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Abstract

In this article we will argue that given certain conditions for the evolution of bi-
ological controllers, these will necessarily evolve in the direction of incorporating
consciousness capabilities. We will also see what are the necessary mechanics for
the provision of these capabilities and extrapolate this vision to the world of artifi-
cial systems postulating seven design principles for conscious systems. This article
was published in the journal Neural Networks special issue on brain and conscious-
ness (Sanz et al., 2007).

1 A Bit of Context

In this our excursion into the scientific worlds of awareness so germane to the
world of humanities1, we observe with surprise that there is still a widely extended
perception of consciousness as epiphenomenon, which, while mainly rooted in philo-
sophical analyses, is also apparently supported by real, tangible experiments in
well controlled conditions (see for example Libet et al. (1982); Varela (1971); Pockett
(2004); Dennet (1991)). Hence, we may wonder why engineers should be interested
in such a phenomenon that is not yet not only full understood but, somehow, even
fully accepted.

1Humanities in Snow’s sense Snow (1969).
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In this paper we will argue for a precise interpretation of consciousness —based
on controller mechanics— that renders it not only not epiphenomenal but fully
functional. Even more, this interpretation leads to the conclusion that conscious-
ness necessarily emerges from certain, not excessively complex, circumstances in
the dwelling of cognitive agents.

A characterisation of cognitive control will be needed as a base support of this
argument; and from this initial relatively simple setting, the unavoidable arrow of
evolution will render entities that are not only conscious but also necessarily self-
conscious.

This analysis will provide a stance for the analysis of the phenomenon of con-
sciousness in cognitive agents that is full in-line with fashionable buzzwords like
situatedness and embodiment.

In the case of technical systems, evolutionary pressure also operates in their evo-
lution. Not at the level of individual machines but at the human-mediated level of
product lines and product families (individual machines generally lacking the nec-
essary replicatory capacities for selfish gene evolution). This implies that, sooner
or later, if the initial conditions hold in this context, consciousness will be a neces-
sarly appearing trait of sophisticated machines. This is where we are: identifying
the core mechanics and application constraints for the realisation of consciousness
capabilitites in next generation technical systems. This will imply, necessarily, the
sound characterisation of the expected benefits from making a machine conscious.

2 The Modelling Brain

2.1 The modelling principle

One of the central issues proposed by the research community is the question of
existence of general principles for cognitive systems and of consciousness in particular
Aleksander and Dunmall (2003). These are for example the topics of discussion
formulated by Taylor in a proposal for a special session on ICANN 2007:

• General principles for cognitive systems;

• The pros and cons of embodiment for cognitive systems;

• The desirability or otherwise of guidance from the brain;

• Specific cognitive system designs and their powers;

• Embodied cognitive systems in robot platforms and demonstrations;

• The best future pathways for development of cognitive systems;
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Figure 1: The cognitive relations of a system with an object are mediated by a model
of the object.

Proposing some cognitive principles up to the level of consciousness will be the
objective of this paper. Let’s start with a first one on the nature of cognition:

Principle 1: Model-based cognition — A system is said to be cognitive if
it exploits models of other systems in their interaction with them.

This principle in practice equates knowlegde with models, bypassing the prob-
lems derived from the conventional epistemological interpretation of knowledge as
justified true belief Gettier (1963) and embracing a Dretskean interpretation where
justification and truth are precisely defined in terms of a strict modeling relation
Rosen (1985)2. Obviously, this principle takes us to the broadly debated interpre-
tation of cognition as centered around representation, but with a tint; that of the
predictive and postdictive capabilities derived from the execution of such a model.

In what follows, just to avoid confusion, we will try to reserve the use of the
term system for the cognitive system (unless splicitly stated otherwise) and use the
term object for the system that the cognitive system interacts with (even when in
some cases this one may be also cognitive).

Obviously, that the mind uses models is not a new theory. The model-based
theory of mind can be traced back in many disciplines and the topic of mental
models have been a classic approach to the study of mind Craik (1943); Gentner
and Stevens (1983) but this has just had an aura of methaphorical argumentation
Johnson (1987) because of the lack of formalisation of the concept of model and

2The truth of a piece of information included into a model is not just its fitness into the model —e.g.
a perspective held by social constructivists— but the in terms of the establishment of isomorphims
between the model and the modelled.
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the less than rigorous approach to the study of its use in the generation of mental
activity.

Closer approaches are for example the emulation theory of representation of
Grush Grush (1995) or the model-based sensory-motor integration theory of Wolpert
Wolpert et al. (1995). Grush proposed the similar idea that the brain represents
external-to-mind things, such as the body and the environment, by constructing,
maintaining, and using models of them. Wolpert addresses the hypothesis that the
central nervous system internally models and simulates the dynamic behavior of
the motor system in planning, control, and learning.

We think that we can go beyond using the concept of model-based-mind as metah-
phor or as de facto contingent realizations found in biological brains to the more
strong claim that minds are necessarily model-based and that evolutionary pressure
on them will necessarily lead to consciousness. This article is just one step in this
direction.

2.2 On models

This definition of cognition as model-based behavior many sound too strict to be
of general applicability; in particular it seems not fitting simple cognitive processes
(e.g. it seems that we can have a stimulus input without having a model of it). How-
ever, if we carefully analise these processes we will find isomorphisms between
information structures in the system’s processes —e.g. a sense— and the external
reality —the sensed— that are necessary for the process to be succesful.

These information structures may be explicit and directly identifiable in their
isomorphisms or may be exteemely difficult to tell apart. Models will have many
forms and in many cases they may even be fully integrated —collapsed— into the
very mechanisms that exploit them. The model information in this case is captured
in the very structure of the cognitive process. Reading an effective cognitive system
tells us a lot about its surounding reality.

The discussion of what is a the proper charaterisation of the concept of model is
also very old and plenty of clever insights as that one of George Box: ”Essentially,
all models are wrong but some are useful” Box and Draper (1987). Is this model
usefulness what gives adaptive value to cognition as demosntrated by Conant Co-
nant and Ashby (1970).

There are plenty of references on modelling theory, mostly centered in the do-
main of simulation Cellier (1991); Zeigler et al. (2000) but it is more relevant for
the vision defended here the perspective from the domains of systems theory Klir
(2001) and theoretical biology Rosen (1993, 1991).

This last gives us a definition of model in terms of a modelling relation that fits
the perspective defended in this article: a system A is in a modelling relation with
another system B —i.e. is a model of it— if the entailments in model A can be
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mapped to entailments in model B. In the case of cognitive systems, model A will
be abstract and stored in the mind or the body of the cognitive agent and system B
will be part of its surrouding reality.

We must bear in mind, however, that models may vary widey in terms of pur-
pose, detail, completitude, implementation, etc. A model will represent only those
object traits that are relevant for the purpose of the model and this representation
may be not only not explicit, but fully fused with the model exploitation mecha-
nism.

2.3 Relations with other traits

Principle 1 grounds some common conceptions about cognitive systems; obviously
the most important is the question of representation. A cognitive system —by defi-
nition of cognition— necessarily represents other systems. Even more, these repre-
sentations must have deep isomorphisms with the represented objects so the cogni-
tive system can exploit formal entailments in its models to compute entailments in
the modelled object in order to maximise the utility of the interaction (more on
this in section 3). Paraphrasing what Conant and Ashby clearly stated Conant
and Ashby (1970) —every good regulator must contain a model of the system it
is controlling— we can say that every well performing cognitive system must con-
tain a model of the objects it is interacting with.

Many other core issues of cognitive systems are addressed by Principle 1. Two
quite fashionable these days are the questions of situatedness —cognition is neces-
sarily interactive with an external world— and embodiment —the necessary separa-
tion of the agent body from the rest as defined by the interaction boundary. Both
are duly addressed by the modeling perspective of Principle 1 even when they are
not as necessarily crisp as they may appear to roboticists because the model can
obviosly represent uncertainty and vagueness, hence being able to handle even
blurred bodies and fuzzy situations.

2.4 On model generation

Other so-called cognitive traits are left out of this picture of cognitive systems.

Model-based —cognitive— systems need not necessarily be learning systems —
even while learning will be a very common procedure for model generation. A
cognitive system may operate using a static model —coming from any source— as
long as it is considered valid. i.e. as long as the modeling relation with the external
object still holds.

Obviously, from the consideration of how the cognitive system becomes cogni-
tive or maintains its cognitive capability learning becomes crucial. Somehow the
models must be put there, in the mind of the cognitive system. In general —not
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just in the case of biosystems— the core infrastructures for model construction fall
in three categories:

Built-ins: In the sense described by Conant and Ashby Conant and Ashby (1970),
our feeding, homeostatic and kinestetic mechanisms contain models of the
surounding reality (e.g. genes codifying chemical receptors for the nose).

Learned: The very subject matter of learning from experience.

Cultural: The well known topic of memetics Dawkins (1976); Blackmore (1999) or
—more visually shocking— of Trinity “learning” helicopter piloting expertise
in Wachowskys’ Matrix. 3

The learning and cultural mechanisms have the extremely interesting property
of being open ended. In particular, cultural model transmision is a form of extended
learning, where the cognitive system downloads models learned by others hence
reaching levels of model complexity and perfection that are impossible for an iso-
lated agent4.

In biological systems, the substrate for learning is mostly neural tissue. Neural
networks are universal approximators that can be tuned to model any concrete ob-
ject or objects+relations set. This property of universal approximation combined
with the potential for unsupervised learning make the neural soup a perfect candi-
date for model boostraping and continuous tuning. The neural net is an universal
approximator; the neural tissue organised as brain is an universal modeller.

These are also the properties that are sought in the field of artificial neural net-
works. It is not necessary to recall here the ample capacities that neural networks
—both artificial and natural— have shown concerning model learning. We may
wonder to what extent model learning of an external reality can be equated to the
advances in modeling external realities demonstrated in the so called hard-sciences
(deep, first principles models).

What is philosophically interesting of this process of scientific model construc-
tion is the fact that reality seems to have a mathematical-relational stucture that
enables the distillation of progressively precise models in closed analytical forms
Wigner (1960).

We may think that culturally learnt first principles models5 are better than neu-
ral network approximative modelling6; there are cases of exact convergence of both
modelling approaches but there are also cases where the mathematical shape of the
principles limits their applicability to certain classes of systems.

3Supervised learning may be considered an hybrid of cultural and learned processes.
4Indeed this is, plainly, the phenomenon of science.
5Only geniuses do incorporate first principles models by autonomous learning.
6A similar problem to that of having symbolic representations in neural tissue.
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Figure 2: Feedback controllers measure the difference (error) between what we
want (reference) and what we have (output) and make corrections (control) based
on this difference.

For example, in the field of model creation for control purposes, artificial neural
networks have been compared favourably, in certain settings, with first principles
models in the implementation of nonlinear multivariable predictive control Hen-
riques et al. (2002). This neural network approach uses a recurrent Elman network
for capturing the plant’s dynamics, being the learning stage implemented on-line
using a modified version of the back-propagation through time algorithm Elman
(1990); Rumelhart et al. (1986).

All this analysis takes us to the formulation of a second principle of cognitive
system construction:

Principle 2: Model isomorphism — An embodied, situated, cognitive sys-
tem is as good as its internalised models are.

Model quality is measured in terms of some definable isomorphism with the
modelled system as established by the modelling relation. Let’s see why all this
disgression on model learning and quality is relevant for the consciousness en-
deavour.

3 Reactive vs Anticipatory Control

Many control mechanisms follow the well known error-feedback paradigm. This
control structure is so simple and robust that almost all control loops are based on
this approach. The strategy is simple and extremely effective Wiener (1961): mea-
sure the difference between what we want and what we have and make corrections
based on this difference (see Figure 2).

These controllers are very effective but have a serious drawback: they are al-
ways behind the plant, i.e. they cannot make the plant strictly follow a reference
signal without a delay (except for special plants in special circumstances). These
controllers just act as reaction to plant output diverting from what is desired (er-
rors); so they will wait to act until output error is significant.
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In order to have the plant in a certain state at a defined time, we need other, more
powerful approaches that can anticipate error and prevent it. Due to the inherent
dynamics of the plant, the only possibility of acting to make it reach a final state sf

at tf from an intial state si at ti is to act at ta before tf .

This kind of control is anticipatory in this strict sense of (ta < tf )7. The de-
termination of the action cannot come from the final state (as with classical error
feedback) because of anticipation and we need an estimate of this state ŝf at time
ta.

These two alternative approaches were described by Conant Conant (1969) as
error-controlled regulation and cause-controlled regulation. The advange of this second
approach is that in certain conditions, it is often possible for the regulation to be
completely succesful at maintaining the proper outcome. Needless to say is that
due to the non-identity between model and reality, this last one may depart from
what the model says. In these conditions only error-driven control will be able to
eliminate the error. This is the reason why, in real industrial practice, model-based
controllers are implemented as mixed model-driven and error-driven controllers.

The previous analysis take us into the formulation of another principle:

Principle 3: Anticipatory behavior — Except in degenerate cases, maximal
timely performance can only be achieved using predictive models.

These predictive models can be explicit or implicit in the proper machinery of
the action generation mechanism Camacho and Bordons (2007). Obviously the de-
gree to which a particular part of reality can be included in a model will depend
on the possibility of establishing the adequate mappings from/to reality to/from
model and the isomorphims between entailments at the model level and at the
reality level (according to a particular model exploitation policy). The problems as-
socited to inferred model quality have been widely studied in relation with proper-
ties of statistical modelling, where we seek a good model to approximate the effects
or factors supported by the empirical data in the recognition that the model can-
not fully capture reality Burnham and Anderson (2004). This is also the world of
systems identification but in this case, the target model typically belongs to a very
reduced and precise class of models Ljung (1998); Nelles (2000).

4 Integrated Cognitive Control

Reactive and anticipatory control are the core building blocks of complex con-
trollers. Reactive controllers are simpler and more easily tuneable. These are the

7This could be seen as acausal because the cause of the action —final cause in aristotelian sense—
is the final state sf , that is a future state.
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reasons for being the most used both in biological systems (they are easily evolv-
able) and technical systems (they are easier to design and implement).

Complex controllers organise control loops in hierarchical/heterarchical arrange-
ments that span several dimensions: temporal, knowledge, abstraction, function,
paradigm, etc. Sanz (1990). These organisational aspects lead to the functional
differences offered by the different achitectures (in the line of Dennet’s skinner-
ian/popperian/gregorian creatures Dennett (1996)).

In the performance of any task by an intelligent agent there are three aspects of
relevance: the task itself, the agent performing the task and the environment where
the task is being performed Sanz et al. (2000). In the case of natural systems the
separation between task and agent is not easy to do, but in the case of technical
systems this separation is clearer if we analyse them from the perspective of artifi-
ciality Simon (1981). Artificial systems are made on purpose and the task always
comes from oustide of them: the owner.

The knowledge content of the models in highly autonomous cognitive controllers
should include the three aspects: system, task and environment. Depending on the
situation in the control hierarchy, models may refer to particular subsets of these
aspects (e.g. models used in intelligent sensors do address only a limited part of the
system environment; just environmental factors surrounding the sensor).

System cohesion may be threatened in evolutionary terms and its preservation
becoments a critical integrational requirement. The problem of model coherence
across the different subsystems in a complex control hierarchy is a critical aspect
that is gaining increased relevance due to the new component-based strategies for
system construction. In the case of biological systems and unified engineering arti-
ficial systems the core ontology —whether explicit or assumed— used in the con-
struction of the different elements is the same. But, in systems agregated from com-
ponents coming from different fabrication processes, ontology mismatches produce
undesirable emergent phenomena that lead to faults and even loss of system via-
bility. This is clear in biological systems (e.g. immunity-related phenomena) but is
just becoming clear in complex technical systems during recent times Horn (2001).

This analysis lead us to formulate an additional principle of complex cognitive
systems:

Principle 4: Unified cognitive action generation — Generating action
based on an unified model of task, environment and self is the way for perfor-
mance maximisation.

Modeling the task is, in general, the easiest part8. This has been one of the
traditional focus points of classic AI (obvioulsy with the associated problem solving
methods).

8But representing the task in the internalised model can be extremely complex when task specifi-
cation comes in natural language.
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Figure 3: Complex cognitive systems in integrated control architectures need to
exploit models in the performance of tasks at different levels of abstraction; from
the immediate reaction to environment changes to the strategic decision making
relevant for the long term performance of the system.
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Modeling the environment in control systems has been generally done up to the
extent of addressing the interference it produces in the performance of the task.
This can be as simple as statistically modeling an interfering disturbance in SISO
controllers (See Figure 2) or as complex as simultaneous localisation and mapping
in autonomous mobile robotics.

The question of modeling the system is trickier and will be the main focus of the
rest of this paper. Let’s say that in conventional analyses of control systems these
realisational aspects are comonly neglected or reduced to considerations concerning
design constraints derived from implementation limitations. The issue of embed-
ding system models —i.e. of the system knowing about its own body— has been
raised in many contexts but got wider audience in relation with robotics embodi-
ment considerations Chrisley and Ziemke (2002).

5 The Perceiving Agent

As deeply analised by López López (2007) there are strong differences between
sensing and perceiving, related to the expectation and model-driveness of this last
one.

The perceptual process is structured as a potentially complex pipeline of two
classes of processes that we could describe as sensor-driven and model-driven.
The perceptual pipeline can affect the perceiving system in two ways: implicitly,
through changes in operational states of other subsystems; and explicitly through
cognitive integration of what has been perceived into integrated representations.

This unified understanding of perception as a model-driven process López et al.
(2007) leads to the introduction of a new principle:

Principle 5: Model-driven perception — Perception is the continuous up-
date of the integrated models used by the agent in a model-based cognitive
control architecture by means of real-time sensorial information.

This principle implies that the result of perception is not a scattered series of in-
dependent percepts, but these percepts fully incoprorated into an integrated model.
This means that it is possible to sense without actually perceiving; e.g. if the cogni-
tive —i.e. model-driven— sensory processing fails in the integration.

To be integrable, the percept must follow some rules that are captured both in the
mechanics of cognitive perception and in the set of referents used in the perception
process. The mechanics typically will form part of the permanent structure of the
agent while some of the referents may be part of its program (see Klir (1969) for
details on the duality structure/program).

Even more, the perception mechanism is not restricted to process information
coming from the environment of the perceiving system but can exploit also infor-
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Figure 4: System perception implies the continuous update of the models that the
system is employing in the generation of behavior.

mation coming from the inside of the system. Here authors will typically talk about
two clasess of preception, propioception —the sensing of the body— and metapercep-
tion —the sensing of the mind— but both are, senso stricto, the same class of per-
ceptual processes. This unified perspective implies that for explicit perception to
happen in the inner environment, there must be a model where percepts are to be
integrated. These models obviously constitute the very core of self.

6 The Emergence of Self

As was mentioned before, maintaining system cohesion becomes a critical chal-
lenge in the evolutionary trajectory of a cognitive system. From this perspective,
the analysis proceeds in a similar way: if model-based behaviour gives adaptive
value to a system interacting with an object, it will give also value when the ob-
ject modelled is the system itself. This gives rise to metacognitition in the form of
metacontrol loops that will improve operation of the system overall.

Apart of the many efforts in the analysis of reflective mental processes in bio-
logical systems that we are not going to analise in detail here9, there are also many
research threads that are leading to systematically addressing the question of em-
bedding self-models in technical systems. Some of them are:

9See for example Gallagher and Shear (2000) for philosophical, cognitive science perpesctives and
Kircher and David (2003) for neuroscience and psychology ones.
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• System fault-tolerance has been addressed by means of replication of com-
ponents to avoid single critical failure points; but the determination of faulty
states to trigger re-configuration has been a problem of increasing importance
in correlation with increased system complexity. Fault detection and isolation
methods have developed sophisticated model-based reasoning mechanics to
do these tasks. The models used, however, are specifically tailored to the task
—a common problem elsewhere.

• Cognitive systems research has put consciousness back into the agenda after
many years of ostracism G.A.Mandler (1975) and hence it is addressing the
question of computer-based model building of this phenomenon.

• Information systems security —regarding human intrusion and the several
varieties of exo-code— has become concerned about the question of self/nonself
distinction in ICT systems Kennedy (2003).

• Information systems exploitation is fighting the scalability problem in main-
tenance tasks trying to mimic the scalable organisation of biological systems
Horn (2001)

In our context, control systems, our main concern is not of human mimicking or
reduction of cost of ownership. The question is more immediate and basic: system
robustness.

There are many technical systems that we depend upon: from the electrical net-
works, to the embodied pacemakers or ESPs in our cars. Dependability is a critical
issue that is being hampered by the increased complexity of individual systems
and from emergent phenomena in interconnected ones.

The justifiable quest for methods for managing reasoning about selves in this
context is driven by the desire of moving responsibility for system robustness from
the human engineering and operation team to the system itself. This is also the
rationale behind the autonomic computing movement but in our case the problem
is much harder as the bodies of our machines are deeply embedded in the physics
of the world.

But the rationale for having self models is even deeper than that: if model-based
control overpasses in capabilities to those of error-based control, the strategy to fol-
low in the global governing of a concrete embedded system is not just recognising
departure from setpoints but anticipating the behavior emerging from the interac-
tion of the system with it surrounding reality.

Hence the step from control systems that just exploit models of the object, to
control systems that exploit models of the pair system + object is a necessary one
in the ladder of increased performance and robustness. This step is also observable
in biological systems and while there are still loads of unsolved issues around, the
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core role that “self” plays in the generation of sophisticated behavior is undeni-
able. Indeed, part of the importance of self-consciousness is related to distinguish-
ing oneself from the emvironment in this class of models (e.g. for action/agency
attribution in critical, bootstrapping learning processes).

7 Stepping to Awareness and Consciousness

Our strategy for consciousness research is not following Alexander’s approach of
axiomatising consciousness (i.e. searching for a complex predicate to be accepted by
the community) but of analysing and formalising the core issues and mechanisms
involved (and addressed in the principles on cognitive control exposed so far). The
reason is simple; while the axiomatisation process is important for clarifying the is-
sues, it may give rise to a receding horizon phenomenon similar to what happened
to AI in the eighties. This not happening, both approaches should lead to the very
same end.

7.1 Defining awareness

From the analysis of integrated cognitive controllers given in the previous sections
we can make a try into the formalisation of some consciousness aspects. We will
make a distinction between awareness and consciousness, reserving the C-word
for systems self-awareness.

Principle 6: System awareness — A system is aware if it is continuously
perceiving and generating meaning from the countinuously updated models.

The term meaning was introduced in this principle to define awareness and this
looks-like eluding the core definitional problem. However, the word meaning im-
plies that the main difference between perception and awareness is the addition to
the perceptual mechanics of a certain value system in the global system process. So
we can say that awareness implies the perception of value to the system from its
sensory flow.

The updated integrated model produced by perception is evaluated in terms of
a value system not only in the present state of affairs but in the potential —future
and past10— consecuences derived from this state of affairs. Awareness implies the
partitioning of predicted futures and postdicted pasts by a value function. This par-
titioning we call meaning of the update to the model. In this context of interpretation
of the term meaning, we conclude that only pieces of information that are model-
integrable can have meaning, because for others, we cannot compute futures nor
pasts, less their value.

10Restorpective prophecy in the words of T.H. Huxley Huxley (1880).
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System perception implies the continuous update of the models that the system
is employing in the generation of behavior; but this continuous update is not just
keeping in mind an updated picture of the status of part of the environment —like
a photograph— but continuously restructuring and retuning the dynamical model
of the object used in the action generation process.

System awareness requires the additional steps of automatically predict and
evaluate. While many researchers claim for a —necessary— sensory-motor pro-
file of awareness and consciousness, action is not necessary for the definition of
awareness; but obviously when the models are used for action selection and built
by a process of sensory-motor interaction, action becomes critical for the awareness
architecture; but models can be built using other methods (see Section 2.4) and this
will be more manifest in artificial systems.

7.2 Defining consciousness

When the target of the awareness mechanism is the aware system itself, conscious-
ness happens:

Principle 7: System self-awareness/consciousness — A system is con-
scious if it is continuously generating meanings from continously updated
self-models in a model-based cognitive control architecture.

System self-awareness —consciousness— just implies that the continuous model
update include the updating of submodels about the system itself that are be-
ing evaluated. The models of the supersystem —system+object— are used in the
model-based generation of system behavior. So the process of behavior generation
is explicitly represented in the mind of the behaving agent as driven by a value
system. In this sense the interpretation of consciousness that we propose here
depart from higher-order theories of consciousness Rosenthal (ming); Kriegel and
Williford (2006) in the fact that self-awareness is not just higher order perception.
Meaning generation is lacking in this last one.

Another question of extreme relevance is the maximally deep integration of the
model and metamodel. As Kriegel Kriegel (2006) argues, higher-order monitoring
theory makes the monitoring state and the monitored state logically independent
with a mere contingent connection. We are more in the line of Kriegel same-order
monitoring theory that argues for a core non-contingent relation between the mon-
itoring state and the monitored state.

One big difference between being aware and being conscious cames from the ca-
pability of action attribution to the system itself thanks to the capability of making
a distinction between self and the rest of the world11. This implies that a conscious

11Obviously, even while we argued for awareness/consciousness as a purely input, perceptual
process, these associations to action processes links consciousness with action generation and even
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Figure 5: System self-awareness —consciousness— implies the continuous update
and meaning generation of a behavior-supporting model that includes a submodel
of the very agent generating the behavior (apart of a model of the model of the
object).

agent can effectively understand —determine the meaning— the effect of its own
actions (computing the differential value derived from self-generated actions, i.e.
how its own actions change the future).

Even more, conscious agents can be made responsible and react to past actions
by means of retrospectively computing values. So, a conscions agent will be able to
understand what has been its role in reaching the actual state of affairs.

This appreciation of the coupling of consciousness to value systems is also being
done in biological studies of consciousness. Let’s quote Gerald Edelman Edelman
(2006) at this point:

Consciousness appeared in vertebrate evolution when reentrant connec-
tions in the thalamocortical system arose to link anterior memory systems deal-

with system’s ethics.
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ing with value to the more posterior cortical systems devoted to perception.
The result was an enormous increase in discriminatory power resulting from
myryad integrations among the reentrant circuits comprising this dynamic
core.

7.3 Addressing Aleksander’s five axioms

Being conscious (continuously updating and computing meaning from world-self-
models in a model-based cognitive control loop) has some implications that we can
analyse in the context of Aleksander’s five axioms for consciousness Aleksander
and Dunmall (2003) regarding a system A in a world S:

Axiom 1 — Depiction: “A has perceptual states that depict parts of S.” The model of S
that A has is continuously updated and contains a deep structure that makes
it a depiction of S.

Axiom 2 — Imagination: “A has internal imaginational states that recall parts of S or
fabricate S-like sensations. ” Models are used in predictive-causal exploitation
engines that may be used to predict, postdict or perform counterfactual anal-
yses of what-if situations.

Axiom 3 — Attention: “A is capable of selecting which parts of S to depict or what to
imagine. ” Effective use of scarce reasoning and metareasoning resources
would imply that the system has to select part of the whole specturm of
awareness flow for further analysis.

Axiom 4 — Planning: “A has means of control over imaginational state sequences to
plan actions. ” The stucture of the cognitive system based on principles 1-6
implements a metacontrol schema with full anticipatory capabilities for fu-
ture action generation.

Axiom 5 — Emotion: “A has additional affective states that evaluate planned actions
and determine the ensuing action.” Utility functions at metalevels are used to
decide between alternative control strategies.

8 Conclusions

This strategy of control based on self models can be applied recursively and have
metacontrol systems based on recursively applying the model-based machine struc-
ture. This is obviosly related to Sloman and Chrisley vision on virtual machines
and consciousness Sloman and Chrisley (2003). In our model, however, passing
from the first level to the next ones, something interesting happens. As Gell-Mann
suggests Gell-Mann (2001):
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”At successive levels, it is the availability of similar mathematical
descriptions from related problems that makes the next step appear
with simplicity and elegance.”

Successive levels may have self-similar structures —even when the concrete re-
alisations may appear entirely different— and hence it is possible to think on clos-
ing the progressive recursiveness if the model of the metalevel is able to capture
its own core structure; i.e. a particular control level is able to reason about itself as
a metalevel controller (this is what is proposed by Krieger Kriegel and Williford
(2006)). The system then becomes cognitively closed and the metareasoning can
progress ad infinitum —up to the limits of resources — without the need on new
implementational substrates.

As final conclusions of this paper, let’s comment on some of the proposed focus
points sugested by Taylor and mentioned in Section 2.1:

1. General principles for cognitive systems. Some proposals for principles are in-
troduced in this paper. All of them centered around the issue of model-based
action generation up to the level of reflective, model-based action.

2. The pros and cons of embodiment for cognitive systems. From the reasons shown
above, cognitive systems are necessarily situated and are necessarily embod-
ied to the extent of the action generation resources and the self-awareness
capabilities necessary for unified cognitive action generation (which is neces-
sary for preserving system cohesion).

3. The desirability or otherwise of guidance from the brain. The brain demonstrates
the effectivity of the principles shown above. This does not imply that build-
ing direct copies of the brain is the best approach but extracting structural
patterns that can be analysed formally.

4. Specific cognitive system designs and their powers. We have summarily analysed
three cognitive systems designs —cognitive, metacognitive and reflective—
and have argued for the possibility of closing the list of progressively meta
structures at this last one.

5. The best future pathways for development of cognitive systems. Explore the issue
of cognitive architectures based on hierarchical unified modeling of the sys-
tem/object structures.
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López, I. (2007). A Framework for Perception in Autonomous Systems. PhD thesis,
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