, fail the test.
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Russell and Norvig argue that the anthropomorphism of the test prevents it
from being truly useful for the task of engineering intelligent machines. They
write: ”Aeronautical engineering texts do not define the goal of their field
as ’making machines that fly so exactly like pigeons that they can fool other
pigeons.”

The biggest criticism to the Turing is that it is explicitly behaviourist or func-
tionalist: it tests if the system behaves as if it were intelligent, not if it is in
fact intelligent. One of the most famous argument in this direction is John
Searle’s one of the Chinese room [Searle, 1980], in which he claims that a sys-
tem provided with enough symbols and syntactic rules but lacking semantics
could be imputed intelligent behaviour when actually it would be doing only
symbol manipulation without meaning for itself.

To cope with the problem of assessing the generation of meaning by the sys-
tem L. Zadeh proposed a different test. L. Zadeh’s test can be formulated
as follows: a paper is presented to the system, and it is supposed to trans-
form it into a summary. The quality of the summary can be judged by the
ability of the system to generalise and formulate the meaning of the paper
in a sufficiently concise form. No doubt, any system that can do it should
be considered intelligent. Clearly, the system should be capable of generalis-
ing. Says L. Zadeh: ”the ability to manipulate fuzzy sets and the consequent
summarising capability constitutes one of the most important assets of the
human mind as well as the fundamental characteristic that distinguishes hu-
man intelligence from the type of machine intelligence that is embodied in
present-day digital computers”.

However this test still conveys the problem of requiring the huge effort of
implementing human natural language in the system, which of course could
be regarded as a sufficient property for it to be intelligent, but also surely not
a necessary one.

5.2.2 PerMIS

Performance Metrics for Intelligent Systems Workshop (PerMIS) is organised
by the NIST (The National Institute of Standards and Technology) which is
a non-regulatory agency of the United States Department of Commerce. The
institute’s mission is to promote U.S. innovation and industrial competitive-
ness by advancing measurement science, standards, and technology in ways
that enhance economic security and improve quality of life.

The PerMIS series, started in 2000, is aimed towards defining measures and
methodologies of evaluating performance of intelligent systems. Attendees
include researchers, graduate students, practitioners from industry, academia,
and government agencies.
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As a result of these workshops, two White papers (2000 and 2001) have been
produced which summarises the ideas on how two evaluate intelligent sys-
tems [Messina et al., 2001, Meystel, 2000]. This evaluation is centred on the
performance of the system. Intelligence is evaluated in terms of success of
the system performing certain tasks.

In the first place, a list of abilities to be checked in any test for intelligence in
artificial systems is proposed:

1. to interpret high level, abstract, and vague commands and convert them
into a series of actionable plans

2. to autonomously make decisions as it is carrying out its plans

3. to re-plan while executing its plans and adapt to changes in the situa-
tion

4. to deal with imperfect sensors

5. to register sensed information with its location in the world and with a
priori data

6. to fuse data from multiple sensors, including resolution of conflicts

7. to handle sensor failure or sensor inadequacy for certain circumstances

8. to direct its sensors and processing algorithms at finding and identify-
ing specific items or items within a particular class

9. to focus resources where appropriate

10. to handle a wide variation in surroundings or objects with which it in-
teracts

11. to deal with a dynamic environment

12. to map the environment so that it can perform its job

13. to update its models of the world, both for short-term and potentially
long-term

14. to understand generic concepts about the world that are relevant to its
functioning and ability to apply them to specific situations

15. to deal with and model symbolic and situational concepts as well as
geometry and attributes

16. to work with incomplete and imperfect knowledge by extrapolating,
interpolating, or other means

17. to be able to predict events in the future or estimate future status

18. the ability to evaluate its own performance and improve
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From the previous checklist a more reduced one of properties for intelligent
systems is obtained:

• the ability to deal with general and abstract information

• the ability to deduce particular cases from the general ones

• the ability to deal with incomplete information and assume the lacking
components

• the ability to construct autonomously the alternative of decisions

• the ability to compare these alternatives and choose the best one

• the ability to adjust the plans in updated situation

• the ability to reschedule and re-plan in updated situation

• the ability to choose the set of sensors

• the ability to recognize the unexpected as well as the previously un-
known phenomena

• the ability to cluster, classify and categorize the acquired information

• the ability to update, extrapolate and learn

• being equipped with storages of supportive knowledge, in particular,
commonsense knowledge

Vector of Intelligence

In the PerMIS ’00 White Paper it was firstly introduced the idea of the Vec-
tor of Intelligence, augmented in 2001 White Paper to the Multiresolutional
Vector of Intelligence (MVI), which is the level of success of the system func-
tioning when this success is attributed to the intelligence of the system. The
VI is enhanced to multiresolutional because: Evaluation of intelligence requires
our ability to judge the degree of success in a multiresolutional system of multiple
intelligences working under multiple goals.

The following list is an example of the set of coordinates for a possible Mul-
tiresolutional Vector of Intelligence (MVI):

(a) memory temporal depth

(b) number of objects that can be stored (number of information units that
can be handled)

(c) number of levels of granularity in the system of representation

(d) the vicinity of associative links taken in account during reasoning of a
situation, or
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(e) the density of associative links that can be measured by the average
number of ER-links related to a particular object, or

(f) the vicinity of the object in which the linkages are assigned and stored
(associative depth)

(g) the diameter of associations ball (circle)

(h) the ability to assign the optimum depth of associations

(i) the horizon of extrapolation, and the horizon of planning at each level
of resolution

(j) the response time

(k) the size of the spatial scope of attention

(l) properties and limitations of the aggregation and decomposition of con-
ceptual units.

Parameters for sensing and perception:

(m) the depth of details taken in account during the processes of recognition
at a single level of resolution

(n) the number of levels of resolution that should be taken into account
during the processes of recognition

(o) the ratio between the scales of adjacent and consecutive levels of reso-
lution

(p) the size of the scope in the most rough scale and the minimum distin-
guishable unit in the most accurate (high resolution) scale

(q) an ability of problem solving intelligence to adjust its multi-scale or-
ganization to the hereditary hierarchy of the system, this property can
be called ?a flexibility of intelligence?; this property characterizes the
ability of the system focus its resources around proper domains of in-
formation.

Parameters that measure the difficulty of the task:

(r) dimensionality of the problem (the number of variables to be taken in
account)

(s) accuracy of the variables

(t) coherence of the representation constructed upon these variables For
the part of the problem related to maintenance of the symbolic system,
it is important to watch the
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(u) limit on the quantity of texts available for the problem solver for ex-
tracting description of the system

and this is equally applicable for the cases where the problem is sup-
posed to be solved either by a system developer, or by the intelligent
system during its functioning.

(v) frequency of sampling and the dimensionality of the vector of sam-
pling.

Additional parameters from the user of the intelligent system:

(w) cost-functions (cost-functionals)

(x) constraints upon all parameters

(y) cost-function of solving the problem

Metrics for intelligence are expected to integrate all of these parameters of
intelligence in a comprehensive and quantitatively applicable form.

5.2.3 Evaluation of cognitive architectures

The subject of measuring or evaluating intelligence is also a major concern
for the AI research community around cognitive architectures and intelligent
agents, where it is formulated in the question on how can we evaluate cogni-
tive architectures. There are several approaches to this question:

• Evaluating the design and development efforts to build an agent with
a certain architecture.

• Measuring the computational efficiency of the architecture.

• Proving the architecture compliance with data from biology and psy-
chology.

• Measuring the performance of a standardised agent with the architec-
ture in the realisation of standardised tasks.

• ...

Benchmarking vs Formalisation

Cognitive architectures have been designed with very different purposes in
mind and this has led to the practical impossibility of architecture compari-
son across application domains. From a general perspective, however, there
are two possible strategies for intelligent systems architecture evaluation:
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Benchmarking: It will provide performance information just about specific
tasks and has the added inconvenience of requiring an extant cognitive
system to be able to evaluate. It is difficult and expensive to design
experiments which demonstrate generality.

Formalisation: Formalising core mental properties will render neutral, do-
main independent measures that do not requiere extant systems, i.e.
may be used in analysis and design phases.

This last strategy seems the most desirable but has a major drawback: formal-
isation is always hard and at the end it may finish in so fine grained concepts
and associated measures that they would be mostly worthless for design.

5.3 Proposed Evaluation Criteria

We propose to use the framework described in chapter3 for cognitive systems
to analyse the compliance of a given cognitive architecture with the principles
stated in 4, as a semi-formal evaluation criteria for cognitive architectures.

In the following sections we present this evaluation criteria.

5.3.1 System Organisation

As we have seen, the organization of the system may be divided in two parts,
program and structure. Adequate degrees of structures –real and hypothetical–
and program is a key factor for autonomy.

According to the principle of minimal structure [López et al., 2007b], the struc-
ture of the system must be minimised for higher autonomy, which stands
for maximising its program. This equals, firstly, to maximise system perfor-
mance. Secondly, within the structure, its stands for minimising the real and
maximising the hypothetical structure. This equals to providing maximum
adaptivity. Within the structure of the system, minimising the real structure
is equal to preserving system cohesion, since reducing real structure the risk
of failure reaching it decreases. Maximising the hypothetic structure equals
to increasing reconfigurability, a factor for system adaptivity.

5.3.2 Controlled coupling

Restricted dependence from the environment

System autonomy involves a certain independence from the environment so
as to reach or maintain certain objectives (state) despite the evolution of the
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Figure 5.1: Evaluation of system organisation: system b) has almost only real struc-
ture, thus it would perform badly and could not adapt at all, any perturbance would
affect the real structure, therefore leading to structural failure if it were not robust
enough. System c) has great proportions of structure, both real and hypothetic, but
no program at all and hence, despite it may be able to adapt and reconfigure itself for
different situations, it has no means to address small perturbances and would perform
poorly. On the other hand, system d) has no hypothetic structure: the system could
not adapt to perturbances overwhelming the compensating capacity of program, so if
they happened it lead to structural failure. The best organisation is that of system a),
in which real structure is minimal and program and hypothetic structure maximal,
resulting in a system with a priory good performance and adaptivity.

environment. Since the environment affects the system through their cou-
pling, the adequate characterisation of it in the design of the architecture so
as it is able to control that coupling adequately, by monitoring and/or ma-
nipulating it, would provide independence from the environment. Adequate
modelling of the coupling is thus a key factor for system performance.

Perception and attention mechanisms play a key role for an architecture to
control the coupling system-environment.

Let’s take an example from mobile robotics. In a mobile robot the wheels
an important element of the coupling system-environment. Imagine that
this coupling is modelled in a simple equation that relates wheel’s rpm with
the robot linear velocity. If the robot happened to enter a muddy terrain its
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wheels would slide and the robot’s model of its current state would be wrong.
By contrast, if the robot had a model including sliding effects it could detect
it by monitoring the power demanded by the motors, for example, and take
appropriate actions.

Encapsulation

Encapsulation stands firstly for the minimisation of the couplings between
the elements within the architecture, and secondly for the construction of in-
terfaces to encapsulate heterogeneous elements. Minimisation of coupling
is a factor for minimisation of structure, thus provides adaptivity. Encapsu-
lation contributes to modularity [Schilling and Paparone, 2005], reconfigura-
bility and scalability. Reconfigurability equals to greater hypothetic struc-
ture hence contributes to adaptivity.

Model encapsulation facilitates its exploitation, simplifying it and the con-
tributing to minimising system structure.

5.3.3 Conceptual operation

A cognitive architecture must provide adequate design patterns for address-
ing both conceptual operation and its grounding*. Abstract quantities allow
the system for generalisation, inference and other deliberative processes that
allow better knowledge exploitation. Potentially instantiated variables are
necessary for planning and reflection over past situations. Instantiated quan-
tities stands for models of current situation. More instantiated quantities
means more modelling refinement of current state, whereas larger quantities
of potentially instantiated quantities stands for greater capability of the archi-
tecture to represent different situations or the same situations with different
models; we could talk about larger “model repository” (see figure 5.3.3).

5.3.4 Grounding

Adequate grounding of conceptual operation is obligated for a cognitive ar-
chitecture to be usable in technical systems, so it must provide adequate de-
fined interface patterns with sensors and actuators. Grounding* is crucial.
The cognitive system may reach an abstract solution during problem solv-
ing, but it the needs to be grounded* in values for instantiated quantities and
finally physical quantities of the system. When translating the solution to
physical values, there may be several solutions, and constraints due to lim-
ited resources must be taken into account. Modelling of the physical subsys-
tem is thus necessary, and metaknowledge on its implications for grounding*
valuable.
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Figura 2.1: Mapas métricos geométricos

debido principalmente a la facilidad de visualización que ofrecen y la compa-
cidad que presentan. Otra ventaja fundamental es la filtración de los objetos
dinámicos al hacerse la extracción previa de caracteŕısticas del entorno. Los
sensores necesarios para construir estos mapas no pueden generar mucho rui-
do, puesto que han de permitir distinguir los diferentes elementos del entorno.
Otro inconveniente a resaltar es su incapacidad para proporcionar un mode-
lo completo del espacio que rodea al robot. Los puntos que no se identifican
como caracteŕısticas geométricas del mundo real son eliminados, con lo que
para ganar en robustez y compacidad se pierde información de los senso-
res. Esta limitación afecta a tareas como la planificación de trayectorias y la
exploración de entornos, reduciendo consiguientemente la utilidad de estos
mapas en la navegación de robots móviles.

En los mapas métricos discretizados,se utiliza la información de los senso-
res sin segmentar y se construye una función de densidad de probabilidad de
ocupación del espacio. Como ésta no puede cubrir todo el espacio de forma
continua, se efectúa una descomposición en celdillas y se asigna una proba-
bilidad a que cada una esté ocupada o libre. Esta división puede ser exacta,
manteniendo las fronteras de los obstáculos como bordes de las celdillas, o
mediante celdillas de dimensiones fijas que se reparten por todo el espacio
[23]. En las figuras 2.2 y 2.3 pueden verse ejemplos de ambos tipos de des-
composición. En la división en celdillas fijas se aprecia que un estrecho paso
entre dos obstáculos puede perderse con esta representación.

En este caso no se analiza la pertenencia de cada celdilla a un objeto in-
dividual, por lo que aunque el espacio esté discretizado se logra su represen-
tación de forma continua. En la figura 2.4 se puede ver un mapa discretizado
o de ocupación de celdillas de un entorno con formas irregulares que haŕıa
complicada la representación geométrica.

Este tipo de mapas puede precisar de una alta capacidad de almace-
namiento, tanto mayor cuanta más resolución se requiera. Por otra parte,
permite representaciones continuas y completas incluso a partir de datos de
sensores con mucho ruido como los de ultrasonidos, lo que los hace especial-
mente prácticos.

DISAM-UPM Paloma de la Puente Yusty 20

freeways

C-space

5

Espacio discretizado en celdillas

Quodtrees y octrees

Figure 5.2: Different proportion of conceptual quantities stands for different mod-
elling properties

Perception

Model updating depends critically on perception. It is the indispensable
mechanism to keep the model as close as possible to reality. Deliberative
processes may help refine the models by detecting conflicts and generating
expectations, but they all must be validated by perception. Perception is also
very important for monitoring the grounding* so as to do it properly.

Perception must be driven by models in two senses. Firstly it must be di-
rected by expectations generated based upon current models of the state, and
secondly it must be guided by systems objectives. Thus the relevant concep-
tual quantities for perception are instantiated quantities and abstract quanti-
ties, in the sense of metaknowledge to guide the perceptive processes.
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5.3.5 Modelling

Knowledge representation

Implicit models usually imply fixed algorithms that embed certain knowl-
edge, i.e. a PID controller embedding in its parameter knowledge about the
plant. They stand for real structure with a small proportion of program if the
parameters of the algorithms can be tuned by the system. By contrast, ex-
plicit models make knowledge independent of algorithms –engines in model
exploitation– reducing the couplings and standing for program, so decreas-
ing the real structure to the bare algorithms.

Knowledge reusability

Knowledge isotropy, as defined in [López, 2007], refers to a property of the
knowledge of a system of presenting coherent meanings under different con-
texts of interpretation. It stands for the content being independent of the way
it was acquired. Homogeneity in the knowledge encoding stands for using a
single format to represent contents. It presents the advantage of facilitating
reusability, but at the price of losing fine grained specific application.

Despite it is possible to reuse implicit knowledge by reutilisation of the tan-
dem algorithm-knowledge, explicit knowledge permits greater levels of reusabil-
ity given that, in difference to implicit knowledge, both knowledge and the
algorithm are reusable.

Procedural and declarative knowledge

An architecture for intelligent controllers must handle explicit knowledge of
both types. It is important that procedural knowledge is explicit so as it can
be evaluated and modified, augmenting system’s adaptivity.

Model acquisition

Increased knowledge, that is enhanced models, contribute to adaptivity. The
capacity of the architecture to incorporate and create new models and refine
existing ones is a fey advantage in this sense. A cognitive architecture shall
be evaluated on how new knowledge is introduced and integrated in the sys-
tem either by the system’s developer and by the system itself.

We shall talk about model injection to refer to the incorporation of models
–knowledge– to the system, anyway it may be. In the previous chapter three
main mechanisms, built-ins, learning, and cultural were established. Arti-
ficial systems present the peculiarity that the built-in mechanism can occur
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during the operating life of the system in the same way it was realised dur-
ing model construction.

A general cognitive architecture must support the three types of model gen-
eration:

Built-ins. The architecture must facilitate the injection of knowledge in the
development phase. Frequently it is an expensive process in both time
and effort, as it happens with expert systems, so facilitating this task is
a key factor in system fast development and low cost. Handling explicit
knowledge and using ontologies, together with encapsulation and ho-
mogeneity help facilitate the task. Injection of new built-in models once
the system is already in its operative life conveys difficult integration
issues and may hazard system’s cohesion in large and complex appli-
cations.

Learning. Any mechanism to incorporate new knowledge improves system’s
performance and adaptivity. Learning from experience, in addition, in-
creases system’s autonomy also in the sense that the system does not
need external intervention to generate the new models.

Cultural. These mechanisms are the alternative to injecting built-in models
during lifetime and avoid the problem of integrability and ease the task
for the engineers injecting the knowledge by moving the responsibility
for that to the system. They also facilitate model sharing between differ-
ent systems without human intervention. To support cultural mecha-
nisms for model generation, the architecture must provide mechanisms
to communicate with other cognitive systems. Adequate inputs percep-
tion mechanisms for communication inputs and specially a common
ontology are crucial. Besides, cultural model generation needs sup-
port from learning for model the system to internalise the models, make
them of its own, by application-model tuning cycles.

Anticipatory behaviour and reactive control

In 25 it was stated the need for predictive abilities for planning and antici-
patory behaviour, and also the unavoidable need for fast feedback loops to
keep operation as close as possible to the specification in real-time.

Intuitively, predictive models and planning capacity is related to the poten-
tially instantiated quantities of the GCS, and reactive control to instantiated
quantities. A cognitive architecture should be able to concurrently operate
with both types of quantities so as planning and other deliberative operations
do not prevent reactive behaviour and obtain maximal timely performance.
This is critical for the cognitive architecture meeting real-time requirements.
For example, in a mobile robotics application complex path planning algo-
rithm cannot monopolise computational resources and prevent execution of
fast obstacle avoidance routines.
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5.3.6 Objectives and awareness

Intelligent systems operation must be keep convergent to its objectives. Ad-
equate architecture design must guarantee structural directiveness. Archi-
tectural patterns of operation must prevent the system from departure from
its core objectives. For example, the system must not engage in learning or
reflection processes if that deviates it from meeting runtime objectives; this
must be architecturally guaranteed.

Besides, the architecture must provide purposive directiveness. It has to sup-
port explicit representation of objectives so as to be able to evaluate interme-
diate objectives that change during system operation.

5.3.7 Attention

Attentional mechanisms are necessary for a cognitive architecture to be ap-
plied in real physical systems with limited resources. They must be architec-
turally provided but directed by explicit application-specific knowledge so
as to be reusable.

The sensory limitation constraint relates to the bounded coupling system-
environment. At each instant of time this coupling contains only a limited
amount of quantities and elements from the environment, leaving out of it
others that could be of interest for the system. For example, in a mobile robot
provided with a camera the visual coupling between the system and the en-
vironment is limited to that part of the scene that fits into the pixel array.

Some systems may be able to modify this coupling at each instant of time. For
example, in mobile robotic system with an LCD camera, the camera could be
oriented by a servo, or by the movement of the robot.

Both top-down and bottom-up attentional mechanisms can be analysed as a
matching of patterns in the input and the system’s objectives. We only have
to take into a account that all biological systems have a root objective related
to survivability, and that a derivated objective of keeping internal models up-
dated could be stated.

Firstly we will analyse the bottom-up attentional mechanisms. The occur-
rence of an unexpected event affects the system through the change of the
value of some quantities shared with the environment. This change of a part
of the coupling system-environment generates a new pattern in the percep-
tions that update the models. This pattern is evaluated in the frame of the ob-
jectives of the system and new values are assigned to the elements in the mod-
els, redirecting the awareness processes of prediction and postdiction and the
generation of actions, besides other conceptual operation. This change in the
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Figure 5.3: Bottom-up attentional mechanisms

value assignment is greater if the system had not anticipated the new entering
perceptions through model prediction. Cognitive resources are thus reorgan-
ised together with the physical ones, as a result of the grounding of the first
ones. For example, perceptive processes change their references to address
the new modelling requirements, and action is generated so as to direct the
sensory resources accordingly. Therefore the coupling with the environment
may change as a result of the whole process. This cycle may be wired in the
system: it could be pre-wired or it could get to it by reinforcement learning,
as it occurs in biological systems. In this case the generation of actions occurs
directly from the straightforward assignment of value in the models, without
the intervention of the awareness mechanisms, which anyway could occur
concurrently together with other deliberative processes.

On the other hand, the top-down mechanisms results from awareness requir-
ing further modelling. The cognitive subsystem, when involved in gener-
ation of meaning from prediction and postdiction in the purchase of some
objective may result in the activation of more objectives and the instantiation
of more conceptual quantities in the form of models and awareness processes
over them. Since the conceptual resources are limited, there would be a com-
peting process for them which will be resolved by the value associated to
each cognitive function. It could also occur that several of the awareness pro-
cesses competed for establishing different referent to the perception process,
the situation will be resolved the same way. In the end, as in the bottom-up
mechanism of attention, the sensory resources could need to be redirected to
change the system-environment coupling.
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Chapter 6

Analysis of Three Reference
Architectures
In this chapter three of the historically most representative cognitive archi-
tectures will be analysed and evaluated with the theoretical framework and
the criteria described in the previous chapters. Their suitability and compli-
ance with the requirements for developing scalable self-aware cognitive con-
trol systems will be this way assessed, and their flaws and missing aspects
pointed out.

We have chosen the architectures so as to present an example of each one of
the main objectives cognitive architectures are intended for: ACT-R to pro-
vide a computational theory of human mind, Soar as a computational theory
of general intelligence and problem-solving, and RCS as a theory and refer-
ence model for designing intelligent control systems. The three of them share
two characteristics that make them appropriate to be the subject of our analy-
sis: firstly, they address the problem of general intelligence, will it be human
or not, and not that of concrete mechanisms or functionality considered to
belong to intelligence, such as inference mechanisms, or attention; and sec-
ondly they are biologically inspired somewhat, so analysing their compliance
with our proposed principles, also biologically inspired, makes sense.

A key factor for selecting them is also that they are still active lines of research
with a long time evolution on their backs, since the early 80’s and backwards.
They are tools actively and broadly used at present in the research commu-
nity, especially ACT-R and Soar in AI and psychology.

However, a critical factor for selecting these architectures to analyse is be-
cause belong to the limited group of cognitive architectures that have been
used in the development of real applications, such as ATC-R in the Cognitive
Tutors for Mathematics 1, used in thousands of schools across the USA, and

1www.carnegielearning.com
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Soar in the products of Soar Technology Inc.2. RCS in its turn has been ap-
plied by the NIST for developing control systems in many domains: UGVs,
space exploration (NASREM3), manufacturing (ISAM4).

The analysis of the architectures will be realised from the perspective of its
application to a real system in operation.

6.1 RCS

6.1.1 General Description

RCS is a cognitive architecture in the sense that it can be used to build artifi-
cial intelligent systems, but in fact it has a broader scope, being a Reference
Model Architecture, suitable for many software-intensive, real-time control
problem domains.

RCS defines a control model based on a hierarchy of nodes. All the control
nodes at all levels share a generic node model. The different levels of the
hierarchy of a RCS architecture represent different levels of resolution. This
means that going up in the hierarchy implies loss of detail of representa-
tion ad broader scopes both in space and time together with a higher level
of abstraction 6.1.1. The lower level in the RCS hierarchy is connected to
the sensors and actuators of the system. The nodes are interconnected both
vertically through the levels and horizontally within the same level via a com-
munication system.

Here we will refer to the 4D/RCS vision [Albus et al., 2002], being a version
of RCS for Unmanned vehicle systems, a common field of application of cog-
nitive architectures and thus a good framework to compare them.

RCS Node

The RCS node is an organisational unit of a RCS system that processes sen-
sory information, computes values, maintains a world model, generates pre-
dictions, formulates plans, and executes tasks. The RCS node is composed
of the following modules: a sensory processing module (SP), a world modelling
module (WM) together a behaviour generation module (BG) and a value judge-
ment module (VJ). Associated with each node there is also a knowledge database
(KD). Figure 6.1.1 illustrates the elements and their relations within the node.

Queries and task status are communicated from BG modules to WM mod-

2www.soartech.com
3NASA/NBS Standard Reference Model for Telerobot Control Systems Architecture
4A Reference Model Architecture for Intelligent Manufacturing Systems
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Df. Intelligent super~sed-autonomy controllers are controllers capable of accepti~g 

commands from hzlman s ~~pen7isors and executing those commafzds with little or nu 

further inpfit from humans in unstructfired a ~ d  often hostile environments. 

An intelligent, supervised-autonomy controller is intelligent in that it is capable of 
executing its assigned mission with or without direct communication from a human supervisor. 

It is supervised in that it responds to commands from superiors with discipline in response to 
established rules of engagement as would any well disciplined human soldier. It is autonomous 

in that it is capable of formulating plans and coordinating with other intelligent agents in the 

execution of mission assignments. Environments in which UGVs with supervised-autonomy 

controllers are required to operate include wban warfare zones? rural battlefields, mountains? 

woods, farrnlands, or desert tesrain, as well as all kinds of weather during day or night. 

1 SENSORS AND ACTUATORS 

Figure 5. A 4D/FtCS reference model architecture for an individual vehicle. Processing nodes, RCS-NODES, 

are organized such that the behavior generation (BG) processes form a command tree. Information in the 

knowledge database (KD) is shared between world modeling (WM) processes in nodes above, below, and at the 

same level within the same subtree. KD structures ase not shown in this figure, On the right, ase examples of the 

functional characteristics of the behavior generation (BG) processes at each level. On the left, are examples of the 

scale of maps generated by the sensory processing (SP) processes and populated by the WM in the KR knowledge 

database at each level. Sensory data paths flowing up the hieraschy typically form a graph, not a tree, Value 

judgment (VJ) processes are hidden behind WM processes. A control loop may be closed at every node. An 
operator interface may provide input to, and obtain output kom, processes in every node. 

In Figure 5, each node consists of a behavior generation (BG), world modeling (WM), 
and sensory processing (SP)? and knowledge database (D) (not shown in Figure 5). Most 

nodes also contain a value judgment (VJ) process (hidden behind the WM process in Figure 5). 
Each of the nodes can therefore function as an intelligent controller. An operator interface may 

access processes in all nodes at all levels. 

Figure 6.1: Example of a RCS hierarchy from [Albus et al., 2002], in which there can
be appreciated the different resolution levels

ules. Retrievals of information are communicated from WM modules back
to the BG modules making the queries. Predicted sensory data is commu-
nicated from WM modules to SP modules. Updates to the world model are
communicated from SP to WM modules. Observed entities, events, and sit-
uations are communicated from SP to VJ modules. Values assigned to the
world model representations of these entities, events, and situations are com-
municated from VJ to WM modules. Hypothesised plans are communicated
from BG to WM modules. Results are communicated from WM to VJ mod-
ules. Evaluations are communicated from VJ modules back to the BG mod-
ules that hypothesised the plans.

Below we will describe each of these elements.

Sensory Processing

The function of the SP module is perception as it is understood in this project.
It performs several processing actions on sensory inputs from the SP module
of the immediately inferior node, such as filtering, windowing, grouping and
classification. This way, the SP module extracts useful information from the
sensory input stream so as the WM keep updated the world model in the KD.
It also processes the information to adapt it to the representational level of the
superior node and feeds the information to it.

World Modelling

World modelling is a set of processes that construct and maintain a world
model (a representation of the world outside the system) stored in the KD to
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Figure 6.2: Functional structure of a RCS node

support the SP and BG modules. The functions of the WM are:

1. Maintenance and updating of information in the KD.

2. Prediction of expected sensory inputs.

3. Simulation to support the planning functions of the BG (“What if?”
queries)

4. Response to queries for information required by other processes.

Value Judgment 
Functions 1 1  B i? 

Task 
Planner 

+ f 
Task 
Executor 

1 
> 
& 
u 
Ws 

Figure 17. World Modeling (WM) and Value Judgment (VJ) processes. WM and VJ processes 
typically exist in every node of the 4D/RCS architecture. 

4.3 Value Judgment 

As defined in section 3, the Value Judgment (VJ) process is a functional process that computes 

value, estimates importance, assesses reliability, and generates reward and punishment. Figure 

17 also shows a block diagram of the functional operations and data flow pathways for 

interactions between world modeling and value judgment. VJ processes evaluate plan results 
simulated by the WM processes. VJ processes contain algorithms for the following: 

0 Computing the cost, risk, and benefit of actions and plans 

0 Estimating the importance and value of objects, events, and situations 

0 Assessing the reliability of information 

0 Calculating the rewarding or punishing effects of perceived states and events. 

VJ processes compute the cost functions that enable intelligent behavioral choices. VJ 
processes define priorities, set limits on risk, and decide how aggressive or conservative a system 

should be in pursuing its behavioral goals. VJ processes assign values to objects, events, and 

Figure 6.3: World Modelling and Value Judgement
processes (from [Albus et al., 2002])
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Value Judgement

Value judgement is a process that computes value, determines importance,
assesses reliability and generates reward and punishment, in order to support
the functioning of the rest of the modules in the node. Its functions can be
synthesised as:

• Computing the cost, risk, and benefits of actions and plans.

• Estimating the importance and value of objects, events and situations.

• Assessing the reliability of information.

• Calculating the rewarding or punishing effects of perceived states and
events.

Knowledge Database

The Knowledge Database consists of data structures with both static and dy-
namic information that form a model of the world. Pointers are relationships
between entities, events, images and maps. Pointers form syntactic, seman-
tic, casual and situational networks provide symbol grounding when link
symbolic data to regions in images and maps.

Knowledge database is divided is three parts:

immediate experience: iconic representations5, current sensors values, etc.

short-term memory: symbolic representations, pointers, queues of recent events,
various levels os resolution.

long-term memory: symbolic representations of known things to the system.

Behaviour Generation

Behaviour generation uses task knowledge, skills, and abilities along with
knowledge in the world model to plan and control appropriate behavior in
the pursuit of goals. Behavior generation accepts task commands from the
superior node with goals and priorities, fomulates and/or selects plans and
controls action, generating task commands for its inferior nodes. Behavior
generation develops or selects plans by using a priori task knowledge and
value judgment functions combined with real-time infoimation provided by
world modelling to find the best assignment of tools and resources to agents,
and to find the best schedule of actions (i.e. , the most efficient plan to get
from an anticipated starting state to a goal state). Behaviour generation con-
trols action by both feed forward actions and by feedback error compensa-
tion. Goals, feedback, and feed forward signals are combined in a control

5iconic representation: 2D array representing and image. Each element contains the value
of a measured variable: colour, light intensity, elevation...
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law.

The BG module operates as follows (see figure 6.1.1): task command is re-
ceived from BG modules at higher levels. Within the Planner it is decom-
posed into distinct jobs to be sent to the next inferiors BG modules by a Job
Assignor, which also assigns resources. Then a set of Schedulers computes a
schedule for the jobs to complete the plan. Before being executed the plan is
sent to WM to simulate and evaluated by VJ. Them a plan Selector selects the
best overall plan, which is then executed in the Executors. The Executors are
responsible for correcting errors between planned results and the evolution
ofthe world state reported by the WM.

RCS overall operation

Commands are communicated downward from supervisor BG modules in
one level to subordinate BG modules in the level below. Status reports are
communicated back upward through the world model from lower level sub-
ordinate BG modules to the upper level supervisor BG modules from which
commands were received. Observed entities, events, and situations detected
by SP modules at one level are communicated upward to SP modules at a
higher level. Predicted attributes of entities, events, and situations stored in
the WM modules at a higher level are communicated downward to lower
level WM modules. Output from the bottom level BG modules is communi-
cated to actuator drive mechanisms. Input to the bottom level SP modules is
communicated from sensors.

The specific configuration of the command tree is task dependent, and there-
fore not necessarily stationary in time. During operation, relationships be-
tween modules within and between layers of the hierarchy may be reconfig-
ured in order to accomplish different goals, priorities, and task requirements.
This means that any particular computational node, with its BG, WM, SP, and
VJ modules, may belong to one subsystem at one time and a different sub-
system a very short time later.

The interconnections between sensory processing, world modeling, and be-
havior generation close a reactive feedback control loop between sensory mea-
surements and commanded action.

The interconnections between behavior generation, world modeling, and value
judgment enable deliberative planning and reasoning about future actions.

The interconnections between sensory processing, world modeling, and value
judgement enable knowledge acquisition, situation evaluation, and learning.

Within sensory processing, observed input from sensors and lower level nodes
is compared with predictions generated by world modelling. Differences be-
tween observations and predictions is used by world modelling to update
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Figure 6.4: Internal structure of Behaviour Generation [Albus et al., 2002]

the knowledge database. This can implement recursive estimation processes
such as Kalman filtering. Within behavior generation, goals from higher
levels are compared with the state of the world as estimated in the knowl-
edge database. Behavior generation typically involve planning and execu-
tion functions. Differences between goals and estimated states are used to
generate action. Information in the knowledge database of each node can be
exchanged with peer nodes for purposes of synchronization and information
sharing.
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6.1.2 Architecture Evaluation

Organisation

In a RCS system the number of nodes and their layering are established in de-
sign time, so they correspond to the system’s real structure and do not change
during operation. However, the connections between nodes for a mission,
that is, the command tree structure, is determined by the system itself at run-
time. Since the command tree hold for long periods of time –a mission or a
task– it corresponds to the hypothetic structure, allowing the system to adapt
to different missions.
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Figure 6.5: RCS layering and command tree

The structure and global operation on the node and each of its modules cor-
respond to the real structure. However, the algorithms used within them are
not defined in the architecture. For example the scheduling policies in BG, or
the filtering and masking algorithms in the SP can be implemented so as the
system may change between several options for each of them depending on
the current mission, based on evaluation realised by VJ modules. The algo-
rithms used by VJ modules are not defined too, but since the architecture do
not provide any systematic approach to implement them so as to be variable,
thus standing for hypothetic structure, we shall consider them predefined at
design time and allocate them as real structure.

The parameters for algorithms in all the modules change their value during
operation so they correspond to program.
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In relation to the knowledge-models handled by the architecture, the imme-
diate experience and short-term memory stand for the program, since entities
there are continuously appearing and disappearing or being modified. The
long.term memory stands for the hypothetic structure because it holds for
longer periods of operation.

PROGRAM

HYPOTHETIC

STRUCTURE

REAL

STRUCTURE

command 

tree

number of 

nodes

node 

structure and 

operation

long-term 

memory

short-term 

memory

immediate 

experiencey

parameters of the 

modules within each 

node

modules 

structure and 

operation

number of 

executors in a BG

layering
Value 

Judgement 

algorithms

Figure 6.6: Organisation of the RCS architecture

Encapsulation

RCS encapsulates control according to the abstraction level in nodes. The
architecture comes with an engineering methodology to systematically ad-
dress the encapsulation of control and cognitive functions. Interfaces be-
tween nodes are clearly defined: bottom-up through SP modules and top-
down through BG modules.

Communications also occurs horizontally between nodes in a command tree
–performing a mission collaboratively– and vertically between World Mod-
elling modules from higher to inferior nodes to refine knowledge based on
predictions and stored information. These communications are not architec-
turally defined.

Modelling

In RCS the World Model module of each node provides explicit model-based
cognition, since it enables exploitation of models of both the controlled sys-
tem and its environment. The World Modelling module works together with
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a Knowledge Database where it stores modelling information, so RCS is com-
pliant with Principle 1, equating declarative knowledge with models.

Procedural knowledge, notwithstanding, is mostly implicit in RCS, or if ex-
plicit, it is not shared between modules because it is inside the SP and BG
modules and not in the KD to be shared.

Built-in models would depend on the current implementation of the RCS ar-
chitecture, but they will always be present, since these implicit models will
be embedded in sensory, control and action algorithms. However, preconfig-
ured models are also embedded in the way the nodes are connected in the
implementation of the RCS architecture. Besides, there can always be built-in
explicit models too.

Learning is not implemented in RCS architecture, but there are some imple-
mentations of RCS controllers in which learning has been implemented. This
is the case of [Albus et al., 2006], learning was embedded within the elements
of each RCS node. Cultural mechanisms are not provided by RCS.

Anticipatory behaviour and reactive control

Predictive models One of the four functions of RCS module WM is answer-
ing “What if?” questions demanded by the planners of the BG modules. For
performing this task, WM simulates the model with the inputs proposed by
the BG modules and obtains the expected results, which then are evaluated
by VJ modules, and that evaluation is sent back to the BG planner.Therefore,
in RCS models are simulation (prediction) oriented.

WM modules also generate predictions of expected sensory input, thus en-
abling part of the process that generate perception in SP modules by directing
the process to referents [López, 2007].

Reactive control As it has been mentioned in the description of the RCS ar-
chitecture, at each node a feedback control loop is closed between the SP, the
WM and the executors of the BG.

In conclussion, at each node in a command tree a reactive control loop runs
concurrently with planning and other cognitive operation.

Unified cognitive action generation

One of the current problems in nowadays complex control systems, which
are usually distributed and involve different resolutions in space, time and
task, is maintaining system cohesion and model coherence across such a wide

ASLab.org / Consciosusness in Cognitive Architectures / R-2008-004v 1.0 Final 93 of 131



range of scopes.

RCS hierarchical structure of nodes provides adequate organisation through
different levels of spatial and time scope, together with a dynamic command
tree that can vary depending on the current task. The proper node’s struc-
ture is what enables coherence between layers: SP module of nodes provide
adequately classified sensory output for the input of SP modules of immedi-
ate superior nodes, task command output from executors in the BG modules
of superior nodes becomes task command input for the Task Decomposition
Planner of the BG modules in the inferior layer.

Perception

In an RCS node perception is realised between the co-ordinated operation
of the Sensory Processing and the World Modelling modules. Perception
is strictly model-driven as stated in the Principle 5: expectations from WM
module drive the operation of the SP module at each node.

Awareness

In RCS awareness is supported in the sense of generating meaning from per-
ceptions. The value judgment module process the perceptions coming from
SP to KD modules and assigns them value in terms of confidence, usefulness,
coherence etc, in order to integrate them in the knowledge database and up-
date the models.

Attention

In RCS the top-down attention mechanism is formed by BG, WM and SP
modules. BG modules, which direct the mechanism, request information
needed for the current task from the SP modules, directing SP and WM mod-
ules to direct their processing towards the elements more relevant for achiev-
ing the goal of the current task. BG requests cause SP modules to filter the
sensory data with the appropriate masks and filters to select the relevant in-
coming information. The request by BG modules also causes the WM to select
which worl model to use for prediction, as well as which prediction algorithm
to apply.

Bottom up attentional mechanism is driven by the comparison at SP mod-
ules between expected sensory input generated by WM modules and what
actually enters SP modules. Error signals are processed at lower levels first.
Control laws in lower level behavior generation processes generate corrective
actions designed to correct the errors and bring the process back to the plan.
However, if low level reactive control laws are incapable of correcting the
differences between expectations and observations, errors filter up to higher
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levels where plans may be revised and goals restructured. The lower levels
are thus the first to compute

Missing aspects

Self is the key aspect that RCS fails to address, in an otherwise suitable ar-
chitecture to develop cognitive controllers. The absence of explicit represen-
tation of lifetime objectives and the lack of self-modelling prevent a system
built with RCS from being able to monitorise its own cognitive operation and
modify it.

The hierarchical organisation with RCS, despite proving really useful for the
design of a lot of controllers in many domains, is a problem when trying to
use RCS to develop systems that are intended a priori for isolate operation
but also needed to be integrable in an heterarchical relationship with other
systems if needed. This could be the case for example of the control systems
of two electrical networks interconnected.

6.2 Soar

6.2.1 General Description

Soar (which stands for State, Operator And Result) is a general cognitive ar-
chitecture for developing systems that exhibit intelligent behavior. It is de-
fined as general’ by its creators so as to emphasize that Soar do not intends
to exclusively address the problem of human intelligence, but that of intelli-
gence in general. The Soar project was started at Carnegie Mellon University
by Newell, Laird and Rosenbloom as a testbed for Newell’s theories of cog-
nition.

Soar is designed based on the hypothesis that all deliberate goal-oriented be-
havior can be cast as the selection and application of operators to a state. A
state is a representation of the current problem-solving situation; an operator
transforms a state (makes changes to the representation); and a goal is a de-
sired outcome of the problem-solving activity.

The functioning of Soar is based on a sequence of actions which is called the
Execution Cycle and is running continuously. Soar’s memory is a production
system that was modelled after OPS-5. It has three separate memories: work-
ing memory, which represent current state, results of intermediate inferences,
active goals and active operators, production memory where Soar stores long-
term knowledge mainly procedural, and preference memory.
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Functioning of Soar

Soar’s Execution Cycle has the following phases (in the case of not occuring
an impasse and subsequent substates):

1. Input: New sensory data enters the working memory.

2. Proposal: productions that match the current state fire proposing oper-
ators.

3. Operator comparison: All resulting operators are compared and as-
signed a collection of preferences, which are absolute considerations
on the operator (’acceptable’, ’reject’, etc.) or relative considerations,
comparing a particular operator with the others (’best’, ’worse’, etc.)
All operators which have an ’acceptable’ preference are candidate op-
erators, that is: are eligible for being the current operator.

4. Decision: one of the candidate operators are selected, which becomes
the current operator, or an impasse is detected and a new state is cre-
ated.

5. Application: productions fire to apply the operator. The action it rep-
resents is executed, making the specified changes to the environment.
This changes may be direct to the state in working memory, when Soar
is “thinking”, or indirect, by changing the output command. In this
case the resultant changes in the state have to be updated from input.
Also, a Soar program may maintain an internal model of how it expects
an external operator will modify the world; if so, the operator must
update the internal model (which is substructure of the state).

6. Output: output commands are sent to the external environment.
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Working memory

Soar represents its knowledge of the current situation in working memory.
It is stored as basic units of information called working memory elements
(WME), which consist of an identifier-attribute-value. All WME’s sharing its
identifier are an object. Objects stand for data from sensors, results of interme-
diate inferences, active goals, operator, and any other entity of the problem.
WME’s are also called augmentations because they provide more informa-
tion about the object.

Objects in working memory are linked to other objects. The value of a WME
may be an identifier of another object. Thus there can be hierarchical or heter-
archical relationships between objects. The attribute of an object is usually a
constant, because it is just a label to distinguish one link in working memory
from another. Working memory is a set, meaning that there can not be two
elements with the same identifier-attribute-value triple.

The elements in working memory come from one of four sources:

1. The actions of productions create most working memory elements. How-
ever they must not destroy or modify the working memory elements
created by the decision procedure or the I/O system (described below).

2. The decision procedure automatically creates some special state aug-
mentations (type, superstate, impasse, ...) when a state is created. States
are created during initialization (the first state) or because of an impasse
(a substate).

3. The decision procedure creates the operator augmentation of the state
based on preferences. This records the selection of the current operator.

4. The I/O system creates working memory elements on the input-link for
sensory data.

Production memory

The productions contained in Production memory specify all patterns of ac-
tion Soar can perform. They represent Soar long-term knowledge. Each pro-
duction consists of a set of conditions and a set of actions. If the conditions of a
production match working memory, the production fires, and the actions are
performed, making changes to the working memory.

The conditions of a production typically refer to presence or absence of ob-
jects in working memory. Productions may fulfil one, and only one of these
roles:

1. Operator proposal
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2.3. PRODUCTIONS: LONG-TERM KNOWLEDGE 17
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Figure 2.14: An abstract view of production memory. The productions are not related to
one another.

This is not the literal syntax of productions, but a simplification. The actual syntax
is presented in Chapter 3.

The conditions of a production may also specify the absence of patterns in working
memory. For example, the conditions could also specify that “block A is not red”
or “there are no red blocks on the table”. But since these are not needed for our
example production, there are no examples of negated conditions for now.

The order of the conditions of a production do not matter to Soar except that the
first condition must directly test the state. Internally, Soar will reorder the conditions
so that the matching process can be more efficient. This is a mechanical detail that
need not concern most users. However, you may print your productions to the screen
or save them in a file; if they are not in the order that you expected them to be, it is
likely that the conditions have been reordered by Soar.

2.3.1.1 Variables in productions and multiple instantiations

In the example production above, the names of the blocks are “hardcoded”, that
is, they are named specifically. In Soar productions, variables are used so that a
production can apply to a wider range of situations.

The variables are bound to specific symbols in working memory elements by Soar’s
matching process. A production along with a specific and consistent set of variable

Figure 6.8: Abstract view of Production memory

2. Operator comparison

3. Operator selection

4. Operator application

5. State elaboration: new descriptions of the current situation can be done
through monotonic inferences

Preference memory

The selection of the current operator is determined by the preferences stores
in preference memory. Preferences are suggestions or imperatives about the
current operator, or information about how suggested operators compare to
others.

For an operator to be selected, there will be at least one preference for it,
specifically, a preference to say that the value is a candidate for the opera-
tor attribute of a state (this is done with either an ”acceptable” or ”require”
preference). There may also be others, for example to say that the value is
”best”.

Episodic and Semantic memory

Traditionally all long-term knowledge in Soar was represented as produc-
tions, which are explicit procedural knowledge but which also encode declar-
ative knowledge implicitly. However, recently separate episodic and seman-
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tic memories have been added. Episodic memory hold a history of previous
states, while semantic memory contains facts or ’beliefs’, which are structures
of WME.

Blocks-World Example

As a brief depiction of the functioning of SOAR a simplified version of the
Blocks-World example is offered. Instead of a three block world, a two block
world will be considered. The initial state has two blocks, A and B, on a table.
The goal is to place block A on top of block B, 6.9 The parting situation of the
Working Memory is that of 6.10 without the boxes labelled O3 and O4.

72 Chapter 10. SOAR

Objects in WM are formed by working memory elements (WME). A WME
is a set of identifier-attribute-value. Thus, it represents the minimal quanity of
information. An object is the set of all WME which share the same identifier.

10.1.3 Block-World Example

As a brief depiction of the functioning of SOAR a simplified version of the Blocks-
World example is offered. Instead of a three block world, a two block world will
be considered.

The initial state has two blocks, A and B, on a table. The goal is to place block
A on top of block B, fig. 10.2. The parting situation of the Working Memory is
that of fig. 10.3 without the boxes labelled O3 and O4.

B

A

T1

A B T1

Figure 10.2: The Blocks-World. Above, the initial situation:
blocks A and B on a table (labelled T1.) Below, the desired
situation, block a on top of block B.

In fig. 10.3, the lines of text inside each box are the WME; it can be observed
that every WME within the same box share the same identifier. Each box repre-
sents an object.

The figure represents the state of WM after the operator selection has been
completed. There are two candidate operators, O3 and O4, and only one of them,
O4, is the current operator.

28th May 2002

Figure 6.9: The Blocks-World. Above, the initial situation: blocks A and B on
a table (labelled T1.) Below, the desired situation, block a on top of block B.

In 6.10, the lines of text inside each box are the WME; it can be observed that
every WME within the same box share the same identifier. Each box rep-
resents an object. The figure represents the state of WM after the operator
selection has been completed. There are two candidate operators, O3 and
O4, and only one of them, O4, is the current operator.

10.2. Elements and Concepts of SOAR 73

S1

S1 is a state

S1 has a problem!space blocks

S1 has a thing B1

S1 has a thing B2

S1 has a thing T1

Si has an ontop O1

S1 has an ontop O2

S1 has operator O4

S1 has two proposed operators

O2

O2 has a top!block B2

O2 has a bottom block T1

O1

O1 has a top!block B1

O1 has a bottom block T1

T1 is a table

T1 is named table

T1 is clear

T1

B1 is a block

B1 is named A

B1 is clear

B1

B2 is a block

B2 is named B

B2 is clear

B2

O3 is named move!block

O3 has moving block B2

O3 has destination B1

+O3

O4 is named move!block

O4 has moving block B1

O4 has destination B2

+O4

Figure 10.3: Diagram showing the different elements in working mem-
ory. The lines of text are theWME, the boxes are objects. The next step to
the current state would be the application of operator O4.

10.2 Elements and Concepts of SOAR

10.2.1 Elements of SOAR

WorkingMemory (WM): WorkingMemory represents the short-termknowledge
of SOAR. It is formed by a representation of the actual state of the environ-
ment. Additionally, working elements of the different functions (fig. 10) of
SOAR also appear. The information is represented in theWorking Memory
as objects. These are “groups” of basic elements calledWorking Memory Ele-
ments, (WME). Each WME is a minimal unit of information, an attribute or
augmentation, which describes a particular characteristic of the object.

Production Memory (ProdM): Production Memory is the long-term knowledge
of SOAR. It is a representation of the general patterns of behaviour which
SOAR knows. Each pattern is called a Production.

Preference Memory (PrefM): It contains the different priorities and considera-
tions for each of the candiate operators considered for the current state by the
Knowledge Retrieval Functions.

28th May 2002

Figure 6.10: Diagram showing the different elements in working memory.
The lines of text are the WME, the boxes are objects. The next step to the
current state would be the application of operator O4.
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Impasses, Substates and Learning

As it has been mentioned in the decision procedure it can happen one of the
following possibilities: the available preferences suggest a single operator
(or several between which it can be selected randomly), the available pref-
erences suggest multiple operator and that ambiguity can not be resolved or
the available preferences do not suggest any operators. In this situation an
impasse has happened. There are four different impasses that can arise from
preference scheme:

Tie impasse - A tie impasse arises if the preferences do not distinguish be-
tween two or more operators with acceptable preferences.

Conflict impasse - A conflict impasse arises if at least two values have con-
flicting better or worse preferences (such as A is better than B and B is
better than A) for an operator.

Constraint-failure impasse - A constraint-failure impasse arises if there is
more than one required value for an operator, or if a value has both a
require and a prohibit preference.

No-change impasse - An operator no-change impasse occurs when either
a new operator is selected for the current state but no additional pro-
ductions match during the application phase, or a new operator is not
selected during the next decision phase.

Soar handles this by creating a new state (substate of the previous one) in
which the goal (subgoal from the point of view of the superstate) of the
problem-solving is to resolve the impasse. In the substate operators will be
proposed and selected through knowledge retrieval as in the normal way de-
scribed before. While problem solving in the subgoal it may happen that a
new impasse may occur, leading to new subgoals. Therefore it is possible for
Soar to have a stack of subgoals. Although problem solving will tend to focus
on the most recently created state, problem solving is active at all levels, and
productions that match at any level will fire.

In order to resolve impasses, subgoals must generate results that allow the
problem solving at higher levels to proceed. The results of a subgoal are the
working memory elements and preferences that were created in the substate,
and that are also linked directly or indirectly to a superstate (any superstate
in the stack).

An impasse is resolved when processing in a subgoal creates results that lead
to the selection of a new operator for the state where the impasse arose. When
an operator impasse is resolved, it means that Soar has, through problem
solving, gained access to knowledge that was not readily available before.
Therefore, when an impasse is resolved, Soar has an opportunity to learn, by
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summarizing and generalising the processing in the substate.

Soar’s learning mechanism is called chunking; it attempts to create a new
production, called a chunk. The conditions of the chunk are the elements of
the state that (through some chain of production firings) allowed the impasse
to be resolved; the action of the production is the working memory element
or preference that resolved the impasse (the result of the impasse). The con-
ditions and action are variablized so that this new production may match in
a similar situation in the future and prevent an impasse from arising.

6.2.2 Architecture Evaluation

Organisation

In Soar the the real structure is formed by the memory structure, the syntax
of productions, preferences and WME’s, the executive cycle, the knowledge
retrieval functions and the chunking procedure. The correspondence of each
element of Soar to the different parts of the organisation is showed in 6.2.2.

PROGRAM

HYPOTHETIC

STRUCTURE

REAL

STRUCTURE

Working 

memory

Production 

memory

Preference 

memory

chunking

knowledge 

retrieval

functions

Executive 

Cycle

memory 

structure

object 

semantics

preference 

syntax

production 

syntax

WME

syntax

Figure 6.11: Soar organisation

Conceptual operation and grounding

Soar is an architecture that mainly addresses the conceptual operation of ab-
stract and potentially instantiated variables. Grounding is left to the imple-
mentation of input and output interfaces. In Soar operation there is not dis-
tinction between potentially instantiated quantities and actually instantiated
ones. The single difference, which do not affect Soar internal operation upon
them, is that if the quantities are instantiated may be modified at the begin-
ning of the Executive cycle by external input. They are also grounded at the
end of the cycle, but that do not affect internal operation at all.
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Knowledge Representation and Modelling

Soar encodes knowledge in three formats: productions, WMEs and pref-
erences. Despite new memories have been recently added –semantic and
episodic–, so as to augment the architecture by providing support for explicit
declarative knowledge, the encoding of it rests the same: only symbolic. Soar
does not support other kinds of representation such as maps, sensory pat-
terns or iconic representations.

Model generation

Soar models in the form of objects in WM and productions can be injected
by the users through a communication interface during operation as well
as being built-in. The architecture also provides learning with chunking,
which provides autonomous increasing of procedural knowledge. A some-
what more implicit and connectionist-like learning occurs with preferences
modification. Soar do not provide cultural mechanisms.

Unified Cognitive action generation

In Soar knowledge homogeneity in WMEs and production structure allows
for model coherence. In addition, model cohesion is granted because work-
ing memory is a set: there can never be two WMEs at the same time that
have the same identifier-attribute-value triple. This do not apply to prefer-
ences, but this situation do not affect system’s cohesion: preferences are not
objective knowledge, they are partial evaluations of what is best. Thanks to
preference conflict Soar can learn and improve its knowledge through im-
passes.

Anticipatory behaviour and reactive control

Soar presents a serious bottleneck: only one operator is applied in each ex-
ecution cycle. This architecturally prevents from planning or ’thinking’ and
operating over the environment through the output interface concurrently. In
addition, grounding –output– only occurs at the end of the execution cycle.
Soar is therefore not an appropriate architecture for real-time applications.

Perception

Soar only addresses a part of the perceptive process, leaving the initial part
to the interface implemented externally to provide input to its input func-
tion. Input function adds new WMEs to the working memory only at the
beginning of the execution cycle, and the perceptive operation in each cycle
concludes when productions fire due to the new state in the working mem-
ory.

102 of 131 R-2008-004 v 1.0 Final / Consciosusness in Cognitive Architectures / ASLab.org



Objectives and awareness

Soar handles evaluation and meaning generation through preferences. They
are attributes of operations with a limited semantics based on logic opera-
tions. Preferences are modified due to productions firing. The mechanism is
fixed and the system cannot manipulate it. The evaluation is also limited to
operators, and do not apply to other kind of knowledge within Soar.

Soar can also handle explicit goals by defining them as attributes of current
state and rules in production memory that check the state and recognise
when the goal is achieved. Subgoaling structure as the objective structure
described in 46 can be generated by succesive impasses.

Missing aspects

Soar architecture address mainly the deliberative part of a cognitive system,
not providing fine grained design patterns for perception and grounding.

Despite providing a mechanism to generate value through preferences, it is
very limited by semantics, and the evaluation mechanism only actuates over
the contents and not the cognitive operation of Soar. Besides, there is no
modelling of the functioning of Soar’s cognitive operation so the architecture
is lacking self-awareness or consciousness.

Knowledge is symbolic and the problem of symbol grounding is left to the
specific implementation of the interfaces for the input and output functions
for each application.

6.3 ACT-R

6.3.1 General Description

ACT-R (Adaptive Control of Thought–Rational) is a cognitive architecture
mainly developed by John Robert Anderson at Carnegie Mellon University,
which is also a theory about how human cognition works. Most of the ACT-
R basic assumptions are also inspired by the progresses of cognitive neuro-
science, and, in fact, ACT-R can be seen and described as a way of specifying
how the brain itself is organized in a way that enables individual processing
modules to produce cognition.

Like other influential cognitive architectures, the ACT-R theory has a compu-
tational implementation as an interpreter of a special coding language. The
interpreter itself is written in Lisp, and might be loaded into any of the most
common distributions of the Lisp language.
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Like a programming language, ACT-R is a framework: for different tasks
(e.g., Tower of Hanoi, memory for text or for list of words, language compre-
hension, communication, aircraft controlling), researchers create ”models”
(i.e., programs) in ACT-R. These models reflect the modelers’ assumptions
about the task within the ACT-R view of cognition. The model might then
be run and afterwards tested by comparing the results of the model with the
results of people doing the same tasks. By ”results” we mean the traditional
measures of cognitive psychology:

• time to perform the task

• accuracy in the task

• neurological data such as those obtained from FMRI

ACT-R has been used successfully to create models in domains such as:

• Learning and Memory.

• Higher level cognition, Problem solving and Decision making.

• Natural language, including syntactic parsing, semantic processing and
language generation.

• Perception and Attention.

Beside its scientific application in cognitive psychology, ACT-R has been used
in other, more application-oriented oriented domains.

• Human-computer interaction to produce user models that can assess
different computer interfaces.

• Education, where ACT-R-based cognitive tutoring systems try to ”guess”
the difficulties that students may have and provide focused help.

• Computer-generated forces to provide cognitive agents that inhabit train-
ing environments.

Achitectural Overview

ACT-R architecture consists of a set of modules, each devoted to processing a
different kind of information. Coordination in the behaviour of these mod-
ules is achieved through a central production system , constituted by the pro-
cedural memory and a pattern matcher. This central production system is not
sensitive to most of the activity of these modules but rather can only respond
to the limited amount of information that is stored in the buffers of the mod-
ules.
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ACT-R’s most important assumption is that human knowledge can be di-
vided into two irreducible kinds of representations: declarative and procedu-
ral. Within the ACT-R code, declarative knowledge is represented in form of
chunks, which are schema-like structures, consisting of an isa slot specifying
their category and some number of additional slots encoding their contents

Modules

There are two types of modules:

Perceptual-motor modules , which take care of the interface with the real
world (i.e., with a simulation of the real world). The most well-developed
perceptual-motor modules in ACT-R are the visual and the motor mod-
ules.

Memory modules . There are two kinds of memory modules in ACT-R:

Declarative memory , consisting of facts such as “a dog is a mammal”,
“Rome is a city”, or 1 + 2 = 3, encoded as chunks.

( fact3+4

isa             addition-fact

 addend1    three

 addend2    four

 sum           seven             )

Figure 6.12: Example of an ACT-r chunk

Procedural memory , made of productions. Productions represent knowl-
edge about how we do things: for instance, knowledge about how
to write the letter ’a’, about how to drive a car, or about how to
perform addition.

( p name

     Specification of buffer tests

  ==>

     Specification of buffer

      transformations    
)

condition part

delimiter

action part

Figure 6.13: Structure of an ACT-R production
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Buffers

ACT-R accesses all its modules through buffers. The only exception to this
rule is the procedural module, which stores and applies procedural knowl-
edge. It does not have an accessible buffer and is actually used to access other
module’s contents. For each module, a dedicated buffer serves as the inter-
face with that module. The contents of the buffers at a given moment in time
represents the state of ACT-R at that moment.

The goal buffer represents where the agent is in the task and preserves infor-
mation across production cycles.

Pattern Matcher

The pattern matcher searches for a production that matches the current state
of the buffers. Only one such production can be executed at a given moment.
That production, when executed, can modify the buffers and thus change
the state of the system. Thus, in ACT-R cognition unfolds as a succession of
production firings.

ACT-R

Buffers

EXTERNAL WORLD

Intentional 
Module

Motor ModuleVisual Module

Declarative
memory

Visual Buffer Motor Buffer

Retrieval Buffer

Current Goal

Production
execution

Pattern
matching

Procedural
memory

Figure 6.14: ACT-R main elements and relations
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ACT-R Operation

The buffers in ACT-R hold representations in the form of chunks determined
by the external world and internal modules. In each cycle patterns in these
buffers are recognised, a production matching that pattern fires and its exe-
cution changes the state in the buffers, which are updated for the next cycle.

The architecture assumes a mixture of parallel and serial processing. Within
each module, there is a great deal of parallelism. For instance, the visual sys-
tem is simultaneously processing the whole visual field, and the declarative
system is executing a parallel search through many memories in response to
a retrieval request. Also, the processes within different modules can go on
in parallel and asynchronously. However, there are also two levels of serial
bottlenecks in the system. First, the content of any buffer is limited to a single
declarative unit of knowledge, a chunk. Thus, only a single memory can be
retrieved at a time or only a single object can be encoded from the visual field.
Second, only a single production is selected at each cycle to fire.

ACT-R is a hybrid cognitive architecture. Its symbolic structure is a produc-
tion system; the subsymbolic structure is represented by a set of massively
parallel processes that can be summarized by a number of mathematical
equations. The subsymbolic equations control many of the symbolic pro-
cesses. For instance, if several productions match the state of the buffers
(conflict), a subsymbolic utility equation estimates the relative cost and ben-
efit associated with each production and decides to select for execution the
production with the highest utility. Similarly, whether (or how fast) a fact
can be retrieved from declarative memory depends on subsymbolic activa-
tion equations for chink retrieval, which take into account the context and the
history of usage of that fact. Subsymbolic mechanisms are also responsible
for most learning processes in ACT-R.

ACT-R can learn new productions through composition. In the case two pro-
ductions may fire consecutively a new one can be created by collapsing the
previous two and embedding knowledge from declarative memory, which
would be that chunks in the buffers that matched the old productions.

6.3.2 Architecture Evaluation

Architecture Organisation

The correspondence between ACT-R elements and the different kinds of prop-
erties in GST system organisation is shown in figure 6.3.2. The content of the
buffers stands for the program: it gives the instantaneous behaviour of ACT-
R, whereas the content of the modules, i.e. productions and chunks, corre-
spond to the hypothetic structure since they hold for a whole activity of the
system. Memory structure, and encoding of productions and chunks, which
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are fixed, represent the real structure of ACT-R.

PROGRAM

HYPOTHETIC

STRUCTURE

REAL

STRUCTURE

production 

structure

chunk 

structure

utility values activation 

values

 activation

equation

 utility

equation

 content of 

modules

buffer 

contents

 modules

Figure 6.15: ACT-R’s elements correspondence to organisation

Conceptual operation and grounding

Conceptual operation an grounding considerations made about Soar stands
mainly the same for ACT-R. Internal ATC-R processes is mostly independent
from grounding, which occurs via perceptual-motors modules. The differ-
ence with Soar is that some of these modules have been developed, like the
vision and auditive modules for perception, and manual and speech module
for grounding. However, these modules are implemented for psychological
modelling of human capabilities, and not for a general purpose.

Encapsulation

ACT-R encapsulates its operation with modules and buffers. Modules only
interact with each other through the buffers.
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Model generation

ACT-R supports two forms of learning: at subsymbolic level, by tuning acti-
vations and utilities through experience, secondly by generation of new pro-
ductions through composition at symbolic level.

Unified cognitive action generation

Different models and knowledge encodings may be hold in each ACT-R mod-
ules, but for ACT-R to operate on them they are unified as chunks within
buffers.

Anticipatory behaviour and reactive control

ACT-R can plan and elaborate predictions by operating with any of its buffers
but the motor one, or any other that performs output functions. The opera-
tion is restricted by two limitations: the content of each buffer is limited to a
single chunk, and only one production fires at a time. This second bottleneck
constraints the capability to plan and close feedback loops concurrently, since
despite module operate in parallel, the loops are restricted by the bottlenecks
of buffers and the firing of a single production.

Awareness

ACT-R possesses implicit and explicit evaluation. Implicit evaluation is re-
alised by utility and activation equations, which represent ACT-R sub-symbolic
level, that is the connectionist part of the architecture. Explicit evaluation
is performed by productions recognising when the explicit goal in the goal
buffer matches the current state.

Attention

Attentional models have been developed with ACT-R for the Visual and Au-
ditory modules. They are specific sets of productions for focusing atten-
tion in the operation of these modules. Attention is not therefore architec-
turally driven but knowledge-driven. There is no possibility to direct atten-
tion within the proper production matcher, for example, which would in-
crease ACT-R performance in terms of time response.

6.4 Global assessment

Soar and ACT-R provide design patterns for some intelligent capabilities,
such as inference and learning, but these architectures miss to address the
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whole description of patterns and functional decomposition that an architec-
ture for building complex control systems has to provide, such as appropriate
I/O interfaces, distribution in computational separate components, etc. .

RCS seems a good methodology to address the construction of a whole con-
trol system, whereas ACT-R and Soar provide good tools to build the inner
operation of the upper nodes in a RCS hierarchy.

6.4.1 Conceptual operation and grounding

Soar and ACT-R architectures do not provide a general solution for ground-
ing conceptual operation. Dedicated modules or interfaces must be imple-
mented ad-hoc. In the other hand, RCS provides specific design patterns for
perception and grounding in a hierarchical manner.

6.4.2 Modelling

One of the most important issue a cognitive architecture must face when been
applied for large control systems that must operate in real-time conditions,
such as process plants, is maintaining a complete model of instant situation –
system state– and operate over it. Parallelism is critical for this. Let’s observe
how the studied architectures would perform in this situation, taking for ex-
ample a plant for producing cement, whose instantaneous state is formed by
thousands of variables and the behaviour modelled by thousands of rules
and/or equations.

Soar’s working memory would contain and incredibly huge amount of ob-
jects, to be matched against thousands of productions in each Execution Cy-
cle, which will be unpredictably long. ACT-R would have to match only the
contents of the buffers against the productions, which would remain a big
number. If the number of modules is low the frequency of each cycle will be
higher than Soar’s, but at the cost of holding a poorly representation of the
current situation. If we increased the number of modules, ACT-R would face
the same problem of Soar. RCS, by contrast, can maintain a large represen-
tation of the current state by distributing it between the nodes together with
operation on it. Parallelism, as mentioned before, is the key. One may claim
that for ACT-R and Soar the problem could be solved by splitting the core of
the production system into many of them. That is true, but neither Soar nor
ACT-R provide architectural support for that nor guidelines to address the
problems of integration and cohesion that would arise.

Model generation

The three architectures support built-ins model injection, although do not
address integrability issues that are to be cared of by the human operator.
They also present support for learning, at both symbolic and subsymbolic in
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ACT-R and RCS, and mainly symbolic in Soar. But what the three of them
fail to support are cultural mechanisms.

6.4.3 Awareness

Evaluation mechanisms, despite present in these architectures are not as com-
plete as required. ACT-R evaluation is mostly implicit in utilities for produc-
tions and activations for chunks. This presents the advantages of the con-
nectionist approach in terms of learning through parameter tuning, but it is
limited to evaluating the contents and not the cognitive operation itself. This
limitation also applies to Soar and its preferences. Both architectures also
support an explicit evaluation by matching the current state with the objec-
tives or goals. However this state only covers the representation of the extern
world or a simulation of it, and not the conceptual operation.

RCS distributes the evaluation among the nodes with the Value Judgement
module of each one. Perceptions, models and planned actions are evaluated
against the objectives at each level.

6.4.4 Missing aspects

The three approaches miss the main requirement of providing mechanisms
for the control system to engineer itself. None of them provides tools to en-
code knowledge about the architecture itself and exploit it, less full models
of itself. The three of them present some kind of awareness by implementing
evaluation or objective-matching mechanisms, but the own evaluation mech-
anisms are not subjected to monitorisation, evaluation or modification.

An architecture being able to monitorise and modify its own operation would
have fewer proportion of real structure and more of hypothetic than those
analysed in these document, thus providing greater adaptation capabilities
and increasing system’s robustness. Self-awareness aspects are the missing
point of current cognitive architectures

ASLab.org / Consciosusness in Cognitive Architectures / R-2008-004v 1.0 Final 111 of 131



Chapter 7

Consciousness Principles
In the previous chapter we concluded that the key missing point in cognitive
architectures to provide a solution for the development of complex intelli-
gent control systems addressing autonomy and dependability issues is self-
awarenes and consciousness. In this chapter we will present an overview
of the studies on consciousness and then we will analyse the integration of
consciousness in our design guideline for cognitive controllers.

7.1 Consciousness

Consciousness is regarded to comprise qualities such as subjectivity, self-
awareness, sentience, and the ability to perceive the relationship between
oneself and one’s environment. It is a subject of much research in philoso-
phy of mind, psychology, neuroscience, and cognitive science.

David Chalmers claims that the whole set of problems raised by the brain
and mind can be divided in two classes:

The Easy Problem. The first class contains phenomena of consciousness that
have a possible explanation in terms of computational or neural mech-
anisms.

• Ability to categorise and respond to inputs.

• Integration of information across different modalities.

• Reportability of mental states.

• Ability to access one’s own mental states.

• Attentional control mechanisms.

• Behaviour control.

• Possession of a wake-sleep cycle.

The Hard Problem. What it is referred to as the really hard problem is the
question of how consciousness arise from the activity of non conscious
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nerve cells –or any other type of physical substrate–. Thomas Nagel in
his famous paper “What is it like to be a bat?” stressed the impossibility
for science to cross the gap between brain and mind, since science can
only deal with empirical and objective evidence and not with the sub-
jective characteristic of conscious experience. This relates directly to the
problem of qualia1, or raw feels, and the source of self-awareness.

There is not agreement in the scientific community whether the hard prob-
lem can be addressed by science or if it can be addressed at all. Some rel-
evant voices relegated consciousness to an epiphenomenon. However, rele-
vant evidence and experiments from psychology and neuroscience and sev-
eral studies from cognitive science in the last three decades have restated
consciousness as a matter of proper scientific research. John G. Taylor defines
this increasing interest as a “racecourse for consciousness” [Taylor, 1999].

7.1.1 Models of Consciousness

Several models of human mind in general and consciousness in particular
have been proposed so far. There are two main approaches, as suggested
by Chalmers: models that try to capture specific mechanisms such as vi-
sual processing by constructing detailed neural network modules that sim-
ulated the behavioural responses observed in animals or humans, and the
approach that address consciousness from a functional perspective and use
an informational-processing point of view rather than specific neural activity.
Both approach, notwithstanding, tackle the easy problems, although some
may claim that their model sure can also cope with the hard one if adequately
extended. We will present here only two of them quite representative. Let’s
mention the basic ideas underlying them:

1qualia is “an unfamiliar term for something that could not be more familiar to each of us:
the ways things seem to us”[Dennett, 1993]
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Global Workspace Theory

Bernard J. Baars

Global Workspace theory is a simple cognitive architecture that has been developed
to account qualitatively for a large set of matched pairs of conscious and uncon-
scious processes (Baars, 1983, 1988, 1993, 1997). Such matched contrastive pairs
of phenomena can be either psychological or neural. Psychological phenomena in-
clude subliminal priming, automaticity with practice, selective attention, and many
others. Neural examples include coma and blindsight. Like other cognitive archi-
tectures (Newell, 1990), GW theory may be seen in terms of a theater metaphor of
mental functioning. Consciousness resembles a bright spot on the theater stage of
Working Memory (WM), directed there by a spotlight of attention, under executive
guidance (Baddeley, 1992). The rest of the theater is dark and unconscious. ”Behind
the scenes” are contextual systems, which shape conscious contents without ever be-
coming conscious, such as the dorsal cortical stream of the visual system. Bernard J.
Baars and Katherine McGovern, from [Baars and McGovern, ]

B.J. Baars, S. Franklin / Neural Networks 20 (2007) 955–961 957

Fig. 2. Global Workspace Theory (GWT). A theatre metaphor for Global
Workspace Theory.

prediction was initially made in 1983, and is not suggested by
any other theory of which we know.2 There is quite extensive
current debate about the evidence regarding this hypothesis
in the cognitive neuroscience literature (Tse, Martinez-Conde,
Schlegel, & Macknik, 2005).

2. The Working Memory Hypothesis (conscious contents
recruit unconscious WM functions needed for verbal
rehearsal, visual semantics, and executive functions) (Figs. 1
and 2);

GWT makes other novel predictions. For example,
it suggests that classical Working Memory (WM) may
involve distributed specialized systems, including language
components, long-term memory, visuospatial knowledge and
the like, which are recruited by the conscious components of
WM tasks. Current brain evidence strongly suggests that the
specialized components of WM are highly distributed in the
cortex and subcortical structures like the basal ganglia. Most
of these functions are unconscious in their details, but they
generally have briefly conscious components. It is noteworthy,
therefore, that all the classical “boxes” of Alan Baddeley’s WM
models have a conscious component—including conscious
perception of input, conscious access to verbal rehearsal, and
conscious decisions regarding verbal report. The most recent

2 GWT also converges well with the work of Chein and Schneider (2005),
whose “net of nets” architecture is based on experimental studies of skills that
are novel vs. practiced (and therefore less conscious). Practiced, predictable
skills show a marked reduction in cortical activity (Schneider & Shiffrin,
1977). It is interesting that the resulting network architecture bears a striking
resemblance to GWT.

version of Baddeley’s WM has a new conscious component,
called the Episodic Buffer (Baddeley, 2000). However, it does
not have a central role in recruiting linguistic, visuospatial
and executive functions; the current concept of the Episodic
Buffer is only the front end of long-term episodic memory.
GWT suggests a more active view of the conscious aspects of
human cognition. It is the consciously evoked “broadcast” that
serves to mobilize and guide the many unconscious knowledge
domains that enable Working Memory functions like inner
speech, visual problem solving and executive control (Fig. 2).

3. The Conscious Learning Hypothesis (all significant learning
is evoked by conscious contents, but the learning process
itself and its outcomes may be unconscious).

The theoretical reason for this claim is that learning novel
information requires a novel integration of existing knowledge
with unpredictable input. Thus GWT provides a principled
prediction for the role of consciousness in learning. It is
noteworthy, in this respect, that after five decades of attempts
to prove learning without consciousness, most findings show
typically small effect sizes, at very brief time intervals, using
highly predictable stimuli such as emotional facial expressions
(Snodgrass & Shevrin, 2006). More demanding learning tasks
almost always have a clear conscious component,3 and there is a
clear “dose-response” function between the degree of conscious
exposure and the amount of learning that results.4 This is indeed
what was historically called the Law of Effect, which should
perhaps be called the Law of Conscious Effect. The “conscious”
aspect of learning, which was taken for granted before the
behavioristic revolution, has now become largely forgotten.
Nevertheless, the evidence continues to show a clear monotonic
relationship between conscious study time and learning.

We now describe these two theoretical domains, Global
Workspace Theory and LIDA.

1.5. Global workspace theory

Global workspace theory aims to specify the role of
conscious brain events in cognition (Baars, 1983, 1988, 1997).

A theatre metaphor for GWT is a useful first approximation.
Unconscious processors in the theatre audience receive
broadcasts from a conscious “bright spot” on the stage.
Control of the bright spot corresponds to selective attention.
Backstage, unconscious contextual systems operate to shape
and direct conscious contents. GWT is a rigorously developed
set of testable hypotheses, and the theatre metaphor is only a
convenient reminder of its basic features (Baars, 1988, 2002).

GWT was developed based on robust evidence regarding
conscious processes, combined with the artificial intelligence

3 Implicit learning allows behavior that can be described as rule-directed
to be learned from conscious experience without the subject being able to
articulate the rule. However, all studies of implicit learning make use of
conscious events to evoke implicit learning processes.

4 Recent evidence indicates more robust learning effects for emotional
stimuli, such as emotional facial expressions. Such biologically relevant inputs
can be treated as single chunks in GWT, which do not require the recruitment
of novel knowledge sources that require consciousness to be integrated.

Figure 7.1: Schematic diagram of the theatre metaphor for Global Workspace
Theory, from [Baars and Franklin, 2007]

The global workspace model of Baars is an example of the functionalist-
information processing approach.

The Relational Mind and CODAM models

John G. Taylor

Taylor proposes a relational definition for consciousness: Consciousness arises
solely from the process by which content is given to inputs based on past experience
of a variety of forms. It has a relational structure in that only the most appropriate
memories are activated and involved in further processing. It involves temporal du-
ration so as to give time to allow the relational structure to fill out the input. This
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thereby gives the neural activity the full character of inner experience. [Taylor, 1999]

Taylor CODAM model corresponds to the second approach and is a model
of attention control which has been interpreted as possessing the ability to
create both the conscious experience of content as well as a neural mechanism
for ownership [Taylor and Fragopanagos, 2007].

986 J.G. Taylor / Neural Networks 20 (2007) 983–992

Fig. 1. The two-component nature of attention. The two-component model
of attention is shown in the figure as being composed of the controlled part
(sensory and motor cortex) and the controlling part (prefrontal cortex, PFC,
parietal lobe, PL and the tempero-parietal junction TPJ).

& Corbetta, 2005). It is possible that the bottom-up salient
goals are also sent to the prefrontal cortex, similarly to the
endogenous goals, as shown by observation of early prefrontal
activation of visual stimuli (Foxe & Simpson, 2002).

These experimental results and theoretical approaches can
be summarised as involving top-down bias as goals, which will
have been set up in prefrontal cortices either as endogenous
signals entered as task rules, say, from experimental instruction
or as exogenous biases from lower cortices from salient
inputs. This bias is transmitted to an attention movement
signal generator (inverse model controller or IMC) which then
sends a new attention signal to lower level cortical stimulus
activity; this can be summarised as a two-stage model, in which
the higher level control system generators (goals and IMC)
send attention signals to lower level cortical representations
(Corbetta & Shulman, 2002; Corbetta et al., 2005; Kanwisher
& Wojciulik, 2000). A simplified version of this is shown in
Fig. 1. In the figure, the controller component is composed of
the goals module acting as a bias to send out an attention signal
from the IMC to feedback to the input modules acting as those
which are controlled by attention.

There are already various models of attention which have
been studied in the recent past, ranging from those of a
descriptive form, such as the already-mentioned influential
‘biased competition’ model of attention (Desimone & Duncan,
1995) to the more detailed neural-network based models
involving large-scale simulations, such as those of Deco and
Rolls (2005) or of Mozer and Sitton (1998). However these
and other neural models of attention have not had a clear
overarching functional model guiding their construction. If
we consider the recent results on attention of brain imaging
experiments (Corbetta & Shulman, 2002; Corbetta et al., 2005;
Kanwisher & Wojciulik, 2000) then we find that the language
of engineering control theory (see for example Phillips and
Harbor (2000)) could be applied to help understand the
complex-looking network of modules observed to be involved
in attention effects. Already the 2-stage model of attention
as a control generator system together with a controlled
system described in the previous paragraph indicates the
simplest ‘ballistic control’ model of this sort. A more general
engineering control approach will be employed in this paper,
encompassing and surpassing the simple ballistic control
model. This will allow us to develop a more detailed neural
modelling framework to help understand the nature of networks
involved in higher order cognitive processes, even leading to
suggestions for the creation of consciousness. More specifically
it will allow us to suggest some very specific functions for
consciousness which have detailed experimental implications.

Fig. 2. The CODAM model architecture. The figure shows the modules of the
CODAM model of attention control, based on engineering control mechanisms.
Visual input, for example, enters at the INPUT module and is sent, through
a hierarchy of visual processing modules, to activate the object map module,
OBJECT MAP. At the same time in the exogenous case it rapidly accesses
the GOAL module, so causing bias to be sent to the inverse model controller
denoted IMC in the figure (the generator of the signal to move the focus
of attention). This sends a modulatory feedback signal to the object map, of
multiplicative or additive form, to amplify the requisite target activity entering
the object map. As this happens the corollary discharge of the signal from the
IMC is sent to the MONITOR module, acting as a buffer for the corollary
discharge signal. This can then be used both to support the target activity
from the object map accessing its sensory buffer, the WORKING MEMORY
module, and to be compared with the requisite goal from the GOAL module.
The resulting error signal from the monitor module is then used to enhance the
IMC attention movement signal and so help speed up access as well as reduce
the activities of possible distracters.

These will be explored later, after we have briefly reviewed the
CODAM model.

The engineering control approach to attention was developed
in the Corollary Discharge of Attention Movement (CODAM)
model in Taylor (2000, 2003) (see also Taylor (2002a, 2002b),
Taylor and Fragopanagos (2005)) and used in Taylor and
Rogers (2002) to simulate the Posner benefit effect in vision.
It was further developed in the CODAM model application
to the attentional blink in Fragopanagos, Kockelkoren, and
Taylor (2005), and more recently in numerous applications of
CODAM to working memory tasks (Korsten, Fragopanagos,
Hartley, Taylor, & Taylor, 2006) as well as to help understand
results observed by brain imaging of paradigms involving
emotion and cognition in interaction (Taylor & Fragopanagos,
2005). Here I will use these various applications, and their
associated models, to provide a unified description of the
observed effects and to lay a framework for further extensions
into cognition: to reasoning, thinking and planning and
ultimately to consciousness.

Fig. 2 is a schematic diagram of the CODAM architecture.
The input enters the system through the module labelled ‘visual
cortex’, and is passed to the ‘objects’ module (where high
level visual representations have been stored after suitable
hierarchical learning). Attention acts by a bias arising from the
‘goals’ module to guide the ‘attention controller’ module to
send out a signal changing the focus of attention by altering
the sites of modulation of the input to the visual cortex and
object modules (or to a suitable spatial map that can be included
in CODAM). The activation in the goals module can arise
either top-down (from rules set up as part of an experiment,
for example) or bottom-up (by fast activity going to prefrontal
cortex as observed by various EEG and fMRI studies mentioned
earlier). These modules: the goals, attention controller and
object/visual cortex modules, form a very simple form of

Figure 7.2: The CODAM model architecture. The figure shows the mod-
ules of the CODAM model of attention control, based on engineering control
mechanisms. Visual input, for example, enters at the INPUT module and is
sent, through a hierarchy of visual processing modules, to activate the ob-
ject map module, OBJECT MAP. At the same time in the exogenous case it
rapidly accesses the GOAL module, so causing bias to be sent to the inverse
model controller denoted IMC in the figure (the generator of the signal to
move the focus of attention). This sends a modulatory feedback signal to the
object map, of multiplicative or additive form, to amplify the requisite target
activity entering the object map. As this happens the corollary discharge of
the signal from the IMC is sent to the MONITOR module, acting as a buffer
for the corollary discharge signal. This can then be used both to support the
target activity from the object map accessing its sensory buffer, the WORK-
ING MEMORY module, and to be compared with the requisite goal from the
GOAL module. The resulting error signal from the monitor module is then
used to enhance the IMC attention movement signal and so help speed up ac-
cess as well as reduce the activities of possible distracters. From [Taylor, 2007]

Other interesting studies of consciousness are [Sommerhoff, 1996], [Edelman, 2006]
and [Damasio, 2000].

7.1.2 Machine consciousness

Together with the previous models which, coming from the neuroscience and
psychology, have been used to build computational models of consciousness,
efforts from the more engineering fields of robotics and AI are also addressing
the problem of consciousness to build self-aware agents.

Maximally relevant examples of the current engineering trend where the ASys
Framework sits, are Sloman’s approach based on virtual machines [Sloman and Chrisley, 2003]
and Holland’s robots with internal models [Holland and Goodman, 2003].
These two visions are so cocurrent with ours that they will be specifically
addressed in the forthcoming report on the ASys Framework.
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7.2 Consciousness for cognitive controllers

As was mentioned in the introductory chapter, maintaining system cohesion
becomes a critical challenge in the evolutionary trajectory of a cognitive sys-
tem. From this perspective, the analysis proceeds in a similar way: if model-
based behaviour gives adaptive value to a system interacting with an object,
it will give also value when the object modelled is the system itself. This gives
rise to metacognition in the form of metacontrol loops that will improve op-
eration of the system overall.

Apart of the many efforts in the analysis of reflective mental processes in
biological systems that we are not going to analise in detail here2, there are
also many research threads that are leading to systematically addressing the
question of embedding self-models in technical systems. Some of them are:

• System fault-tolerance has been addressed by means of replication of
components to avoid single critical failure points; but the determina-
tion of faulty states to trigger re-configuration has been a problem of
increasing importance in correlation with increased system complex-
ity. Fault detection and isolation methods have developed sophisticated
model-based reasoning mechanics to do these tasks. The models used,
however, are specifically tailored to the task, a common problem else-
where.

• Cognitive systems research has put consciousness back into the agenda
after many years of ostracism [G.A.Mandler, 1975] and hence it is ad-
dressing the question of computer-based model building of this phe-
nomenon.

• Information systems security –regarding human intrusion and the sev-
eral varieties of exo-code– has become concerned about the question of
self/nonself distinction in ICT systems [Kennedy, 2003].

• Information systems exploitation is fighting the scalability problem in
maintenance tasks trying to mimic the scalable organisation of biologi-
cal systems [Horn, 2001]

In our context, control systems, our main concern is not of human mimick-
ing or reduction of cost of ownership. The question is more immediate and
basic: system robustness. There are many technical systems that we depend
upon: from the electrical networks, to the embodied pacemakers or ESPs in
our cars. Dependability is a critical issue that is being hampered by the in-
creased complexity of individual systems and from emergent phenomena in
interconnected ones.

2See for example [Gallagher and Shear, 2000] for philosophical, cognitive science perpesc-
tives and [Kircher and David, 2003] for neuroscience and psychology ones.
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The justifiable quest for methods for managing reasoning about selves in this
context is driven by the desire of moving responsibility for system robustness
from the human engineering and operation team to the system itself. This is
also the rationale behind the autonomic computing movement but in our case
the problem is much harder as the bodies of our machines are deeply embed-
ded in the physics of the world.

But the rationale for having self models is even deeper than that: if model-
based control overpasses in capabilities to those of error-based control, the
strategy to follow in the global governing of a concrete embedded system is
not just recognising departure from setpoints but anticipating the behavior
emerging from the interaction of the system with it surrounding reality.

Hence the step from control systems that just exploit models of the object,
to control systems that exploit models of the pair system + object is a neces-
sary one in the ladder of increased performance and robustness. This step
is also observable in biological systems and while there are still loads of un-
solved issues around, the core role that “self” plays in the generation of so-
phisticated behaviour is undeniable. Indeed, part of the importance of self-
consciousness is related to distinguishing oneself from the emvironment in
this class of models (e.g. for action/agency attribution in critical, bootstrap-
ping learning processes).

7.2.1 Defining consciousness

Lets now recall Principle 6 in which a definition for awareness in cognitive
control system is proposed:

Principle 6: System awareness — A system is aware if it is continuously perceiv-
ing and generating meaning from the countinuously updated models.

We can take another step forward and propose that when the target of the
awareness mechanism is the aware system itself, consciousness happens:

Principle 8: System self-awareness/consciousness — A system is conscious if
it is continuously generating meanings from continously updated self-models in a
model-based cognitive control architecture.

System self-awareness –consciousness– just implies that the continuous model
update include the updating of submodels about the system itself that are
being evaluated. The models of the supersystem –system+object– are used
in the model-based generation of system behaviour. So the process of be-
haviour generation is explicitly represented in the mind of the behaving agent
as driven by a value system. In this sense the interpretation of conscious-
ness that we propose here depart from higher-order theories of consciousness
[Rosenthal, ming, Kriegel and Williford, 2006] in the fact that self-awareness
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is not just higher order perception. Meaning generation is lacking in this last
one.

COGNITIVE SUBSYSTEM

OBJECT

COGNITIVE SUBSYSTEM

Object model

Meaning Engine/

Evaluator

Meaning/

Value

objectives

Object model 

model

Meaning Engine/

Evaluator

Meaning/

Value

objectives

Cognitive subsystem 

model

Figure 7.3: System self-awareness –consciousness– implies the continuous
update and meaning generation from a model-update that includes a model
of the cognitive system itself.

It is remarkable that our definition of consciousness directly supports one of
the generally agreed value of consciousness which is maintaining system co-
hesion by keeping a history of the system and interpreting current operation
upon it, i.e. Taylor’s relational perspective –past experiences give content to
inputs[Taylor, 1999]– and Damasio’s autobiographical self[Damasio, 2000]. It
is exactly the function that results from evaluating self-models including both
postdictive pasts, which directly refers to system’s history, and predictive fu-
tures, which cannot be obtained but by applying known models –stored from
previous experience– to current inputs.
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Another question of extreme relevance is the maximally deep integration of
the model and metamodel. As Kriegel [Kriegel, 2006] argues, higher-order
monitoring theory makes the monitoring state and the monitored state log-
ically independent with a mere contingent connection. We are more in the
line of Kriegel same-order monitoring theory that argues for a core non-
contingent relation between the monitoring state and the monitored state.

One big difference between being aware and being conscious cames from the
capability of action attribution to the system itself thanks to the capability of
making a distinction between self and the rest of the world3. This implies
that a conscious agent can effectively understand –determine the meaning–
the effect of its own actions (computing the differential value derived from
self-generated actions, i.e. how its own actions change the future).

Even more, conscious agents can be made responsible and react to past ac-
tions by means of retrospectively computing values. So, a conscious agent
will be able to understand what has been its role in reaching the actual state
of affairs.

This appreciation of the coupling of consciousness to value systems is also
being done in biological studies of consciousness. Let us quote Edelman
[Edelman, 2006] at this point:

Consciousness appeared in vertebrate evolution when reentrant connections in the
thalamocortical system arose to link anterior memory systems dealing with value to
the more posterior cortical systems devoted to perception. The result was an enor-
mous increase in discriminatory power resulting from myriad integrations among
the reentrant circuits comprising this dynamic core.

7.2.2 Consciousness and Attention

In chapter 4 the relation between awareness and attention was defined. We
can now extend that relation to consciousness. This shall be achieved by split-
ting the top-down mechanism according to whether the meaning –evaluation
in terms of objectives– occurs implicitly, and then we can talk about aware-
ness, or that evaluation and the objectives are explicit through self-modelling,
thus we shall talk of consciousness triggering the attentional mechanisms.

7.3 Evaluating consciousness

Since even consciousness definition still remains a matter of debate, the prob-
lem of determining whether a system, were it artificial or not, is conscious,

3Obviously, even while we argued for awareness/consciousness as a purely input, percep-
tual process, these associations to action processes links consciousness with action generation
and even with system’s ethics.
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which at the end is the same, is open too. However, several proposals of what
the properties consciousness confers to a system possessing it have been de-
livered:

Human consciousness

Taylor [Taylor, 1999] proposes a checklist of features of the brain that his
model requires in order to support conscious experience.

1. A suitable of memory structures

(a) Of buffer form

(b) Of permanent form

2. A processing hierarchy

3. Suitable long-lasting bubbles of activity at the highest coding level of
the hierarchy.

4. A competitive system to produce a winner among all the activities on
the buffer memories at any one time.

This list provides interesting criteria to develop metrics for a cognitive archi-
tecture supporting Taylor’s model of consciousness.

Machine consciousness

One of the clearest efforts to formalise what properties an artificial conscious
system must exhibit is Aleksander’s axioms [Aleksander and Dunmall, 2003]:

Let A be an agent in a sensorily-accessible world S. For A to be conscious of
S it is necessary that:

Axiom 1 (Depiction): A has perceptual states that depict parts of S.

Axiom 2 (Imagination): A has internal imaginational states that recall parts
of S or fabricate S-like sensations.

Axiom 3 (Attention): A is capable of selecting which parts of S to depict or
what to imagine.

Axiom 4 (Planning): A has means of control over imaginational state sequences
to plan actions.

Axiom 5 (Emotion): A has additional affective states that evaluate planned
actions and determine the ensuing action
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7.4 Principles for cognitive controllers

We shall compile below the principles proposed for cognitive control sys-
tems.

1. Model-based cognition. A cognitive system exploits models of other
systems in their interaction with them.

2. Model isomorphism. An embodied, situated, cognitive system is as
good performer as its models are.

3. Anticipatory behavior. Except in degenerate cases, maximal timely
performance is achieved using predictive models.

4. Unified cognitive action generation. Generate action based on an inte-
grated, scalable, unified model of task, environment and self in search
for global performance maximisation.

5. Model-driven perception. Perception is realised as the continuous up-
date of the integrated models used by the agent in a model-based cog-
nitive control architecture by means of real-time sensorial information.

6. System awareness. An aware system is continuously perceiving and
computing meaning -future value- from the continuously updated mod-
els. This render emotions.

7. System attention. Attentional mechanisms allocate both body and com-
putational resources for system processes so as to maximise perfor-
mance.

8. System self-awareness/consciousness. A conscious system is continu-
ously generating meanings from continuously updated self-models in
a model-based cognitive control architecture.

7.5 Adding consciousness to RCS

Coming back to the discussion in chapter 6, we will expose to conclude this
chapter a few considerations about adding conscious capabilities to a cog-
nitive architecture. We will take the specific case of augmenting RCS with
self-awareness mechanisms for these two reasons already presented when
analysing it:

• It provides adequate design patterns and methodologies for building
intelligent controllers for real-time systems, as its application to several
real systems has proven.

• It is in close accordance to our model-based view of cognition, and al-
most fully compliant with our principles up to the level of awareness.
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Our evaluation of RCS revealed two main drawbacks: procedural knowledge
heterogeneity and the absence of self-modelling. This prevents the architec-
ture for incorporating self-awareness. Now suppose we would want to add
consciousness to a system controlled by and RCS architecture. The question
is what exactly do we need to do it.

In the architecture there will be a network of processes interconnected at a
time. They will be processes performed within one node or there will also
be processes that spread across several nodes (Fig. 7.5). We shall call them
normal processes.
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Figure 7.4: Processes running at an in-
stant of time in RCS

Now suppose that for adding consciousness to the operation of the system
we add new processes that monitor, evaluate and reflect the operation of the
“unconscious” normal processes (Fig. fig:cons-processes). We shall call these
processes the “conscious” ones. We would need and interface or connections
so as the new processes have access to information about normal processes
at runtime.
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Figure 7.5: Processes running at an in-
stant of time in RCS

These processes will exploit models of the operation of the normal ones –the
self-models– so as to evaluate their current operation. They could monitor for
example only certain connections between RCS nodes and, relying on this in-
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formation and known patterns –models– of operation and knowledge about
the RCS nodes –also models– infer what is going on inside. This way we
would keep the encapsulation properties of the nodes and reduce the com-
munication bandwidth that would require a full monitoring, but at the cost
of requiring more processing and more memory for model storage in the con-
scious processes (Fig. 7.5).
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Figure 7.6: Alternatives for connecting conscious processes

We will turn now to analyse the functionality that renders the conscious pro-
cesses. It seems natural that the conscious processes resulted from the op-
eration of functional units such as those the architecture already has, that is
nodes. We then would have “conscious” nodes responsible for modelling the
proper nodes of the RCS architecture, perceiving their operation to update
that models at runtime and actuating on them so as to optimise the archi-
tecture operation. It may seem that this is just duplicating the architecture:
we are going to need double number of nodes, twice communication band-
width and memory, etc. . But this is not since these conscious nodes need not
be different nodes but those already existing. Sure more resources in com-
munications and memory are going to be needed, duplicate access to some
variables or more storage memory. But in an RCS hierarchy consciousness
is not needed at any level and any node. Probably only nodes in the high-
est levels would be required to provide self-awareness frequently, nodes in
the inferior levels would only need to activate that mechanism in the case of
certain events or by queries from other nodes.
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Chapter 8

Overall Discussion
This chapter summarises the main conclusions reached in the study reported
in this work.

8.1 Conclusions

8.1.1 Engineering requirements for cognitive architectures

In chapter 2 the growing demand for dependability and survivability, to-
gether with the increase in complexity and integration needs, was mapped
to requirements for a cognitive architecture to provide a solution for design-
ing cognitive control systems addressing these issues.

8.1.2 Principles for cognitive controllers

A list of principles to serve as a guideline for building cognitive control sys-
tem up to the level of conscious controllers has been presented. The princi-
ples are based upon a model-base conception of cognition.

8.1.3 Evaluating cognitive architectures

The presented conceptual framework of the General Cognitive System has
proved useful to guide the analysis of cognitive architectures and point out
their characteristics and deficiencies to address the requirements the should
meet to provide a trustworthy solution for the development of complex cog-
nitive controllers. Three representative architectures have been analysed and
the conclusions extracted can be summarised into de following points:

• RCS provides adequate functional encapsulation and distribution to-
gether with appropriate input/output design patterns, all of which makes
RCS the best suited for real-time applications.
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• Soar and ACT-R provide useful mechanisms for learning and delibera-
tive operation.

• The three architectures provide learning mechanisms but non of them
supports cultural mechanisms for model generation.

• Current cognitive architectures fail to provide self-awareness mecha-
nisms.

8.1.4 Consciousness

The role that conscious mechanisms play in biological systems has been stud-
ied. The interest on them for engineering purposes in the field of complex
control systems justified by the similarities between the problems they pro-
vide a solution for in biological systems, and the problems about complexity
and integrability that face control engineering nowadays.

The reason why current cognitive architectures do not support consciousness
has been pointed out. To conclude, a guideline about how to provide them
with self-awareness mechanisms and the requirements and design trade-offs
derived has been discussed.
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C/JOSÉ GUTIÉRREZ ABASCAL, 2
MADRID 28006 (SPAIN)

aslab

Document based on class aslreport.cls v 3.0

ASLab CVS Revision : 1.7


