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Abstract 

 

Named Entity Recognition (NER) aims to extract and to classify rigid designators in text 

such as proper names, biological species, and temporal expressions. There has been growing 

interest in this field of research since the early 1990s. In this thesis, we document a trend 

moving away from handcrafted rules, and towards machine learning approaches. Still, recent 

machine learning approaches have a problem with annotated data availability, which is a 

serious shortcoming in building and maintaining large-scale NER systems.  

 

In this thesis, we present an NER system built with very little supervision. Human 

supervision is indeed limited to listing a few examples of each named entity (NE) type. First, 

we introduce a proof-of-concept semi-supervised system that can recognize four NE types. 

Then, we expand its capacities by improving key technologies, and we apply the system to 

an entire hierarchy comprised of 100 NE types.  

 

Our work makes the following contributions: the creation of a proof-of-concept semi-

supervised NER system; the demonstration of an innovative noise filtering technique for 

generating NE lists; the validation of a strategy for learning disambiguation rules using 

automatically identified, unambiguous NEs; and finally, the development of an acronym 

detection algorithm, thus solving a rare but very difficult problem in alias resolution.  

 

We believe semi-supervised learning techniques are about to break new ground in the 

machine learning community. In this thesis, we show that limited supervision can build 

complete NER systems. On standard evaluation corpora, we report performances that 

compare to baseline supervised systems in the task of annotating NEs in texts.  
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Chapter 1 

Introduction 

The term “Named Entity” (NE) is in current use in Information Extraction (IE) applications. 

It was coined at the sixth Message Understanding Conference (MUC-6) (Grishman & 

Sundheim 1996), which influenced IE research in the 1990s. At the time, MUC was focusing 

on IE tasks wherein structured information on company and defense-related activities are 

extracted from unstructured text, such as newspaper articles. In defining IE tasks, people 

noticed that it is essential to recognize information units such as names including person, 

organization, and location names, and numeric expressions including time, date, money, and 

percentages. Identifying references to these entities in text was acknowledged as one of IE’s 

important sub-tasks and was called “Named Entity Recognition (NER).” Before the NER 

field was recognized in 1996, significant research was conducted by extracting proper names 

from texts. A paper published in 1991 by Lisa F. Rau (1991) is often cited as the root of the 

field. 

  

For more than fifteen years, a dynamic research community advanced the fundamental 

knowledge and the engineered solutions to create an NER system. In its canonical form, the 

input of an NER system is a text and the output is information on boundaries and types of 

NEs found in the text. The vast majority of proposed systems fall in two categories: the 

handmade rule-based systems; and the supervised learning-based systems. In both 

approaches, large collections of documents are analyzed by hand to obtain sufficient 

knowledge for designing rules or for feeding machine learning algorithms. Expert linguists 

must execute this important amount of work, which in turn limits the building and 

maintenance of large-scale NER systems. 

  

This thesis is about the creation of an autonomous NER system. It has the desirable property 

of requiring a small amount of work by an expert linguist. It falls in the new category of 

semi-supervised and unsupervised systems. Influential work in this category is relatively rare 

and recent, and we believe ours to be the first thesis devoted exclusively to the creation of an 

autonomous NER system.  
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This thesis is structured around the construction of an NER system and one of our goals is to 

create proof-of-concept software. System architecture is shown in Figure 1 and we’ll refer to 

it throughout the thesis.  

 

Figure 1: Overview of the semi-supervised NER system 
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Figure 1 has three main parts. The upper part is the system input that consists of a few 

examples for 100 entity types, as listed in the Appendix. This input constitutes very little 

supervision.  

 

The middle part shows the semi-supervised modules. For instance, the “List Creator” module 

is explained in details in section 3.1 and it processes the system input, as illustrated by the 

arrow linking upper and middle parts of the Figure 1. The semi-supervised modules require 

no other manually created input. They however rely on very large corpora: the Web and a 

Terabyte-sized corpus of plain text (not shown in Figure 1). 

 

The bottom part is the NER system, which is the program that can identify named entities in 

a given text. The modules of this system follow McDonald (1993) system division: Delimit, 

Classify, Record. “Lists” are use to delimit named entities, “Rules” are used to classify 

named entities, and an “Alias network” is used to record named entities.  

 

The resulting semi-supervised system is in itself a significant contribution to and advance in 

the NER field. In addition, the proposed system implements state-of-the-art techniques from 

computational linguistics, semi-supervised machine learning, and statistical semantics. We 

claim four specific contributions to these fields: 

 

1. The design of a baseline semi-supervised NER system (called BaLIE1) that performs 

at a level comparable to that of a simple supervised learning-based NER system 

(Chapter 3). The architecture of this system was published at Canadian AI 2006 

(Nadeau et al. 2006). 

2. The design of a noise filter for an NE list generation based on computational 

linguistic and statistical semantic techniques. The noise filter outperforms previous 

art (Chapter 4). 

3. The demonstration of a simple strategy based on set intersections that enable the 

                                                 
1 BaLIE is open source software released under GNU GPL: http://balie.sourceforge.net. A Web demo of 

BaLIE’s NER is available at http://www.YooName.com. 
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identification of unambiguous examples for a given NE type (Chapter 5). 

Unambiguous NEs are a requirement for creating semi-supervised disambiguation 

rules. 

4. An acronym detection algorithm—part of an alias resolution system—that 

outperforms previous art (Chapter 6), with experiments published at Canadian AI 

2005 (Nadeau & Turney 2005). 

 

These contributions are crucial components of a successful autonomous NER system, and 

they are best explained in the context of the whole system. We structured this thesis 

accordingly.  

  

In Chapter 2, we introduce background work, related work, and NER applications. We give a 

formal definition of the NER task. Problems that are related to and may benefit from NER 

are discussed. Applications for both the research and industrial worlds are listed and 

presented. We also thoroughly survey fifteen years of research—from 1991 to 2006—in a 

systematic review published in a special issue of Linguisticae Investigationes (Nadeau & 

Sekine 2007). 

  

In Chapter 3, we present BaLIE (Baseline Information Extraction), a system that learns to 

recognize NEs in an autonomous manner. BaLIE solves two limitations of rule-based and 

supervised NER systems. First, it requires no human intervention, such as manually labelling 

training data or creating gazetteers. Second, the system can handle more than the three 

classical named-entity types (person, location, and organization). System performances are 

shown to be comparable to that of a simple supervised learning-based system. Some 

significant details of the system were published in a regional French-language conference 

(Nadeau 2005b), and are translated and reported in this chapter.  

  

Chapters 4, 5 and 6 are the core of this thesis. Here, we present extensions and improvements 

to BaLIE. Our contributions come from three hypotheses that were formulated to improve 

the baseline system of Chapter 3. First, we hypothesize that lexical features can improve 

noise-filtering techniques aimed at generating high-quality NE lists. We have included a 



 5

demonstration of this filter in Chapter 4. Then, we hypothesize that the differences between 

multiple NE lists are a set of unambiguous NE examples that are useful in learning 

disambiguation rules.  We have included experiments that support this hypothesis in Chapter 

5. Finally, we hypothesize that in the context of alias resolution, resolving acronyms would 

improve the system quality. An acronym detection algorithm is provided in Chapter 6. 

  

Chapter 7 discusses the work that was accomplished in completing this thesis. It sheds light 

on the reasons behind BaLIE’s design. More importantly, it discusses the limitations we 

faced at all stages of development, and the ideas we will retain in our future work.  The 

thesis conclusion restates our contributions and summarizes the results of our experiments. 
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Chapter 2 

Background and Related Work 

The NER task consists of identifying the occurrences of some predefined phrase types in a 

text. Here is an example from Mikheev et al. (1999b), marked up with four entity types: 

<Date>, <Person>, <Organization>, and <Location>. 

 

On <Date>Jan 13th</Date>, <Person>John Briggs Jr</Person> contacted 

<Organization>Wonderful Stockbrockers Inc</Organization> in <Location>New 

York</Location> and instructed them to sell all his shares in 

<Organization>Acme</Organization>. 

 

In the expression “Named Entity,” the word “Named” aims to restrict the task to only those 

entities for which one or many rigid designators, as defined by Kripke (1982), stands for the 

referent. For instance, “the automotive company created by Henry Ford in 1903” is referred 

to as “Ford” or “Ford Motor Company.” Rigid designators include proper names as well as 

certain natural terms, such as biological species and substances. There is a general agreement 

to include temporal expressions and some numerical expressions, such as money and 

measures in NEs. While some instances of these types are good examples of rigid 

designators (e.g. the year “2001”), there are also many invalid NEs (e.g., I take my vacations 

in “June”). In the first example, the year “2001” refers to the 2001st year of the Gregorian 

calendar. In the second example, “June” may refer to the month in an undefined year (past 

June, next June, June 2020, etc.). It can be argued that the NE definition is loosened in such 

cases for practical reasons. 

 

The most common alternative formulation of the NER task is using speech as input (Favre et 

al. 2005). The task is considered more difficult since the capitalization of words, and 

generally the words themselves, are approximated by Automatic Speech Recognition (ASR) 

technologies. The same problem of degraded input arises when it comes from Optical 

Character Recognition (OCR) (Maynard et al. 2002). NER can also be done for semi-

structured documents (e.g., HTML documents) (Kushmerick 1997). Supplemental 
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information is then available in a structure that may help recognize entity boundaries and/or 

entity types. However, textual context may be lost.  

 

2.1 Related Work 

In this section, we list some tasks related to NER. These tasks revolve around the notion of 

rigid designation, whereby the direct goal is not to recognize the named things from 

documents.  

 

Personal name disambiguation (Mann & Yarowski 2003) is the task of identifying the 

correct referent of a given designator. In a given context, it may consist of identifying 

whether Jim Clark is the race driver, the film editor, or the Netscape founder. Corpus-wide 

disambiguation of personal names has applications in document clustering for information 

retrieval. In the work of Mann and Yarowski, it is used to create biographical summaries 

from corpora. This technology is about to be mainstream, with a new generation of people 

search engines, such as Zoominfo.com and Spock.com. 

 

Identification of named entity descriptions (Radev 1998) is the identification of textual 

passages that describe a given NE. For instance, Bill Clinton is described as “the President of 

the U.S.,” “the democratic presidential candidate” or “an Arkansas native,” depending on the 

document. Description identification can be use as a cue in personal name disambiguation 

(see related work above). Radev’s intention is to reuse these describers in the context of 

natural language generation. 

 

Named entity translation (Fung 1995, Huang 2005) is the task of translating NEs from one 

language to another. For instance, the French translation of “National Research Council 

Canada” is “Conseil national de recherches Canada.” NE translation is acknowledged as a 

major issue in machine translation as it may account for as much as 10% of translation errors 

(Vilar et al. 2006).  

 

Analysis of name structure (Charniak 2001) is the identification of the parts in a person 
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name. For example, the name “Doctor Paul R. Smith” is composed of a person title, a first 

name, a middle name, and a surname. It is presented as a preprocessing step for NER and for 

the resolution of co-references to help determine, for instance, that “John F. Kennedy” and 

“President Kennedy” are the same person, while “John F. Kennedy” and “Caroline 

Kennedy” are two distinct persons. 

 

Entity anaphora resolution (Dimitrov et al. 2002) mainly consists of resolving pronominal 

co-reference when the antecedent is an NE. For example, in the sentence “Rabi finished 

reading the book and he replaced it in the library,” the pronoun “he” refers to “Rabi.” 

Anaphora resolution can be useful in solving the NER problem itself by enabling the use of 

extended co-reference networks (see Section 3.2.3). Meanwhile it has many applications of 

its own, such as in “question answering” (e.g., answering “Who put the book in the 

library?”). 

 

Acronym identification (Nadeau & Turney 2005) is described as the identification of an 

acronym’s definition (e.g., “IBM” stands for “International Business Machines”) in a given 

document. The problem is related to NER because many organization names are acronyms 

(GE, NRC, etc.). Resolving acronyms is useful, again, to build co-reference networks aimed 

at solving NER (see Section 6.6). On its own, it can improve the recall of information 

retrieval by expanding queries containing an acronym with the corresponding definition.  

 

Record linkage (Cohen & Richman 2001) is the task of matching named entities across 

databases. It involves the use of clustering and string matching techniques (Cohen & 

Sarawagi 2004) in order to map database entries having slight variations (e.g., Frederick 

Mason and F. Mason). It is used in database cleaning and in data mining on multiple 

databases. 

 

Case restoration (Agbago et al. 2006) consists of restoring expected word casing in a 

sentence. Given a lower case sentence, the goal is to restore the capital letters usually 

appearing on the first word of the sentence and on NEs. This task is useful in machine 

translation, where a sentence is usually translated without capitalization information.  
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2.2 Applications 

In this section, we list NER applications essentially built on having a textual document that 

identifies entities. We label these applications using three classifications: temporal (Temp) 

applications locate entities in time to analyze trends or calendar events; information retrieval 

(IR) applications are extensions of the search paradigm where the goal is access to relevant 

information in large corpora; and very large corpora (VLC) applications are based on 

annotating vast amounts of documents to allow information mining or to link information 

across documents, but not necessarily to access information.  

 

[Temp] Event detection (e.g., Smith 2002) consists of detecting temporal entities in 

conjunction with other entities. For instance, conferences are usually made up of four parts: 

one conference name, one location, and two dates (e.g., name: “AAAI,” location: “Boston,” 

start date: “July 16th 2006,” end date: “July 20th 2006”).A person’s birth or death is a person 

name and date pair (e.g., name: “John Lennon,” date: “December 8th, 1980”). Smith uses 

event detection to draw maps where war locations and dates are identified. 

 

[Temp, VLC] Time varying entities analysis (e.g., Swan & Allan 1999) is the analysis of 

key entities in a corpus at a given time or over a time period. It extends the event detection 

application in a significant manner either by intelligent aggregation or analysis. Swan and 

Allan extract events on multiple news, for a given topic, and they generate a story made of 

chosen textual passages. For instance, the story may relate that “France elects Jacques Chirac 

as president” on May 7th and “Jacques Chirac selects Alain Juppé as premier” on May 17th. 

Commercial “trend” or “buzz” analysis, that is, a simple analysis of entity frequencies over 

time, has already hit the market2. 

 

[IR]  Question answering (e.g., Srihari & Li 1999) often involves NER at the core of the 

answering capabilities. A study by Srihari and Li shows that low-level information extraction 

like NER is often a necessary component in handling most types of questions. Out of 200 

                                                 
2 BlogPulse, originally by Intelliseek, pioneered the idea: http://www.blogpulse.com (verified April 2007). 
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questions of TREC-8 competition, 80% asked for an NE as a response (e.g., who [person], 

when [time or date], where [location]).  

 

[IR]  Semantic information retrieval (e.g., Pasca 2004), unlike question answering, takes 

conventional Boolean queries, but returns something more than a list of Web documents. 

Pasca cites at least two “semantic” variants: returning a list of elements when the query is an 

entity category (e.g., “SAS,” “SPSS,” “Minitab,” “BMDP” and “R” are returned for the 

query “statistical packages”); and returning a list of siblings when the query is an entity (e.g., 

returning “Morpheus,” “Grokster” and “Napster” when the query is “Kazaa”).   

 

[IR]  Local search (e.g., Wang et al. 2005) is the task of using location information expressed 

in a query (e.g., Ottawa restaurants) to return locally relevant results, such as a list of nearby 

restaurants. NER on queries, or any short text, is arguably more challenging than on long 

documents. Wang et al. proposes NER strategies for query strings. They mention that 

accurately and effectively detecting that a location is the true topic of a query has huge 

potential impact on increasing search relevance. Major commercial search engines are 

already offering local search prototypes. 

 

[VLC]  Text/Web mining (e.g., Sánchez & Moreno 2005) is the task of extracting implicit 

information from a large repository of documents. The goal is to extract knowledge from the 

mass of information that is unavailable in isolated documents. In the work of Sánchez and 

Moreno, NEs of the medical domains are extracted from a large corpus to build ontological 

knowledge. Those ontologies, in turn, may support collection browsing and classification.  

 

2.3 Observations: 1991 to 2006 

Computational research aiming at automatically identifying NEs in texts forms a vast and 

heterogeneous pool of strategies, methods, and representations. One of the first research 

papers in the field was presented by Lisa F. Rau (1991) at the 7th IEEE Conference on 

Artificial Intelligence Applications. Rau’s paper describes a system to “extract and recognize 

[company] names.” It relies on heuristics and handcrafted rules. From 1991 (1 publication) to 
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1995 (we found 8 publications in English), the publication rate remained relatively low. It 

accelerated in 1996, with the first major event dedicated to the task: MUC-6 (Grishman & 

Sundheim 1996). It has not decreased since, with steady research and numerous scientific 

events:  HUB-4 (Chinchor et al. 1998); MUC-7 and MET-2 (Chinchor 1999); IREX (Sekine 

& Isahara 2000); CONLL (Tjong Kim Sang 2002, Tjong Kim Sang & De Meulder 2003); 

ACE (Doddington et al. 2004); and HAREM (Santos et al. 2006). The Language Resources 

and Evaluation Conference (LREC)3 has also been staging workshops and main conference 

tracks on the topic since 2000. 

 

2.3.1 Language Factor 

A good proportion of work in NER research is devoted to the study of English, but a possibly 

larger proportion addresses language independence and multilingualism problems. German is 

well studied in CONLL-2003 and in earlier works. Similarly, Spanish and Dutch are strongly 

represented, and were boosted as the focus of a major conference: CONLL-2002. Japanese 

has been studied in the MUC-6 conference, the IREX conference, and other works. Chinese 

is studied in abundant literature (e.g., Wang et al. 1992, Chen & Lee 1996, Yu et al. 1998), 

and so are French (Petasis et al. 2001, Poibeau 2003), Greek (Boutsis et al. 2000), and Italian 

(Black et al. 1998, Cucchiarelli & Velardi 2001). Many other languages received some 

attention as well: Basque (Whitelaw & Patrick 2003), Bulgarian (Da Silva et al. 2004), 

Catalan (Carreras et al. 2003), Cebuano (May et al. 2003), Danish (Bick 2004), Hindi 

(Cucerzan & Yarowsky  1999, May et al. 2003), Korean (Whitelaw & Patrick 2003), Polish 

(Piskorski 2004), Romanian (Cucerzan & Yarowsky  1999), Russian (Popov et al. 2004), 

Swedish (Kokkinakis 1998), and Turkish (Cucerzan & Yarowsky  1999). Portuguese was 

examined (Palmer & Day 1997) and, at the time this survey was written, the HAREM 

conference was revisiting that language. Finally, Arabic (Huang 2005) has started to receive 

a lot of attention in large-scale projects such as Global Autonomous Language Exploitation 

(GALE)4. 

                                                 
3 http://www.lrec-conf.org/ 
4 http://projects.ldc.upenn.edu/gale/ 
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2.3.2 Textual Genre or Domain Factor 

The impact of textual genre (journalistic, scientific, informal, etc.) and domain (gardening, 

sports, business, etc.) has been rather neglected in NER literature. Few studies are 

specifically devoted to diverse genres and domains. Maynard et al. (2001) designed a system 

for emails, scientific texts, and religious texts. Minkov et al. (2005) created a system 

specifically designed for email documents. Perhaps unsurprisingly, these experiments 

demonstrated that although any domain can be reasonably supported, porting a system to a 

new domain or textual genre remains a major challenge. For instance, Poibeau and Kosseim 

(2001) tested some systems on both the MUC-6 collection made up of newswire texts, and 

on a proprietary corpus made up of manual phone conversation translations and technical 

emails. They report a drop in performance for every system (some 20% to 40% of precision 

and recall). 

 

2.3.3 Entity Type Factor 

Early work formulates the NER problem as recognizing “proper names” in general (e.g., 

Coates-Stephens 1992, Thielen 1995). Overall, the most studied entity types are three 

specializations of “proper names”: names of “persons,” “locations,” and “organizations.” 

These types are collectively known as “enamex” since the MUC-6 competition. The 

“location” type can, in turn, be divided into multiple subtypes of “fine-grained locations” 

(Fleischman 2001, Lee & Geunbae Lee 2005). Similarly, “fine-grained person” sub-

categories, like “politician” and “entertainer,” appear in the work of Fleischman and Hovy 

(2002). The “person” type is quite common and used at least once in an original way by 

Bodenreider and Zweigenbaum (2000), who combine it with other cues for extracting 

medication and disease names (e.g., “Parkinson disease”). In the ACE program, the “facility” 

type subsumes entities of the “location” and “organization” types. The “GPE” type is used to 

represent a location that has a government, such as a city or a country.  

 

The “miscellaneous” type is used in the CONLL-2002 and 2003 conferences, and includes 

proper names falling outside the classic “enamex.” The class is also sometimes augmented 
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with the “product” type (e.g., Bick 2004). The “timex” (another term coined in MUC) “date” 

and “time” types, and the “numex” “money” and “percent” types are also quite predominant 

in the literature. Since 2003, a community named TIMEX2 (Ferro et al. 2005) has proposed 

an elaborated standard for annotating and normalizing temporal expressions. Finally, 

marginal types are sometime handled for specific needs: “film” and “scientist” (Etzioni et al. 

2005); “email address” and “phone number” (Witten et al. 1999, Maynard et al. 2001); 

“research area” and “project name” (Zhu et al. 2005); “book title” (Brin 1998, Witten et al. 

1999); “job title” (Cohen & Sarawagi 2004); and “brand” (Bick 2004). 

 

A recent interest in bioinformatics, and the availability of the GENIA corpus (Ohta et al. 

2002) led to many studies dedicated to types such as “protein,” “DNA,” “RNA,” “cell line” 

and “cell type” (e.g., Shen et al. 2003, Settles 2004), as well as studies exclusively targeted at 

“protein” recognition (Tsuruoka & Tsujii 2003). Related works also include “drug” 

(Rindfleisch et al. 2000) and “chemical” (Narayanaswamy et al. 2003) names. 

 

Some work does not limit the possible types to extract and is referred to as “open domain” 

NER (See Alfonseca & Manandhar 2002, Evans  2003). In this line of work, Sekine and 

Nobata (2004) defined a named entity hierarchy, which includes many fine grained 

subcategories, such as international organization, river, or airport, and adds a wide range of 

categories, such as product, event, substance, animal, religion, or colour. It tries to cover 

most frequent name types and rigid designators appearing in a newspaper. The number of 

categories is about 200, and they are now defining popular attributes for each category to 

make it ontological. 

 

2.3.4 What’s Next? 

Recent researches in multimedia indexing, semi-supervised learning, complex linguistic 

phenomena, and machine translation suggest some new directions for the field. On one side, 

there is a growing interest in multimedia information processing (e.g., video, speech), 

particularly extracting NE from it (Basili et al. 2005). Much effort is also invested toward 

semi-supervised and unsupervised approaches to NER, motivated by the use of very large 

collections of texts (Etzioni et al. 2005) and the possibility of handling multiple NE types 
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(Nadeau et al. 2006). Complex linguistic phenomena (e.g., metonymy, acronym resolution, 

conjunction handling) that are common shortcomings of current systems are under 

investigation (e.g., Poibeau 2006). Finally, large-scale projects such as GALE, discussed in 

Section 2.3.1, pave the way for integrating NER and machine translation for mutual 

improvement, and more generally, multilingual NER (Steinberger and Pouliquen 2007). 

 

2.4 Techniques and Algorithms to Resolve the NER Problem 

The ability to recognize previously unknown entities is an essential part of NER systems. 

Such ability hinges upon recognition and classification rules triggered by distinctive 

modeling features associated with positive and negative examples. While early studies were 

mostly based on handcrafted rules, most recent ones use supervised machine learning (SL), 

as a way to automatically induce rule-based systems or sequence labelling algorithms, 

starting from a collection of training examples. In the research community, this is evidenced 

by the fact that five out of eight systems were rule-based in the MUC-7 competition, while 

the sixteen systems involved in CONLL-2003 were based on supervised learning techniques. 

When training examples are not available, handcrafted rules systems remain the preferred 

technique, as shown in Sekine and Nobata (2004), who developed an NER system for 200 

entity types.  

 

The idea of supervised learning is to study the features of positive and negative examples of 

NE over a large collection of annotated documents and design rules that capture instances of 

a given type. Section 2.4.1 explains SL approaches in more detail. The main shortcoming of 

SL is the requirement of a large annotated corpus. The unavailability of such resources and 

the prohibitive cost of creating them lead to two alternative learning methods: semi-

supervised learning (SSL); and unsupervised learning (UL). These techniques are presented 

in Section 2.4.2 and Section 2.4.3, respectively. 

 

2.4.1 Supervised Learning 

The current dominant technique for addressing the NER problem is supervised learning. SL 

techniques include Hidden Markov Models (HMM) (Bikel et al. 1997), Decision Trees 
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(Sekine 1998), Maximum Entropy Models (ME) (Borthwick 1998), Support Vector 

Machines (SVM) (Asahara & Matsumoto 2003), and Conditional Random Fields (CRF) 

(McCallum & Li 2003). These are all variants of the SL approach, which typically feature a 

system that reads a large annotated corpus, memorizes lists of entities, and creates 

disambiguation rules based on discriminative features.  

 

A baseline SL method that is often proposed consists of tagging test corpus words when they 

are annotated as entities in the training corpus. The performance of the baseline system 

depends on the vocabulary transfer, which is the proportion of words, without repetition, 

appearing in both training and testing corpus. Palmer and Day (1997) calculated the 

vocabulary transfer on the MUC-6 training data. They report a transfer of 21%, with the 

repetition of much as 42% of location names, but only 17% of organizations and 13% of 

person names. Vocabulary transfer is a good indicator of the recall (number of entities 

identified over the total number of entities) of the baseline system, but it is also a pessimistic 

measure since some entities are frequently repeated in documents. Mikheev et al. (1999) 

precisely calculated the baseline system recall on the MUC-7 corpus. They report a recall of 

76% for locations, 49% for organizations, and 26% for persons, with precision ranging from 

70% to 90%. Whitelaw and Patrick (2003) report consistent results on MUC-7 for the 

aggregated enamex class. For the three enamex types together, the recognition precision is 

76% and the recall is 48%.  

 

2.4.2 Semi-Supervised Learning 

The term “semi-supervised” (or “weakly supervised”) is relatively recent. The main 

technique for SSL is called “bootstrapping” and involves a small degree of supervision, such 

as a set of seeds, for starting the learning process. For example, a system aimed at “disease 

names” might ask the user to provide a small number of example names. Then, the system 

searches for sentences that contain these names and tries to identify some contextual clues 

common to the five examples. Then, the system tries to find other instances of disease names 

appearing in similar contexts. The learning process is then reapplied to the newly found 

examples, so as to discover new relevant contexts. By repeating this process, a large number 

of disease names and a large number of contexts will eventually be gathered. Recent 
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experiments in semi-supervised NER (Nadeau et al. 2006) report performances that rival 

baseline supervised approaches. Here are some examples of SSL approaches 

 

Brin (1998) uses lexical features implemented by regular expressions in order to generate 

lists of book titles paired with book authors. It starts with seed examples such as {Isaac 

Asimov, The Robots of Dawn} and use some fixed lexical control rules such as the 

following regular expression, [A-Z][A-Za-z .,&]5,30[A-Za-z.], used to describe a title. The 

main idea of his algorithm, however, is that many Web sites comply with a reasonably 

standardized format throughout the site. When a given Web site is found to contain seed 

examples, new pairs can often be identified using simple constraints, such as the presence of 

identical text before, between, or after the elements of an interesting pair. For example, the 

passage “The Robots of Dawn, by Isaac Asimov (Paperback)” would allow one to find, on 

the same Web site, “The Ants, by Bernard Werber (Paperback).” 

 

Collins and Singer (1999) parse a complete corpus in search of NE pattern candidates. A 

pattern is, for example, a proper name (as identified by a part-of-speech tagger) followed by 

a noun phrase in apposition (e.g., “Maury Cooper, a vice president at S&P”). Patterns are 

kept in pairs {spelling, context} where “spelling” refers to the proper name and “context” 

refers to the noun phrase in its context. Starting with an initial seed of spelling rules (e.g., 

rule 1: if the spelling is “New York” then it is a Location; rule 2: if the spelling contains 

“Mr.” then it is a Person; rule 3: if the spelling is all capitalized then it is an organization), 

the candidates are examined. Candidates that satisfy a “spelling” rule are classified 

accordingly, and their “contexts” are accumulated. The most frequent contexts found are 

turned into a set of contextual rules. Following the steps above, contextual rules can be used 

to find further spelling rules, and so on. Collins and Singer (1999) and Yangarber et al. 

(2002) demonstrate the idea that learning several types of NE simultaneously enables finding 

negative evidence (one type against all) and reduces over-generation. Cucerzan and 

Yarowsky (1999) also use a similar technique and apply it to many languages. 

 

Riloff and Jones (1999) introduce mutual bootstrapping, which consists of growing a set of 

entities and a set of contexts in turn. It is a looser version of Collins and Singer’s (1999) idea. 
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Instead of working with predefined NE candidates (found using a fixed syntactic construct), 

they start with a handful of seed entity examples of a given type (e.g., Bolivia, Guatemala, 

and Honduras are entities of the “country” type) and accumulate all patterns found around 

these seeds in a large corpus. Contexts (e.g., offices in X, facilities in X, etc.) are ranked and 

used to find new examples. Riloff and Jones note that the performance of that algorithm can 

deteriorate rapidly when noise penetrates the entity list or pattern list. While they report 

relatively low precision and recall in their experiments, their work proved to be highly 

influential. 

 

Cucchiarelli and Velardi (2001) use syntactic relations (e.g., subject-object) to discover more 

accurate contextual evidence around the entities. Again, this is a variant of Riloff and Jones 

mutual bootstrapping (1999). Interestingly, instead of using human-generated seeds, they 

rely on existing NER systems (called “early NE classifier”) for initial NE examples.  

 

Pasca et al. (2006) also use techniques inspired by mutual bootstrapping. However, they 

innovate by using Lin’s (1998) distributional similarity to generate synonyms—or, more 

generally, words belonging to the same semantic class—allowing pattern generalization. For 

instance, in the pattern “X was born in November,” Lin’s synonyms for “November” are 

{March, October, April, Mar, Aug., February, Jul, Nov., etc.}, thus allowing the induction of 

new patterns such as “X was born in March.” One of Pasca et al.’s contributions is to apply 

this technique to very large corpora (100 million Web documents) and demonstrate that 

starting from a seed of 10 sample facts (defined as “person” type entities paired with “year” 

type entities, standing for the person’s year of birth), it is possible to generate one million 

facts with a precision of about 88%. 

 

Unlabelled data selection is a problem Heng and Grishman (2006) address. They 

demonstrate that an existing NE classifier can be improved using bootstrapping methods. 

The main lesson they report is that relying on large collections of documents is not sufficient 

on its own. Selecting documents using information retrieval-like relevance measures, as well 

as selecting specific contexts that are rich in proper names and co-references, bring the best 

results in their experiments.   
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2.4.3 Unsupervised Learning 

The typical approach in unsupervised learning is clustering. For example, one can try to 

gather NEs from clustered groups based on context similarity. There are also other 

unsupervised methods. Basically, the techniques rely on lexical resources (e.g., WordNet), 

on lexical patterns, and on statistics computed on a large unannotated corpus. Here are some 

examples. 

 

Alfonseca and Manandhar (2002) study the problem of labelling an input word with an 

appropriate NE type. NE types are taken from WordNet (e.g., location>country, 

animate>person, animate>animal, etc.). The approach is to assign a topic signature to each 

WordNet synset by merely listing words that frequently co-occur with it in a large corpus. 

Then, given an input word in a given document, the word context (words appearing in a 

fixed-size window around the input word) is compared to type signatures and classified 

under the most similar one.  

 

In Evans (2003), the method for identification of hyponyms/hypernyms described in the 

work of Hearst (1992) is applied to identify potential hypernyms of capitalized word 

sequences appearing in a document. For instance, when X is a capitalized sequence, the 

query “such as X” is searched on the Web and, in the retrieved documents, the noun that 

immediately precedes the query can be chosen as the X hypernym. Similarly, in Cimiano and 

Völker (2005), Hearst patterns are used, but this time, the feature consists of counting the 

number of occurrences of passages like “city such as,” “organization such as,” etc.  

 

Shinyama and Sekine (2004) observed that NEs often appear in several news articles 

synchronously, whereas common nouns do not. They found a strong correlation between 

being an NE, and appearing intermittently and simultaneously in multiple news sources. This 

technique allows for identifying rare NEs in an unsupervised manner, and it can be useful 

when combined with other NER methods. 

 

In Etzioni et al. (2005), Pointwise Mutual Information and Information Retrieval (PMI-IR) is 
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used as a feature to assess that a named entity can be classified under a given type. PMI-IR, 

developed by Turney (2001), measures the dependence between two expressions using Web 

queries. A high PMI-IR means that expressions tend to co-occur. Etzioni et al. create features 

for each entity candidate (e.g., London) and a large number of automatically generated 

discriminator phrases, like “is a city,” “nation of,” etc. 

 

2.5 Feature Space for NER 

Features are describers or characteristic attributes of words designed for algorithmic 

consumption. An example of a feature is a Boolean variable with the “true” value if a word is 

capitalized and “false” if not. Feature vector representation is an abstraction of text where 

each word is typically represented by one or many Boolean, numeric, and nominal values. 

For example, a hypothetical NER system may represent each word in a text with 3 attributes:  

 

1) a Boolean attribute with the “true” value if the word is capitalized and “false” if not; 

2) a numeric attribute corresponding to the length of the word, in characters; 

3) a nominal attribute corresponding to the lower case version of the word. 

 

In this scenario, the sentence “The president of Apple eats an apple,” excluding the 

punctuation, would be represented by the following feature vectors:  

 

<true,  3, “the”>, <false, 9, “president”>, <false, 2, “of”>, <true,  5, 

“apple”>, <false, 4, “eats”>, <false, 2, “an”>, <false, 5, “apple”> 

 

Usually, the NER problem is resolved by applying a rule system over the features. For 

instance, a system might have two rules, a recognition rule (“capitalized words are entity 

candidates”) and a classification rule (“the type of entity candidates of length greater than 3 

words is organization”). These rules work well for the exemplar sentence above. However, 

real systems tend to be much more complex, and their rules are often created by automatic 

learning techniques.  

 

In this section, we present the features most often used for the recognition and classification 
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of named entities. We organize them along three different axes: word-level features; list 

look-up features; and document and corpus features. 

2.5.1 Word-Level Features 

Word-level features are related to the character makeup of words. They specifically describe 

word case, punctuation, numerical value, and special characters. Table 1 lists subcategories 

of word-level features.  

 

Table 1: Word-level features 

Features  Examples  

Case 

 

 

 

Punctuation 

 

 

Digit 

 

 

 

 

Character 

 

 

Morphology 

 

 

Part-of-speech 

 

Function 

- Starts with a capital letter 

- Word is all upper case 

- The word is mixed case (e.g., ProSys, eBay) 

 

- Ends with period, has internal period (e.g., St., I.B.M.) 

- Internal apostrophe, hyphen or ampersand (e.g., O’Connor) 

 

- Digit pattern (see below) 

- Cardinal and ordinal 

- Roman number 

- Word with digit (e.g., W3C, 3M) 

 

- Possessive mark, first person pronoun 

- Greek letters 

 

- Prefix, suffix, singular version, stem 

- Common ending ( see below) 

 

- proper name, verb, noun, foreign word 

 

- Alpha, non-alpha, n-gram  ( see below) 

- lower case,  upper case version 

- pattern, summarized pattern ( see below) 

- token length,  phrase length 

 

Digit pattern 

Digits can express a wide range of useful information such as dates, percentages, intervals, 

identifiers, etc. Special attention must be given to some particular patterns of digits. For 
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example, two-digit and four-digit numbers can stand for years (Bikel et al. 1997), and when 

followed by an “s,” they can stand for a decade; one and two digits may stand for a day or a 

month (Yu et al. 1998).  

 

Common word ending 

Morphological features are essentially related to a word’s affixes and roots. For instance, a 

system may learn that a human profession often ends in “ist” (e.g., journalist, cyclist) or that 

nationality and languages often ends in “ish” and “an” (e.g., Spanish, Danish, Romanian). 

Other examples of common word endings are organization names that end in “ex,” “tech,” 

and “soft” (Bick 2004). 

 

Functions over words 

Features can be extracted by applying functions over words. An example is given by Collins 

and Singer (1999), who create a feature by isolating the non-alphabetic characters of a word 

(e.g., non-alpha [A.T.&T.] = ..&.). Another example is given by Patrick et al. (2002), who 

use character n-grams as features.  

 

Patterns and summarized patterns 

Pattern features were introduced by Collins (2002) and then used by others (Cohen & 

Sarawagi 2004 and Settles 2004). Their role is to map words onto a small set of patterns over 

character types. For instance, a pattern feature might map all upper-case letters to “A,” all 

lower-case letters to “a,” all digits to “0,” and all punctuation to “-”: 

 

x = "G.M.": GetPattern(x) = "A-A-" 

x = "Machine-223": GetPattern(x) = "Aaaaaaa-000" 

 

The summarized pattern feature is a condensed form of the above, in which consecutive 

character types are not repeated in the mapped string. For instance, the preceding examples 

become: 

 

x = "G.M.": GetSummarizedPattern(x) = "A-A-" 

x = "Machine-223": GetSummarizedPattern(x) = "Aa-0" 
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2.5.2 List Look-Up Features 

Lists are the privileged features in NER. The terms “gazetteer,” “lexicon,” and “dictionary” 

are often used interchangeably with the term “list.” List inclusion is a way to express the 

relation “is a” (e.g., “Paris is a city”). It may appear obvious that if a word (Paris) is an 

element of a list of cities, then the probability that this word is a city, in a given text, is high. 

However, because of word polysemy, the probability is almost never 1 (e.g., the probability 

of “Fast” representing a company is low because “fast” as a common adjective is much more 

frequent).  

 

Table 2: List look-up features 

Features  Examples  

General list 

 

 

 

 

List of entities 

 

 

 

List of entity cues 

- General dictionary (see below) 

- Stop words (function words) 

- Capitalized nouns (e.g., January, Monday) 

- Common abbreviations 

 

- Organization, government, airline, educational 

- First name, last name, celebrity 

- Astral body, continent, country, state, city 

 

- Typical words in organization (see below) 

- Person title, name prefix, post-nominal letters 

- Location typical word, cardinal point 

 

In Table 2, we present three significant list categories used in literature. We could enumerate 

many more examples of lists, but we decided to concentrate on those aimed at recognizing 

enamex types. 

 

General dictionary 

Common nouns listed in a dictionary are useful, for instance, in the disambiguation of 

capitalized words in ambiguous positions (e.g., sentence beginning). Mikheev (1999) reports 

that in a given corpus, from 2,677 words in ambiguous position, a general dictionary look-up 

can identify 1841 common nouns out of 1851 (99.4%), while discarding only 171 NEs out of 

826 (20.7%). In other words, in that corpus, 20.7% of NEs are ambiguous as common nouns. 
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Words that are typical of organization names  

Many authors propose to recognize organizations by identifying words that are frequently 

used in their names. For instance, knowing that “associates” is frequently used in 

organization names could lead to the recognition of “Computer Associates” and “BioMedia 

Associates” (McDonald 1993, Gaizauskas et al. 1995). The same rule applies to frequent first 

words (“American,” “General”) of an organization (Rau 1991). Some authors also exploit the 

fact that organizations often include a person’s name (Wolinski et al. 1995, Ravin & 

Wacholder 1996), as in “Alfred P. Sloan Foundation.” Similarly, geographic names can be 

good indicators of an organization name (Wolinski et al. 1995), as in “France Telecom.” 

Organization designators such as “Inc.” and “Corp” (Rau 1991) are also useful features. 

 

On list look-up techniques 

Most approaches implicitly require word candidates to match at least one element of a pre-

existing list exactly. However, we may want to allow some flexibility in the match 

conditions. The NER field uses at least three alternate look-up strategies.  

 

First, words can be stemmed (stripping off both inflectional and derivational suffixes) or 

lemmatized (normalizing for inflections only) before they are matched (Coates-Stephens 

1992). For instance, if a list of cue words contains “technology,” the inflected form 

“technologies” will be considered as a successful match. For some languages (Jansche 2002), 

diacritics can be replaced by their canonical equivalent (e.g., “é” replaced by “e”). 

 

Second, a word candidate can be “fuzzy-matched” against the reference list using some kind 

of thresholded edit-distance (Tsuruoka & Tsujii 2003) or Jaro-Winkler (Cohen & Sarawagi 

2004). This captures small lexical variations in words that are not necessarily derivative or 

inflectional. For instance, “Frederick” could match “Frederik” because the edit-distance 

between the two words is very small (suppression of just one character, the “c”). Jaro-

Winkler’s metric was specifically designed to match proper names following the observation 

that the first letters tend to be correct, while name ending often varies.  
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Third, the reference list can be accessed using the Soundex algorithm (Raghavan & Allan 

2004), which normalizes word candidates to their respective Soundex codes. This code is a 

combination of the first letter of a word plus a three-digit code that represents its phonetic 

sound. Hence, similar sounding names like “Lewinskey” (Soundex = l520) and “Lewinsky” 

(Soundex = l520) are equivalent with respect to their Soundex code. 

 

2.5.3 Document and Corpus Features 

Document features are defined by both document content and structure. Large collections of 

documents (corpora) are also excellent sources of features. In this section, we list features 

that go beyond the single-word and multi-word expressions, and include meta-information 

about documents and corpus statistics.  

 

Table 3: Features from documents 

Features  Examples  

Multiple occurrences  

 

 

 

Local syntax 

 

 

Meta-information 

 

 

Corpus frequency 

 

- Other entities in the context 

- Upper-case and lower-case occurrences (see below) 

- Anaphora, co-reference (see below) 

 

- Enumeration, apposition 

- Position in sentence, in paragraph, and in document 

 

- Uri, email header, XML section, (see below) 

- Bulleted/numbered lists, tables, figures 

 

- Word and phrase frequency 

- Co-occurrences 

- Multi-word unit permanency (see below) 

 

Multiple occurrences and multiple casing 

Thielen (1995), Ravin and Wacholder (1996), and Mikheev (1999) identify words that 

appear both in upper-case and lower-case form in a single document. These words are 

hypothesized as common nouns that appear both in ambiguous (e.g., sentence beginning) and 

unambiguous position. 
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Entity co-reference and alias 

The task of recognizing the multiple occurrences of a unique entity in a document dates back 

to the earliest research in the field (McDonald 1993, Rau 1991). Co-references are the 

occurrences of a given word or word sequence referring to a given entity within a document. 

Deriving features from co-references is mainly done by exploiting the context of every 

occurrence (e.g., Macdonald was the first, Macdonald said, was signed by Macdonald, etc.). 

Aliases of an entity are the various ways in which the entity is written in a document. For 

instance, we may have the following aliases for a given entity: Sir John A. Macdonald, John 

A. Macdonald, John Alexander Macdonald, and Macdonald. Deriving features from aliases 

is mainly done by leveraging the union of alias words (Sir, John, A, Alexander, Macdonald).  

 

Finding co-references and aliases in a text can be reduced to the same problem of finding all 

occurrences of an entity in a document. This problem is of great complexity. Gaizauskas et 

al. (1995) use 31 heuristic rules to match multiple occurrences of company names. For 

instance, two multi-word expressions match if one is the initial subsequence of the other. An 

even more complex task is recognizing the mention of an entity documents. Li et al. (2004) 

propose and compare a supervised and unsupervised model for this task. They propose the 

use of word-level features engineered to handle equivalences (e.g., prof. is equivalent to 

professor), and relational features to encode the relative order of tokens between two 

occurrences. 

 

For complex problems such as metonymy—the use of different words to refer to the same 

entity (e.g., “Hexagon” stands for “France”) —word-level features are often insufficient. 

Poibeau (2006) demonstrates that in such cases, semantic tagging is a key issue. 

 

Document meta-information 

Most meta-information about documents can be used directly: email headers are good 

indicators of person names; news often starts with a location name; etc. Some authors make 

original use of meta-information. Zhu et al. (2005) uses document URL to bias entity 

probabilities. For instance, many names (e.g., bird names) have a high probability of being a 
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“project name” if the URL is from a computer science department domain. 

 

Statistics for multi-word units 

Da Silva et al. (2004) propose some interesting feature functions for multi-word units that 

can be thresholded using corpus statistics. For example, they establish a threshold on the 

presence of rare and long lower-case words in entities. Only multi-word units that do not 

contain rare lower-case words (rarity calculated as relative frequency in the corpus) of a 

relatively long size (meaning size calculated from the corpus) are considered as NE 

candidates. They also present a feature called permanency, which consists of calculating the 

a word’s frequency (e.g., Life) within a corpus, divided by its frequency in case insensitive 

form (e.g., life, Life, LIFE, etc.) 

 

2.6 Evaluation of NER 

Thorough evaluation of NER systems is essential to their progress. Many techniques were 

proposed to rank systems based on their capacity to annotate a text like an expert linguist. In 

the following section, we take a look at three main scoring techniques used for the MUC, 

IREX, CONLL, and ACE conferences. First, let’s summarize the task from an evaluation 

point of view. 

 

In NER, systems are usually evaluated based on how their output compares with the output 

of human linguists. For instance, here’s an annotated text marked up according to MUC 

guidelines. Let’s call it the “solution.”  

  

Unlike <ENAMEX TYPE="PERSON">Robert</ENAMEX>, <ENAMEX TYPE="PERSON">John 

Briggs Jr</ENAMEX> contacted <ENAMEX TYPE="ORGANIZATION">Wonderful 

Stockbrockers Inc</ENAMEX> in <ENAMEX TYPE="LOCATION">New York</ENAMEX> and 

instructed them to sell all his shares in <ENAMEX 

TYPE="ORGANIZATION">Acme</ENAMEX>. 

 

Now, let’s hypothesize a system producing the following output: 
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<ENAMEX TYPE="LOCATION">Unlike</ENAMEX> Robert, <ENAMEX 

TYPE="ORGANIZATION">John Briggs Jr</ENAMEX> contacted Wonderful <ENAMEX 

TYPE="ORGANIZATION">Stockbrockers</ENAMEX> Inc <TIMEX TYPE="DATE">in New 

York</TIMEX> and instructed them to sell all his shares in <ENAMEX 

TYPE="ORGANIZATION">Acme</ENAMEX>. 

 

The system produced five different errors5, explained in Table 4. In this example, the system 

gives one correct answer: (<Organization> Acme </Organization> ). Ultimately, the question 

is “What score should we give this system?” In the following sections, we survey how the 

question was answered in various evaluation forums.  

 

Table 4: NER error types 

Correct solution  System output  Error  

On <Location> 

On 

</Location> 

 

The system hypothesized an entity 

where there is none. 

<Person> 

Robert 

</Person> 

 

Robert An entity was completely missed by 

the system. 

<Person> 

John Briggs Jr 

</Person> 

 

<Organization> 

John Briggs Jr 

</Organization> 

The system noticed an entity but 

gave it the wrong label. 

<Organization> 

Wonderful 

Stockbrockers Inc 

</Organization> 

 

<Organization> 

Stockbrockers 

</Organization> 

A system noticed there is an entity 

but got its boundaries wrong. 

<Location> 

New York 

</Location> 

<Date> 

in New York 

</Date> 

The system gave the wrong label to 

the entity and got its boundary 

wrong. 

 

                                                 
5 Type of errors are from an informal publication http://nlpers.blogspot.com/2006/08/doing-named-entity-

recognition-dont.html 
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2.6.1 MUC Evaluations  

In MUC events (Grishman & Sundheim 1996, Chinchor 1999), a system is scored on two 

axes: its ability to find the correct type (TYPE); and its ability to find exact text (TEXT). A 

correct TYPE is credited if an entity is assigned the correct type, regardless of boundaries as 

long as there is an overlap. A correct TEXT is credited if entity boundaries are correct, 

regardless of the type. For both TYPE and TEXT, three measures are kept: the number of 

correct answers (COR); the number of actual system guesses (ACT); and the number of 

possible entities in the solution (POS).   

 

The final MUC score is the micro-averaged f-measure (MAF), which is the harmonic mean 

of precision and recall calculated over all entity slots on both axes. A micro-averaged 

measure is performed on all entity types without distinction (errors and successes for all 

entity types are summed together). The harmonic mean of two numbers is never higher than 

the geometric mean. It also tends toward the lesser number, minimizing the impact of large 

outliers and maximizing the impact of small ones. The f-measure therefore tends to favour 

balanced systems. 

 

In MUC, precision is calculated as COR/ACT and the recall is COR/POS. For the previous 

example, COR = 4 (2 TYPE + 2 TEXT), ACT = 10 (5 TYPE + 5 TEXT), and POS = 10 (5 

TYPE + 5 TEXT). The precision is therefore 40%, the recall is 40%, and the MAF is 40%.  

 

This measure has the advantage of taking into account all possible types of errors of Table 4. 

It also gives partial credit for errors occurring on only one axis. Since there are two 

evaluation axes, each complete success is worth two points. The worst errors cost these same 

two points (missing both TYPE and TEXT), while other errors cost only one point.  

 

2.6.2 Exact-Match Evaluations 

IREX and CONLL share a simple scoring protocol. We can call it “exact-match evaluation.” 

Systems are compared based on the micro-averaged f-measure (MAF), with the precision 

being the percentage of NEs found by the system that are correct, and the recall being the 
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percentage of NEs in the solution that are found by the system. An NE is correct only if it is 

an exact match with the corresponding entity in the solution.  

 

For the previous example, there are 5 true entities, 5 system guesses, and only one guess that 

exactly matches the solution. The precision is therefore 20%, the recall is 20%, and the MAF 

is 20%.  

 

For some applications, the constraint of an exact match is unnecessarily stringent. For 

instance, in some bioinformatics work, the goal is to determine whether or not a particular 

sentence mentions a specific gene and its function. Exact NE boundaries are not required: all 

the information needed to determine if the sentence refers to the gene is there (Tzong-Han 

Tsai et al. 2006). 

 

2.6.3 ACE Evaluation 

ACE has a complex evaluation procedure. It includes mechanisms for dealing with various 

evaluation issues (partial match, wrong type, etc.). The ACE task definition is also more 

elaborate than previous tasks at the NE “subtypes” and “class” levels, as well as entity 

mentions (co-references), and more, but these supplemental elements will be ignored here. 

 

Basically, each entity type has weight parameters and contributes up to a maximum 

proportion (MAXVAL) of the final score (e.g., if each person is worth 1 point and each 

organization is worth 0.5 point, then it takes two organizations to counterbalance one person 

in the final score). According to ACE parameters, some entity types such as “facility” may 

account for as little as 0.05 points. In addition, customizable costs (COST) are used for false 

alarms, missed entities, and type errors. Partial matches of textual spans are only allowed if 

the NE head matches on at least a given proportion of characters. Temporal expressions are 

not treated in ACE since they are evaluated by the TIMEX2 community (Ferro et al. 2005).  

 

The final score called Entity Detection and Recognition Value (EDR) is 100% minus the 
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penalties. In the Table 4 examples, the EDR score is 31.3%. It is computed as follows, using 

ACE parameters from 20046. Each of the five entities contributes up to a maximum value to 

the final score. Using default ACE parameters, the maximum values (MAXVAL) for person 

entities is 61.54% of the final score, the two organizations worth 30.77%, and the location 

worth 7.69%. These values sum up to 100%.  At the individual type level, one person span 

was recognized (John Briggs Jr) but with the wrong type (organization); one person entity 

was missed (Robert); the two organization spans (Wonderful Stockbrockers Inc and Acme) 

were considered correct, even with the former partial matches; one geopolitical span was 

recognized (in New York) but with the wrong type; and there was one false alarm (On). 

Globally, the person entities error (function of COST and MAXVAL) accounts for 55.31% 

of the final EDR loss (30.77 for the miss and 24.54 for the type error), the false alarm 

account for 5.77% of loss, and the location type error accounts for 7.58%. The final EDR of 

31.3% is 100% minus these losses. 

 

ACE evaluation may be the most powerful evaluation scheme because of its customizable 

error cost and its wide coverage of the problem. However, it is problematic because the final 

scores are only comparable within fixed parameters. In addition, complex methods are not 

intuitive and make error analysis difficult. 

 

2.7 Conclusion 

The NER field has been thriving for more than fifteen years. It aims to extract from text and 

to classify rigid designators mentions such as proper names, biological species, and temporal 

expressions. In this chapter, we presented related works and applications of NER. We have 

also shown the diversity of languages, domains, textual genres, and entity types covered in 

the literature. More than twenty languages and a wide range of named entity types are 

studied. However, most of the work has concentrated on limited domains and textual genres, 

such as news articles and Web pages.  

 

                                                 
6 http://www.nist.gov/speech/tests/ace/ace04/index.htm 
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We have also provided an overview of the techniques employed to develop NER systems, 

documenting the recent trend away from hand-crafted rules towards machine learning 

approaches. Handcrafted systems provide good performance at a relatively high system 

engineering cost. When supervised learning is used, the availability of a large collection of 

annotated data is a prerequisite. Such collections are available from the evaluation forums 

but remain rather rare and limited in domain and language coverage. Recent studies in the 

field have explored semi-supervised and unsupervised learning techniques that promise fast 

deployment for many entity types without the prerequisite of an annotated corpus. We have 

listed and categorized the features that are used in recognition and classification algorithms. 

The use of an expressive and varied set of features turns out to be just as important as the 

choice of machine learning algorithms. Finally we have also provided an overview of the 

evaluation methods that are in use in the major forums of the NER research community.  We 

saw that in a simple example made up of only five NEs, the score of three different 

evaluation techniques varies from 20% to 40%.  

 

NER will have a profound impact on our society. Early commercial initiatives are already 

modifying the way we use yellow pages by providing local search engines (search your 

neighborhood for organizations, product and services, people, etc.). NER systems also enable 

monitoring trends in the huge space of textual media produced every day by organizations, 

governments, and individuals. It is also at the basis of a major advance in biology and 

genetics, allowing researchers to search an abundance of literature for interactions between 

named genes and cells.  
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Chapter 3 

Creating a Baseline Semi-Supervised NER System 

In this chapter, we demonstrate BaLIE, a system that learns to recognize named entities in an 

autonomous manner. To gain NER capabilities, BaLIE also features a tokenizer, a sentence 

boundary detector, a language guesser, and a part-of-speech tagger. These modules were 

developed using well-known techniques, and we do not consider them major contributions. 

More details are available in a technical report (Nadeau 2005a). Frunza et al. (2005) made a 

significant contribution by adding Romanian language support to BaLIE. However, in this 

chapter we exclusively cover BaLIE’s NER module. 

 

BaLIE solves two common limitations of rule-based and supervised NER systems. First, it 

requires no human intervention such as manually labelling training data or creating 

gazetteers. Second, the system can handle more than the three classical named-entity types 

(person, location, and organization). The chapter is structured around one contribution: 

 

• The design of a baseline semi-supervised NER system that performs at a level 

comparable to that of a simple supervised learning-based NER system.  

 

This chapter covers the “List Creator” module along with primitive version of the “Rule 

learner” and the “Alias Network” of Figure 1. The resulting baseline system has therefore all 

the required functionalities defined in the McDonald’s (1993) “Delimit, Classify, Record” 

paradigm. Figure 2 expands these modules and details the process of training and evaluating 

them. 

 

BaLIE builds on past work in unsupervised NER by Collins and Singer (1999) and Etzioni et 

al. (2005). Our goal is to create a system that can recognize NEs in a given document without 

prior training (supervised learning) or manually constructed gazetteers. (For our purposes, 

the terms “gazetteer” and “named-entity list” are interchangeable.) 
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Figure 2: Details of the baseline named entity recognition system 

Training the system 

(semi-supervised learning) 

Testing the system 

(actual use and evaluation) 

List creator (from Figure 1):  

Input : seed examples 

(see Appendix) 

Rule Learner (from Figure 1):  

Alias Network (from Figure 1):  

Information retrieval using Web 

search engine (Yahoo! API) 

Web page wrapper 

(learning from positive and 

unlabelled examples) 

Output : generated lists 

of named entities 

From training : generated 

lists of named entities 

Delimit : exact match list lookup 

(No training) 

(No training) 

Classify: hard-coded rules 

Record: hard-coded rules 

Output : annotated 

document 

Input : unannotated 

document 
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Collins and Singer’s system exploits a large corpus to create a generic list of proper names 

(NEs of arbitrary and unknown types). Proper names are gathered by looking for syntactic 

patterns with specific properties. For instance, within a noun phrase, a proper name is a 

sequence of consecutive words that are tagged as NNP or NNPS by a part-of-speech tagger, 

and in which the last word is identified as the head of the noun phrase. Like Collins and 

Singer, we use a large corpus to create NE lists, but we present a technique that can exploit 

diverse types of text, including text without proper grammatical sentences, such as tables and 

lists (marked up with HTML). 

 

Etzioni et al. refer to their algorithm as an NE “extraction” system. It is not intended for NE 

“recognition.” In other words, it is used to create large lists of NEs, but it is not designed for 

resolving ambiguity in a given document. The distinction between these tasks is important. It 

might seem that having a list of entities on hand makes NER trivial. One can extract city 

names from a given document merely by searching it for each city name in a city list. Still, 

this strategy often fails because of ambiguity. For example, consider the words “It” (a city in 

the state of Mississippi and a pronoun) and “Jobs” (a person’s surname and a common noun). 

The task addressed by Etzioni et al. could be called “automatic gazetteer generation.” 

Without ambiguity resolution, a system cannot perform robust, accurate NER. This claim is 

supported by the experiments we present in Section 3.2 

 

In this chapter, we propose an NER system that combines NE extraction with a simple form 

of NE disambiguation. We use some simple yet highly effective heuristics, based on the 

work of Mikheev (1999), Petasis et al. (2001), and Palmer and Day (1997), to perform NE 

disambiguation. Using the MUC-7 NER corpus (Chinchor 1999), we compare the 

performance of our unsupervised system with that of a basic supervised system. We also 

show that our technique is general enough to be applied to other NE types, such as car brands 

or bridge names. To support this claim, we include an experiment with car brands. 

 

The chapter is divided as follows. First, we present the system architecture. The system is 

made up of two modules. The first one, presented in Section 3.1, is used to create large 

gazetteers of entities, such as a list of cities (the “List creator” of Figure 1). The second 
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module, presented in Section 3.2, uses simple heuristics to identify and classify and record 

entities in the context of a given document (primitive versions of the “Rule Learner” and 

“Alias Network” of Figure 1). We compare BaLIE’s performance with a supervised baseline 

system on the MUC-7 corpus in Section 3.3. Next, in Section 3.4, we show that the system 

can handle other type of entities in addition to the classic three (person, location, and 

organization). We discuss the degree of supervision in Section 3.5. We conclude in Section 

3.6 by arguing that our system advances the state-of-the-art of NER by avoiding the need for 

supervision and by handling novel types of NEs. The system’s source code is available under 

the GPL license at http://balie.sourceforge.net. A Web demo of BaLIE’s NER is available at 

http://www.YooName.com. 

 

 3.1 Generating Gazetteers 

The task of automatically generating lists of entities has been investigated by several 

researchers. In Hearst (1999), the studied lexical patterns can be used to identify nouns from 

the same semantic class. For instance, a noun phrase that follows the pattern “the city of” is 

usually a city. In Riloff and Jones (1999), a small set of lexical patterns and entities are 

developed using mutual bootstrapping. Finally, Lin and Pantel (2001) show how to create 

large clusters of semantically related words using an unsupervised technique. Their idea is 

based on examining words with similar syntactic dependency relationships. They show they 

can generate semantic classes such as car brands, drugs, and provinces. However, their 

technique does not discover the labels of the semantic classes, which is a common limitation 

of clustering techniques.  

 

The algorithm of Etzioni et al. (2005) outperforms all previous methods for creating a large 

list of a given type of entity or semantic class: the task of automatic gazetteer generation. In 

the remainder of this section, we explain how to generate a list of thousands of cities from 

only a few seed examples, in two steps (Section 3.1.1 and 3.1.2) repeated if necessary.  

 

3.1.1 Retrieve Pages with a Seed 

The first step is information retrieval from the Web. We used the Yahoo! Web search engine 
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(through the developer API). A query is composed of k manually chosen entities (e.g., 

“Montreal” AND “Boston” AND “Paris” AND “Mexico City”). In our experience, when k is 

set to 4 (as suggested by Etzioni et al. 2005) and the seed entities are common city names, 

the query generally retrieves Web pages that contain many names of cities, in addition to the 

seed names. The basic idea of the algorithm is to extract these additional city names from 

each retrieved Web page. In the query, less than four entities results in lower precision, and 

more than four entities results in lower recall. 

 

The same strategy can be applied to person names, company names, car brands, and many 

other types of entities. In Chapter 5 of this thesis, we present the resulting list generation for 

100 entity types. 

 

3.1.2 Apply Web Page Wrapper 

The second step is to apply a Web page wrapper that acts as an abstract layer over HTML 

whose goal is to isolate desired information. Given it is provided with the location of a subset 

of the desired information within a page, the wrapper isolates the entire set of desired 

information and hides the remainder of the page. The goal of the wrapper is therefore to hide 

everything in the page but the named entities that are likely to be in HTML structures similar 

to that of the seed names. This step is explained in greater details in section 3.1.4. 

 

3.1.3 Repeat 

The two steps above (3.2.1, 3.2.2) are repeated as needed. Each iteration brings new entities 

that are added to the final gazetteer. At each iteration, k new randomly chosen entities are 

used to refresh the seed for the system. Entities are chosen from the gazetteer under 

construction. Preference is given to seed entities that are less likely to be noise, such as those 

appearing in multiple Web pages.  

 

3.1.4 Detailed algorithm for Web page wrapping 

Learning to isolate desired information on a Web page starting with a few seed examples is 
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an instance of learning from positive and unlabelled data. A Web page is encoded in a tree 

structure, where the top node <html> contains the entire page. The HTML nodes containing 

the desired information are labelled “positive,” and other nodes are unlabelled. For instance, 

in the following HTML code, the <a> node that contains the city name “Ottawa” is the 

desired information and is labelled “positive” for the purpose of training the wrapper. 

 

<tr>  

<td>Day5</td>  

<td><img src="bullet.gif">  

<a href="vacation.htm" label=" positive "> Ottawa </a> </td>  

<td>Ottawa, Museum of Civilization: Morning drive to Canada's capital city, 

Ottawa. This afternoon visit the Canadian Museum of Civilization…</td> 

</tr>  

 

Identifying all the relevant nodes in a Web page is a classification problem (to show or to 

hide a node). Eighteen features are used to describe a node within the HTML tree. In Cohen 

and Fan (1999), the learning algorithm in use is Ripper (Cohen, 1995). In comparison with 

the original Cohen and Fan set of features, we dropped three features that seem redundant or 

less pertinent and we added two novel features.  

 

An important improvement on the original approach is the addition of two new features with 

a significant predictive power. These features describe the nodes by row and column number 

of the innermost table to which they belong.  

 

3.1.4.1 Web page wrapper attributes 

We describe all attributes and assert their type as either “numeric” (real value) or “nominal” 

(set of predefined values). 

 

Tag name: nominal {div, td, img, p, a, …} 7 

Text length: numeric 

Non-white text length: numeric 

Recursive text length: numeric 

                                                 
7 This enumeration of nominal values should contain every valid HTML tag. 
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Recursive non-white text length: numeric 

Depth: numeric 

Normalized 8 depth: numeric 

Number of children: numeric 

Normalized number of children: numeric 

Number of siblings: numeric 

Normalized number of siblings: numeric 

Parent tag name: nominal {div, td, img, p, a, …} 

Node prefix count: numeric 

Normalized node prefix count: numeric 

Node suffix count: numeric 

Normalized node suffix count: numeric 

Cell row in innermost table: numeric 

Cell column in innermost table: numeric 

Class: {Positive, Negative} 

 

Here is the description of a typical HTML node using this representation: 

 

 a,6,0,0,4002,26,0.684211,8,0.222222,1,0.027778,td,104,0.514851,0,0,2,1, 

 Positive 

 

This instance describes a positive node. The tag name is “a” and parent is “td.” The node 

wraps around six immediate characters, but there are zero characters embedded in children 

nodes. Among other features, the value of the “node prefix count” means that 104 other 

nodes in the page share the same “prefix” (e.g., html>body>table>tr>td) . Other noteworthy 

features indicate that the cell containing this node is in row 2, column 1, of the innermost 

table. 

 

3.1.4.2 Web page wrapper as classification rules 

We designed a Web page wrapper as a rule-based system that identifies the location of 

specific types of information within the Web page. For example, a wrapper for isolating the 

location of city names on craigslist.org Web site might contain the following rule: “A city 

name is contained in an HTML node of type <a>, with text length between 4 and 20 

characters, in the first or second column of the a table of depth 2, and with at least 20 other 

                                                 
8 Refer to W. Cohen and Fan (1999) for normalization issues and information on each attribute. 
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nodes in the page that satisfy the same rule.” 

 

The gazetteer generation algorithm proceeds by learning rules that identify the locations of 

named entity examples. The Web page wrapper is trained on the k-positive examples (from 

Section 3.1.1) that are known to appear in the page, but only if they are strictly contained in 

an HTML node (e.g., <td> Boston </td>). The advantage of this constraint is that HTML 

tags act as named entity boundary delimiters. It allows identifying complex named entities 

such as “<td> Saint-Pierre and Miquelon </td>” without additional parsing. 

 

It is also possible train the wrapper on nodes containing a small amount of text around a 

named entity within an HTML node (e.g., <td> Boston hotel </td>). A technique, that we 

called “node cleaning” is described in Nadeau (2005b) and is presented in section 3.1.4.6. 

 

The remaining HTML nodes are unlabelled: some are positive, some are negative but we 

can’t separate them at this point. Our strategy is to treat the unlabelled nodes in the page as if 

they were negative examples, but we only include in the negative set the nodes with the same 

HTML tags as the positive examples. For instance, if the positive k nodes are tagged as bold 

(i.e., “<b>”), then the negative examples will be restricted to the Web page’s remaining bold 

text. All other nodes are hidden by default. 

 

As described above, Web page wrapping is a classification problem. A supervised learning 

algorithm is used to classify unknown entities in the current Web page. In this application, 

the training and testing sets are the same. The learning algorithm is trained on the given Web 

page, then the learned model is applied to reclassify the text in the same Web page. The idea 

is to learn rules, during training, that identify the locations of the known entities (the seed 

entities) and can be applied, during testing, to identify entities appearing in similar contexts, 

which may provide more positive examples. 

 

Three main problems make this task difficult. First, there is noise in the training data class 

labels, since everything but the seed words are initially labelled as negative. If the page 

contains more than k entities of the desired type, the very nodes we want to extract were 
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labelled as negative.  

 

The second problem is the class imbalance. Along with the positive k examples, there are 

usually hundreds or thousands of negative examples. These two problems are handled by 

noise-filtering and wise data sampling, respectively. At this point, our technique goes beyond 

the system of Etzioni et al. (2005), which uses a simple Web page wrapper consisting of 

handcrafted rules.  

 

Interestingly, the first and second problems are typical of learning that uses only positive 

examples. In the Web page wrapper, the positive examples are the initial seeds. We solved 

the first and second problems by under-sampling and then over-sampling the data set. The 

notion of using these types of sampling to force focused learning is described by Chawla et 

al. (2002) in an algorithm called SMOTE. The Web page wrapper uses a SMOTE-like 

algorithm. In Section 4.2.2, we’ll use the exact same strategy to guide learning in another 

one-class problem. 

 

The third problem is the residual noise, that is, invalid entity candidates that pass through the 

Web page wrapper and are added to the final lexicon. We discuss the three problems in much 

detail in the following subsections. 

 

3.1.4.3 Class noise problem 

To handle the problem of noise in the class labels, we use a filtering approach inspired by 

Zhu et al. (2003). The noise-filtering strategy is to simply remove any instance similar to a 

positive instance. We say that two nodes are similar when their feature vectors are identical, 

except for the text length feature. Removing class noise is a kind of “wise” under-sampling 

of negative examples. 

 

The noise filter is not used on the testing set. When the trained model is applied to the testing 

set, some of the examples that were absent in training may be classified as positive, while 

others may be classified as negative.  
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We evaluated this technique on 40 Web pages retrieved from 9 “k-city queries” (i.e., queries 

composed of k names of city). These pages were found by manually verifying the 100 first 

hits for each query and keeping all pages in which all the queried city names are exactly 

contained in an HTML node. Using the class noise filter, a mean of 42% of the HTML nodes 

that are initially labelled as negative are removed from the training set; thus significantly 

under sampling the initial dataset. When testing the Web page wrapper on the 40 manually 

annotated Web pages with class noise filtering, the performance of finding city names 

improves by 30% (from 65% accuracy to 84.8%).  

 

3.1.4.4 Class imbalance 

To handle the problem of class imbalance, we use over-sampling of positive examples. Using 

the original unbalanced data set, the wrapper is almost incapable of extracting new entities. It 

mainly guesses the majority class (negative) and only extracts the initial seed from Web 

pages. To discourage the learning algorithm from using the trivial solution of always 

guessing the majority class, the positive examples are over-sampled to rebalance the data set. 

This rebalancing must be done for each individual Web page, to take into account the 

imbalance ratio of each wrapper. Rebalancing is performed automatically by randomly 

choosing HTML nodes to add to the data set, up to the desired ratio of positive to negative 

examples. 

 

Past research suggests that supervised learning algorithms work best when the ratio is near 

1:1 (Ling & Li, 1998). We hypothesized that the wrapper would work best when we 

rebalanced the data set by duplicating positive instances until the ratio reached 1:1.  

 

On the dataset presented in the previous section, positive example over-sampling provides an 

additional 2% gain in accuracy. When used alone, that is without class noise filtering, over-

sampling accounts for up to 8% of improvement in classification accuracy. 

 

3.1.4.5 Residual noise problem 

Web page wrapper frequently extracts invalid candidates from pages. For instance, it may 

extract table headers, wrong lists, or simply extract elements of a heterogeneous list of valid 
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and invalid entities (e.g., drug names mixed with symptoms and disease names). 

 

In the baseline system, in order to filter noise, we used hard-coded rules. For each entity 

types, we defined a minimum and maximum length, a valid set of characters, and an absolute 

minimum redundancy (number of times the entity is extracted from distinct Web pages). In 

Chapter 4, we demonstrate advanced noise filtering based on semi-supervised techniques.  

 

3.1.4.6 HTML node cleaning 

In section 3.1.4.2, we set the constraint that HTML nodes must exactly embed named entity 

examples so we don’t need additional boundary delimitation inside the node. However, this 

is not always the case. A significant amount of web pages presents the desired information 

with extra words inside the node (e.g., <td> New York Hotels </td>).  

 

If these extra words are present in all positive nodes, we apply the wrapper algorithm and 

post-process newly found named entity by removing the constant noise. In our experiments, 

we found that this simple technique augments the number of named entity found 

significantly. It allows finding 76% more city names, for instance, in the list of Table 6, and 

17% more car brand names in the list of Section 3.4.    

 

3.2 Resolving Ambiguity  

The “list look-up strategy” is the method of performing NER by scanning through a given 

input document to look for terms that match a list entry. The list look-up strategy has three 

main problems: entity-noun ambiguity errors (Section 3.2.1); entity boundary detection 

errors (Section 3.2.2); and entity-entity ambiguity errors (Section 3.2.3). Due to these three 

problems, the gazetteer-generating module presented in Section 3.1 is not in itself adequate 

for reliable NER. We found heuristics in the literature to tackle each of these problems. 

 

3.2.1 Entity-Noun Ambiguity 

Entity-noun ambiguity occurs when an entity is the homograph of a noun. The plural word 

“jobs” and the surname “Jobs” is an example of this occurrence. To avoid this problem, 
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Mikheev (1999) proposes the following heuristic: in a given document, assume that a 

capitalized word or phrase (e.g., “Jobs”) is a named-entity, unless it sometimes appears in the 

document without capitals (e.g., “jobs”);  it only appears at the start of a sentence or at the 

start of a quotation (e.g., “Jobs that pay well are often boring.”); or it only appears inside a 

sentence in which all words with more than three characters start with a capital letter (e.g., a 

title or section heading). This heuristic is called H1 in the remainder of this chapter. 

 

3.2.2 Entity Boundary Detection 

A common problem with the list look-up strategy involves errors in recognizing where an 

NE begins and ends in a document (e.g., finding only “Boston” in “Boston White Sox”). This 

can happen when an NE is composed of two or more words (e.g., “Jean Smith”) that are each 

listed separately (e.g., “Jean” as a first name and “Smith” as a last name). It can also happen 

when an entity is surrounded by unknown capitalized words (e.g., “New York Times” as an 

organization followed by “News Service” as an unlisted string). Palmer and Day (1997) 

propose the longest match strategy for these cases. Accordingly, we merge all consecutive 

entities of the same type and every entity with any adjacent capitalized words. We did not, 

however, merge consecutive entities of different types, since we would not have known the 

resulting type. This heuristic is called H2 in the remainder of this chapter. 

 

The rule above is general enough to be applied independently of the entity type. We found 

that other merging rules could improve the precision of our system, such as “create a new 

‘organization’ type entity by merging a location followed by an organization.” However, we 

avoided rules like this because we believe that this kind of manual rule engineering results in 

brittle, fragile systems that do not adapt well to new data. Our goal is to make a robust, 

portable, general-purpose NER system, with minimally embedded domain knowledge.  

 

3.2.3 Entity-Entity Ambiguity 

Entity-entity ambiguity occurs when the string standing for an NE belongs to more than one 

type. For instance, if a document contains the “France” NE, it could be either the name of a 

person or the name of a country. For this problem, Petasis et al. (2001) and others propose 
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that at least one occurrence of the NE should appear in a context where the correct type is 

clearly evident. For example, in the context “Dr. France,” it is clear that “France” is the name 

of a person.  

 

We could have used cues, such as professional titles (e.g., farmer), organizational designators 

(e.g., Corp.), personal prefixes (e.g., Mr.) and personal suffixes (e.g., Jr.), but as discussed in 

the preceding section, we avoided this kind of manual rule engineering.  

 

Figure 3: Simple alias resolution algorithm 

 

Instead, we applied a simple alias resolution algorithm, presented in Figure 3. When an 

Definitions: 

D  = a given input document. 

},...,{ 1 naaA =  = the set of all sets of aliases in the document D . 

},...,{ 1 mi eea =  = a set of aliases = a set of different entity instances, referring to 

the same actual entity in the world. 

psDe ,,=  = a unique instance of an NE, consisting of a string s  in document 

D  at position p . 

),(overlap ji ee  = a Boolean function; returns true when iii psDe ,,=  and 

jjj psDe ,,=  and the strings is  and js  share at least one word with more 

than three characters; returns false otherwise. 

 

Algorithm: 

Let {}=A . 

For each instance of an NE e in document D : 

If  there is exactly one alias set ia  with a member je  such that 

),(overlap jee , then modify A  by adding e to ia . 

If there are two or more alias sets ia , ja  with members ke , le  such that 

),(overlap kee  and ),(overlap lee , then modify A  by creating a new 

alias group pa  that is the union of ia , ja , and }{e , add pa  to A , and 

remove ia  and ja  from A . 

Otherwise, create a new alias set  qa , consisting of }{e , and add qa  to A . 
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ambiguous entity is found, its aliases are used in two ways. First, if a member of an alias set 

is unambiguous, it can be used to resolve the whole set. For instance, “Atlantic ocean” is 

clearly a location, but “Atlantic” can be either a location or an organization. If both belong to 

the same alias set, then we assume that the whole set is a “location” type. Another way of 

using the alias resolution is to include unknown words in the model. Typical unknown words 

are introduced by the heuristics in Section 3.2.2. If an entity (e.g., “Steve Hill”) is formed 

from a known entity (e.g., “Steve”) and an unknown word (e.g., “Hill”), we allow 

occurrences of this unknown word to be added in the alias group. This heuristic is called H3 

in the remainder of this chapter. 

 

3.3 Evaluation with the MUC-7 Enamex Corpus 

In the Message Understanding Conferences (MUC), the NER track focuses on three classic 

NE types: person, location, and organization. These three NE types are collectively called 

“enamex.” In this section, we compare the performance of our system with a baseline 

supervised system using the corpus from MUC-7. For this experiment, a portion of the 

corpus is given to the supervised system in order to train it. Our unsupervised system simply 

ignores this portion of the corpus.  

 

The same baseline experiment was conducted on the MUC-6 and MUC-7 corpora by Palmer 

and Day (1997) and Mikheev et al. (1999), respectively. Their systems work as follows. A 

training corpus is read, and the tagged entities are extracted and listed. Given a testing 

corpus, the lists are used in a simple look-up strategy, so that any string that matches a list 

entry is classified accordingly. 

 

Table 5 presents Mikheev et al.’s results on the MUC-7 corpus (in the “Learned lists” 

columns). There is also a comparison with a system that uses handmade lists of common 

entities (in the “Common lists” columns).  The “Combined lists” columns are based on a 

combination of both approaches. These results are also published experiments by Mikheev et 

al. In the following tables, “re” is the recall, “pr” is the precision, and “f” is the f-measure 

(the harmonic mean of precision and recall), all expressed in percentages.  
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Table 5: Results of a supervised system for MUC-7 

 Learned lists   Common lists   Combined lists  

 re  Pr  f   re  pr  f   re  pr  f  

organization 49 75 59  3 51 6  50 72 59 

person 26 92 41  31 81 45  47 85 61 

location 76  93 84  74 94 83  86 90 88 

 

For the purpose of comparison, we ran our system on the MUC-7 corpus using the gazetteers 

we generated, as described in Section 3.1. We generated gazetteers for some of the NE 

subtypes given by Sekine and Nobata (2004). The generated gazetteers are described in 

Table 6. We also used a special list of the months of the year because we noticed they were 

an abnormally important source of noise on the development (dry run) set9. Many months are 

also valid as personal first names.  

 

Table 6: Type and size of gazetteers built using Web page wrapper 

Gazetteer  Size  

Location: city 14,977 

Location: state/province 1,587 

Location: continent/country/island 781 

Location: waterform 541 

Location: astral body 85 

Organization: private companies 20,498 

Organization: public services 364 

Organization: schools 3,387 

Person: first names 35,102 

Person: last names 3,175 

Person: full names 3,791 

Counter-examples: months 12 

 

List size depends on how efficiently the Web page wrapper extracts entities. Section 3.3.1 

                                                 
9 It can be argued that the month list is a form of manual rule engineering, contrary to the principles discussed 

in Section 3.2.2. We decided to use it because most of the noise was clearly corpus-dependent, since each 

article contains a date header. For results without the month list, subtract 5% from the “person” type precision. 



 47

puts forth an experiment suggesting that these lists have a precision of at least 90%. We did 

not restrict Web mining to a specific geographic region, and we did not enforce strict 

conditions for list elements. As a result, the “state/province” list contains elements from 

around the world (not just Canada and the U.S.), and the “first name” list contains a 

multitude of compound first names although, as explained in Section 3.2.2, our algorithm is 

designed to capture them by merging sequences of first names. 

 

Table 7 shows the result of a pure list look-up strategy, based on our generated gazetteers (in 

the “Generated lists” columns). For the sake of comparison, the table also shows the best 

supervised results from Table 5 (in the “Mikheev combined lists” columns). The results we 

report in previous tables are all based on the MUC-7 held-out formal corpus. 

 

Table 7: Supervised list creation vs. unsupervised list creation techniques 

 Mikheev  

combined lists 

  

Generated lists 

 r e pr  F  re  pr  f  

organization 50 72 59  70 52 60 

person 47 85 61  59 20 30 

location 86 90 88  83 31 45 

 

We believe this comparison gives a good sense of the characteristics of both approaches. The 

supervised approach is quite precise but its recall is lower, since it cannot handle rare 

entities. The unsupervised approach benefits from large gazetteers, which make for higher 

recall at the cost of lower precision.  

 

The case of locations is interesting. There is evidence of a substantial vocabulary transfer 

between the training data and the testing data, which allows the supervised method to have 

an excellent recall on the unseen texts. Mikheev’s lists get a high recall with a list of only 

770 locations. The supervised method benefits from highly repetitive location names in the 

MUC corpus. 

 

These results are slightly misleading. The MUC scoring software that produces these 



 48

measures allows partial matching. This means that if a system tags the expression “Virgin 

Atlantic” when the official annotated key is “Virgin Atlantic Group,” it will be interpreted as 

a success. In Table 8, we provide another view of the system’s performance, which may be 

less misleading. For our system, it gives the precision and recall of all entity types at the 

“text” level; that is, how well it finds exact string matches.  

 

Table 8: Generated list performance on text matching 

 Generated lists  

re  Pr  f  

text 61 29 39 

 

The next step in our evaluation consists of adding the heuristics presented in sections 3.2.1 to 

3.2.3. These heuristics are designed to be unsupervised; that is, they require no training 

(unlike n-gram contexts, for example), and they are not deduced from our domain knowledge 

about a specific entity type. Table 9 demonstrates the contribution of each heuristic. The 

“Generated lists” columns are copied from Table 7 and Table 8, to show the performance of 

the list look-up strategy without disambiguation.   

 

Table 9: Performance of heuristics to resolve NE ambiguity  

 Generated  

lists 

 H1 (Entity -

noun 

ambiguity) 

 H1 + H2 

(Entity 

boundary) 

 H1 + H2 + H3 

(Entity- entity 

ambiguity) 

 re  pr  f   re  pr  f   Re pr  f   re  pr  f  

org.  70 52 60  69 73 71  69 74 71  71 75 73 

per.  59 20 30  58 53 55  66 63 64  83 71 77 

loc.  83 31 45  82 69 75  81 77 79  80 77 78 

text  61 29 39  61 57 59  72 72 72  74 72 73 

 

The contribution of each heuristic is additive. H1 (Section 3.2.1) procures a dramatic 

improvement in precision with negligible loss of recall. The main source of ambiguity is 

entity-noun homographs such as “jobs,” “gates,” and “bush.” 
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Heuristic H2 (Section 3.2.2) provides small gains in precision and recall of individual entity 

types (the first three rows in Table 9). As explained, these scores are misleading because they 

count partial matches, thus these scores are not sensitive to the boundary detection errors 

corrected by H2. However, the text matching performance is greatly improved (last row in 

Table 9). We noticed that most corrected boundaries are attributed to person entities 

composed of a known first name and an unlisted capitalized string, presumably standing for 

the surname. 

 

H3 (Section 3.2.3) mainly increases precision and recall for “person” type NEs, due to the 

alias resolution algorithm. An occurrence of a full person name is usually unambiguous, so it 

can help to annotate isolated surnames, which are often either ambiguous (confused with 

organization names) or simply unlisted strings.  

 

3.3.1 List Precision 

In Nadeau (2005b), we evaluated the precision of a list of 17,065 automatically generated 

city names. We sampled 100 names randomly and counted a precision penalty for each noisy 

entry. The list precision is 97% (by the Binomial Exact Test, the 95% confidence interval is 

91.4% to 99.4%).  

 

We did this again with lists created for Chapter 5 experiments: city, first name, clothing 

brand, and song title. Again, we sampled 100 examples randomly and calculated the 

precision from there. Table 10 reports population sizes and estimated precisions. 

 

Table 10: Estimated precision of automatically generated lists 

List  Population size  Precision  95% confidence interval  

City 15,500 97.0% 91.4% - 99.4% 

First name 40,000 99.0%  94.6% - 99.9%  

Clothing brand 799 98.0%  93.0% - 99.8%  

Song title 5,900 99.0% 94.6% - 99.9% 
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3.4 Evaluation with Car Brands 

There are many more NE types than those three classic enamex types. Sekine and Nobata 

(2004) propose a hierarchy of 200 NE types. Evans (2003) proposes a framework to handle 

such a wide variety. His approach is based on lexical patterns, inspired by Hearst (1992). He 

paired this technique with a heuristic for handling ambiguity in capitalized words. Our 

system is similar, but it is based on a method proven to give better entity-finding recall.  

 

In this section, we show how well the system recognizes car brands. Intuitively, it seems that 

this type would be easier to handle than something like “person,” which has an almost 

infinite extension. Yet recognizing car brands poses many difficulties. Car brands can be 

confused with common nouns (e.g., Focus, Rendez-Vous, Matrix, Aviator) and with 

company names (e.g., “Ford” versus “Ford Motor Company”). Another difficulty is the fact 

that new car brands are created every year, so it is challenging to keep a gazetteer up-to-date. 

 

We created a small pilot corpus composed of news specifically about cars from some popular 

news feeds (CanWest, National Post, and The Associated Press). We use eight documents, 

for a total of 5,570 words and 196 occurrences of car brands.  

 

The Web page wrapper technique was used to generate a list of 5,701 car brands, and the 

heuristics of sections 3.2.1 to 3.2.3 were applied without any modifications. Table 11 reports 

the results. 

 

Table 11: System performance for car brand recognition 

 Generated list   H1, H2 and H3  

 Re pr  f   re  pr  f  

cars 86 42 56  85 88 86 

text 71 34 46  79 83 81 

 

The performance on this task is comparable to that of the enamex. Without ambiguity 

resolution (in the “Generated list” columns), the precision is low, usually under 50%. This is 

the impact of frequent and ambiguous words like “will” (Toyota Will), and noise in our list 

(e.g., new, car, fuel). The ambiguity resolution algorithms (in the “H1, H2, and H3” 
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columns) increase the precision to above 80%. The remaining recall errors are due to rare car 

brands (e.g., “BMW X5 4.8is” or “Ford Edge”). The remaining precision errors are due to 

organization-car ambiguity (e.g., “National” as in “National Post” versus “Chevrolet 

National”) and noise in the list (e.g., Other, SUV). We believe that the good performance of 

gazetteer generation, combined with ambiguity resolution on an entirely new domain, 

emphasizes their domain-independent quality and shows the strength of the unsupervised 

approach. 

 

3.5 Supervised versus Unsupervised 

We describe our system as unsupervised, but the distinction between supervised and 

unsupervised systems is not always clear. In some systems that are apparently unsupervised, 

it could be argued that the human labour involved in generating labelled training data has 

merely been shifted to embedding clever rules and heuristics in the system.  

 

In our gazetteer generator (Section 3.1), the supervision is limited to a seed of four entities 

per list, a primitive noise filter (Section 3.1.4.5), the knowledge that month-person ambiguity 

is particularly problematic in MUC-7 (Section 3.3, Table 6) and three heuristics (Section 3.2) 

for handling entity ambiguity and adjusting entity boundaries. In our ambiguity resolver 

(Section 3.2), we attempt to minimize the use of domain knowledge of specific entity types. 

Our system exploits human-generated HTML mark-up in Web pages to generate gazetteers. 

However, because Web pages are available in such a quantity, and because the creation of 

Web pages is now intrinsic to the work-flow of most organization and individuals, we 

believe this annotated data comes at a negligible cost. For these reasons, we believe it is 

reasonable to describe our system as unsupervised.  

 

3.6 Conclusion 

In this chapter, we presented a named-entity recognition system that advances the NER state-

of-the-art by avoiding the need for supervision and by handling novel NE types. In a 

comparison on the MUC corpus, our system outperforms a baseline supervised system, but it 

is still not competitive with more complex supervised systems. There are fortunately many 
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ways to improve our model. One interesting way would be to generate gazetteers for a 

multitude of NE types (e.g., all 200 of Sekine’s types), and use list intersection as an 

indicator of ambiguity. This idea would not resolve the ambiguity itself, but it would clearly 

identify where to invest further efforts.  
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Chapter 4 

Noise-Filtering Techniques for Generating NE Lists 

In this chapter, we present a first improvement to BaLIE. It comes from the observation that 

entities of a given type tend to be lexically similar, in that they are comparable in length, they 

are made up of characters from a given character set, they often have common prefixes and 

suffixes, and so forth. We therefore formulated the hypothesis that lexical features are useful 

in identifying valid instances of an NE type. Our contributions are the following:  

 

• The design of a noise filter for NE list generation based on lexical features; 

• First experiments in using statistical semantics as noise filter. 

 

This chapter covers the “Noise filter” that is an improvement to the “List creator” module of 

Figure 1. The noise filter works on the output of the Web page wrapper module of BaLIE in 

order to generate NE lists of greater quality, as shown in Figure 4. Both the noise filter we 

present in this chapter and the Web page wrapper presented in the previous chapter are 

instances of the problem of learning from positive and unlabelled examples. In both case, we 

use an algorithm inspired by SMOTE (Chawla et al. 2002) to solve the problem. SMOTE is 

reviewed in Section 4.2.2. 

 

NE lists—also called dictionaries, lexicons, or gazetteers—are a typical component of NER 

systems. Lists are either an explicit system component (e.g., Cunningham et al. 2002), or 

they are derived from an annotated training data set (e.g., Bikel et al. 1999). For instance, a 

typical NER system that recognizes city names will refer to a list of cities and apply a 

mechanism to resolve entity boundary and type ambiguity. However, lists are rarely 

exhaustive and they require ongoing maintenance to stay up-to-date. This is particularly true 

with NE types such as “company,” which are very volatile. Moreover, the initial cost of 

creating a list of NEs is usually high because it either requires manual NE harvesting, or 

manually annotating a large collection of documents. 
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Figure 4: Details of noise filtering as a post-process for the Web page wrapper 

 

Recently, many techniques have been proposed to generate large NE lists starting from an 

initial seed of a few examples (e.g., Etzioni et al. 2005). Techniques have also been proposed 

to autonomously maintain an existing NER system (e.g., Heng and Grishman 2006) by 

increasing its underlying training data set. These semi-supervised learning techniques are 

Training the system 

(semi-supervised learning) 

List creator (from Figure 1):  

Output : annotated 

document (ambiguity 

not resolved) 

Output : generated lists 

of named entities 

Input : seed examples 

(see Appendix) 

Information retrieval using Web 

search engine (Yahoo! API) 

Web page wrapper 

(learning from positive and 

unlabelled examples) 

Testing the system 

(actual use and evaluation) 

Input : unannotated 

document 

From training : generated 

lists of named entities 

(noise filtered) 

Delimit : exact match list lookup 

Noise filtering 

(learning from positive and 

unlabelled examples) 
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based on bootstrapping lexical knowledge from a large collection of unannotated documents 

(e.g., the Web). An early example of a bootstrapping algorithm is provided by Riloff and 

Jones (1999).  

 

In Section 3.2 of the previous chapter, we proposed our own technique for NE list generation 

based on a bootstrapping algorithm. For efficiency, we kept this algorithm simple. The 

penalty for simplicity is noise in the generated NE list, but even the most sophisticated 

algorithm will generate noise. Most of our research focuses on the problem of noise. In 

Section 4.1, we summarize our NE list generation technique and explain the role of noise 

filtering. Our main contribution, detailed in Section 4.2, is a new noise-filtering technique, 

based on lexical NE features. In Section 4.3, we compare our technique to an existing noise-

filtering technique, based on information redundancy, and we also examine the combination 

of our lexical filter with the information redundancy filter. In Section 4.4, we show that the 

combination of the two noise filters is better than either filter taken individually. In Section 

4.5, we demonstrate the use of a third noise filter, based on statistical semantics techniques. 

Because of the computational complexity of this filter, we report the results of its use as a 

post-processing step, after the list generation process. Section 4.6 summarizes and concludes. 

 

4.1 Generating NE Lists from the Web 

The technique described in this section is inspired by Etzioni et al.’s (2005) “List Extraction” 

technique combined with “Wrapper Induction” (Section 3.1.2). The algorithm requires, as 

input, a seed list of a few examples of a given NE type (e.g., cities). Some seed examples are 

conjoined in a query sent to a Web search engine (e.g., “Boston” AND “New Delhi” AND 

“Louvain-la-Neuve” AND “Tokyo”). A query composed of four seeds seems to be optimal 

(Etzioni et al. 2005). A smaller query returns many irrelevant documents, and a longer query 

returns too few documents.  

 

The returned documents necessarily contain occurrences of all of the seed examples in the 

given query. The list extraction technique consists of detecting whether or not the seed 

examples appear inside an HTML list structure in the returned documents (e.g., a table or a 
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bulleted list). If a list structure is detected, then the entire list is extracted from the document 

and the elements of the list (except the seed NEs) are considered to be new NEs. In order to 

detect a list structure and extract elements from it, a wrapper induction algorithm is used. 

The new examples of NEs found are kept in quarantine until a noise filter has been applied. 

Entities that pass the noise filter are promoted to a list of  “accepted” entities and the 

remainders are held in quarantine.  

 

The algorithm is iterative, and an iteration consists of: 

 

Let S be a list of seed elements. 

Let A be a list of accepted named entities. 

Let Q be a quarantine list of candidate named entities. 

 

At the first iteration, let initialize A = S and Q =  {}. 

 

INPUT: A, Q 

 

1. Sample 4 elements from A and conjoin them to create a query; 

2. Send the query to a Web search engine and get top documents;  

3. Detect documents with a list structure; 

4. Apply list extraction technique to gather all elements of the list;  

5. Accumulate new NE examples in the quarantine list Q;  

6. Apply the noise filter test to all elements of Q: 

 6.1. A’ := Add elements that pass the test to A ;  

 6.1. Q’ := Only keep elements that fail the test in Q .  

 

OUTPUT: A’, Q’ 

 

Figure 5: Algorithm for one iteration of the NE list generation process 

 

The quarantine Q is persistent so that an element that is not promoted at a given iteration 

may be promoted in a subsequent iteration.  

 

The notion of NE frequency is very important here. If an NE is seen on n Web pages, then its 

frequency is n. The frequency of the input examples is initialized to one. We use the 

following parameter settings, which were experimentally found by manually adjusting the 
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parameter values and observing their qualitative effect. Making small changes to the 

parameters usually has a minor impact. We manually generate a seed list S containing three 

times the number of elements required at step 1 (3 · 4 = 12 seeds). This lets the algorithm run 

for three iterations without having to promote elements from Q. At each iteration, four 

examples are sampled from the list A of accepted NEs. Preference is determined first by NE 

frequency, and second, by order of appearance. A query is formed by quoting the elements 

(for exact phrase matching) and joining them with AND. We used the Yahoo! Web search 

engine (through the developer API). We retrieved the top 200 results for each query. We 

performed three initial iterations before applying step 6 (i.e., all new NEs are kept in Q). The 

goal of these preliminary iterations is to gather sufficient data for the filter to be effective 

(the filter benefits from a larger sample size). After the third iteration, and for all subsequent 

iterations, step 6 is applied (i.e., the best new NEs are moved from quarantine to the list of 

accepted NEs). We stopped the bootstrapping process after 10 iterations.  

 

The NE list generation process involves three lists: the seed list (S), the list of accepted NEs 

(A) and the quarantine list (Q). The seed list is only use at the first iteration to initialize the 

list of accepted NEs. When a new NE is retrieved from the Web, it is put in the quarantine 

list. It is promoted to the list of accepted NEs only if it successfully passes a noise-filtering 

test.  

 

A noise filter based on information redundancy performed well in the task of generating a list 

of cities and a list of mayors (Downey et al. 2005). We present this filter in Section 4.3. It 

uses the frequency of an extraction as its filtering criterion. In our experiments, we also noted 

this noise filter’s good performance. 

 

However, this filter’s weakness is that it does not take into account lexical information such 

as capitalization, punctuation, and the length of the NE candidate. Our hypothesis is that 

lexical information is useful to filter NEs.  

 

In the following section, we present our novel noise-filtering technique based on lexical 

features. Then, in Section 4.1.2, we compare and combine it with Downey et al.’s (2005) 
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information redundancy filter. 

 

4.2 Lexical Noise Filter 

Our experience with people’s names suggests that a person’s first name may contain a 

hyphen but probably not an ampersand, and that the name may often be less than six 

characters long. Conversely, a company name may contain an ampersand, and it will often be 

more than six characters long. This experience, indicative of distinctive lexical NE 

characteristics of a given type, drives the design of our noise filter. 

 

The role of a noise filter is to distinguish valid NEs despite the noise involved in the process 

of generation lists. The hypothesis that lexical features may be used for filtering noise comes 

from the observation that entities of a given type often appear similar at the character string 

level. To calculate entity string similarity, we defined more than fifty features. Table 12 

presents a list of our features and their data types. All these features can be found in NER 

literature, and in various NER systems. An explanation for each feature can be found in the 

Section 2.5.  

 

As explained earlier, NE candidates come from lists and tables on Web pages. The wrapper 

induction algorithm is designed so that extracted the tables and lists are made up of HTML 

nodes that wrap around NEs exactly (e.g., <td>Tokyo</td>). When the seeds are wrapped in 

HTML nodes exactly, NE candidates (the table’s remaining nodes) are usually wrapped 

accordingly. NE candidates are not full sentences. The NE boundary is usually resolved by 

the HTML mark-up (e.g., <td>), but in some cases, there is additional context (e.g., <td>city 

of Ottawa</td>, <td>Ottawa, Canada</td>, etc.). These examples are considered noise since 

the list extraction algorithm does not implement contextual patterns or parsing of any kind.  
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Table 12: NE lexical features 

Type  Feature  

Boolean HasCapitalLetter 

Boolean StartWithCapitalLetter 

Boolean IsAllCapitalized 

Boolean IsMixedCase 

Boolean HasPunctuation 

Boolean HasDigit 

Boolean HasDigitsOnly 

Boolean EndsInPeriod 

Boolean ApostropheIsSecondChar 

Boolean HasSpecificPunctuation 10 

Boolean IsRomanDigit 

Numeric Length 

Numeric NumSpace 

Numeric NumericValue 

Numeric NumLeadingDigits 

Numeric NumTrailingDigits 

Nominal Pattern 

Nominal SummarizedPattern 

Nominal Prefix (of length 1,2,3) 

Nominal Suffix (of length 1,2,3) 

Nominal Alphabetical 

Nominal NonAlphabetical 

 

4.2.1 Learning to Filter Noise with Lexical Features 

In the context of the current task, learning to filter noise illustrates the general problem of 

learning from positive and unlabelled examples. At a given iteration, the list of accepted NEs 

(A) is a pool of presumably positive examples (examples that were in S, and examples that 

passed through the noise filter in previous iterations). The quarantine list Q presumably 

contains both positive (valid NEs) and negative (noise) examples, but their actual classes are 

unknown. The quarantine list Q is therefore a pool of unlabelled data. 

                                                 
10 There is one feature for each of the following punctuations: apostrophe, slash, backslash, open and close 

bracket and parenthesis, open and end quote, colon, semi-colon, comma, period, question and exclamation 

mark, “at,” copyright and currency symbols, hyphen, and underscore. 
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Positive examples are usually learned from using standard machine learning techniques, 

while negative examples are selected from the unlabelled data, either directly or through a 

gradual, iterative process (Liu 2003).  

 

In Schölkopf et al. (2001), a Support Vector Machines (SVM) is used to learn from positive 

and unlabelled examples (also called “one-class SVM”). The technique is implemented in 

LibSVM11. In our experiments, we had no success with this technique. The classifier was 

overly conservative—classifying the vast majority of instances as noise—and the resulting 

filter performed below our baseline (Figure 6). 

 

In Schwab and Pohl (1999), a kind of instance-based learning is used to learn from positive 

examples exclusively. First, a threshold distance (α) is selected in the n -dimension space, 

where n  is the number of features (e.g., from Table 12). Examples within this distance of 

any positive example are classified as positive, while examples that are too distant are 

classified as noise.  A variant of the idea involves using the centroid of positive examples as 

the singular reference point. Schwab and Pohl calculate the Hamming distance between two 

points, though the Euclidian distance can also be used in the n -dimensional space. They also 

assign variable weights to features according to their relative importance. We tested many 

configurations of this classifier and we obtained the best results using the centroid of positive 

examples as a reference point, calculating Euclidian distances between points, setting α as 

the positives’ mean distance from the centroid, and setting equal weight to every feature. The 

performance of the resulting classifier, called IB (instance-based), is presented in Figure 3.  

 

We tested many techniques in addition to those mentioned above. One technique, inspired by 

the SMOTE algorithm (Chawla et al. 2002), gave a superior performance. We coined the 

technique “SMOTE One-Class Learner” to note our original application of the SMOTE 

algorithm to the problem of learning from positive and unlabelled examples (also called one-

class learning). SMOTE’s main novelty is the dual use of data under-sampling and data over-

                                                 
11 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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sampling. 

 

4.2.2 SMOTE One-Class Learner 

The prerequisite for this learning algorithm is for positive examples to be in a minority class 

with respect to unlabelled data. When this condition is not met, we simply choose a random 

subset of positive examples so that there are fewer in our data set than unlabelled examples.  

 

A SMOTE One-Class Learner can be created by combining any standard supervised learning 

classifier (e.g., Naïve Bayes, Decision Trees, etc.) with a pre-processor that under-samples 

the unlabelled examples, and over-samples the positive examples to balance the data set prior 

to applying the learning algorithm.  

 

The original SMOTE algorithm was effective in forcing focused learning and introducing a 

bias towards the minority class (Chawla et al. 2002). Our SMOTE One-Class Learner forces 

focused learning on the positive examples that we deliberately assign to the minority class.  

 

The original SMOTE algorithm performs a “wise” minority class over-sampling and a 

random majority class under-sampling (Chawla et al. 2002). In the one-class scenario, we 

perform an “even” over-sampling of positive examples and a “wise” under-sampling of 

unlabelled data. The key to focused learning is the synergy of both types of sampling. We 

explain the various data-sampling techniques in the following paragraphs. 

 

Preliminary sampling (if necessary): First, sample a few positive examples and all the 

unlabelled examples from the data set. Positive examples are chosen randomly, if necessary, 

so that the data set has at least an imbalance ratio of 1:2 positive to unlabelled ratio. Usually, 

the data is already highly imbalanced, as with the case of the list generation algorithm’s 

initial iteration, wherein we have four positive examples (the initial seed) and thousands of 

unlabelled examples (the candidates in quarantine). 

 

Majority class undersampling: The problem with the majority class (unlabelled data) is 

that it contains both positive and negative NE examples. The under-sampling strategy 
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consists of trying to remove positive examples from this pool of examples. We excluded 

unlabelled examples corresponding to class noise, which are examples with a feature vector 

exactly equal to that of a positive example. We also exclude unlabelled examples with a 

Hamming distance of 1 from any positive examples (in other words, they are one feature 

away from being class noise). 

 

Minority class over-sampling: Usually, the previous sampling results in an imbalanced data 

set. We therefore duplicate the positive examples evenly up to a positive to unlabelled 1:1 

ratio. 

 

Reclassify: A standard classification model can be learned using the resulting set of positive 

examples and the resulting set of unlabelled examples, acting as negative examples for 

classification purpose. In our experiments, we use the RIPPER algorithm (Cohen 1995) that 

performs well in the original SMOTE algorithm. The classification model is used to 

reclassify the unlabelled examples (the NE candidates). Examples with a positive outcome 

are promoted to the list A, while examples with negative outcome are kept in Q. 

 

4.2.3 Evaluation of Lexical Filter 

We evaluated the list generation algorithm’s precision and recall with and without the noise 

filter. This evaluation is performed on the final list of NEs obtained after 10 iterations.   

 

To evaluate precision and recall automatically, we built NE reference lists by merging lists 

from existing NER systems and resources: Gate (Cunningham et al. 2002), MinorThird 

(Cohen 2004), Oak (Sekine and Nabota 2004), and MUC-7 reference data12. However, we 

only used NE list subsets that were available in a minimum of three systems out of four. We 

believe it removes system bias and guarantees more complete references. Indeed, a single 

resource is very often biased or incomplete. For instance, only Oak’s list of provinces 

contains Japanese province names; only Gate’s list of countries contains the French names of 

                                                 
12 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2001T02 
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countries; and MUC-7’s list of cities contains 150,000 city names, while other resources 

contains less than 5,000 city names. In using lists from three resources, we aim to minimize 

bias and maximize completeness in our references. Table 13 presents our reference lists. 

 

Table 13: Reference lists for noise filter evaluation 

Type  Sources  Mean size  

First name Gate, Minorthird, Oak ~6,800 

City Gate, MUC-7, Oak ~50,000 

State/Prov. Gate, MUC-7, Oak ~2,600 

Country Gate, MUC-7, Oak ~400 

 

We generated NE lists for the types listed in Table 13, and we calculated standard precision 

and recall by looking for exact NE matches between generated lists and reference lists. The 

final metric quality is f-measure, which is the harmonic mean between precision and recall. 
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Figure 6: Comparing lexical filters 

 

In Figure 6, we report the mean f-measure on the three reference lists. Results are given for 
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the following classification strategies: Baseline (no noise filter), IB (instance-based, Schwab 

and Pohl 1999), SMOTE (SMOTE one-class classifier, Section 4.2.2). An SVM strategy 

(Schölkopf et al. 2001) returns very poor results, omitted here. In most cases of our 

experiments, an SVM-based filter allows a tiny 0.1% of NE to be promoted from Q to A, 

resulting in poor recall. 

 

This experiment shows that the SMOTE One-Class Learner outperforms other techniques for 

learning to filter noise based on positive and unlabelled NE examples.  

 

4.3 Information Redundancy Filter 

When a noise filter is based on information redundancy (Downey et al. 2005), the intuition is 

such that an extraction obtained from multiple, distinct documents is likely more valid than 

that obtained from only one.  

 

The information redundancy filter is based on the “balls-and-urns” model from 

combinatorics, in which extracting an NE candidate from the Web corresponds to a draw 

from an “urn.” Given background knowledge about the content of the “urn,” it assigns the 

candidate the probability of being valid given that it has a frequency of k  (the number of 

times this particular extraction was drawn from the “urn”) and a sample of size n  (the 

overall number of draws from the “urn”). Candidates with a high probability (e.g., higher 

than 90%) are promoted to the NE list. 

 

An urn is characterized by C , the set of valid NEs (C  is the number of single NEs in the 

urn) and E , the set of errors (E is the number of single errors in the urn). Background 

knowledge required to use the model is the size of the NE population C , the size of error 

population E , and the accuracy of the p  extraction process. As in Downey et al. (2005), the 

number of errors E  is approximated to 1x106, and the extraction process is said to be 

accurate at p  = 90%. The high accuracy of the extraction process means that the valid 

information in the urn is far more redundant than the noise (even if noise is more frequent). 
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We approximate the size of an NE population C  using the size of its mean in Table 13. For 

instance, the number of valid first names is around 6,800.  Under some simplifying 

assumptions to approximate the distribution of C  and E , Equation 1 estimates the 

probability of an NE candidate’s validity, given it is seen k  times in n  draws.  

 

P(x ∈ C | x was seen k times in n draws) ≈ 

( )EC ppn
k

C

E e
p

p

C

E −




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


+1

1
 (1) 

 

CP , the probability that a particular element of C  will appear in a draw, is 
C

p
, and EP  is 

E

p)1( −
. Figure 7 reports the quality of information redundancy compared to the best lexical 

filter of Section 4.2. The filters perform at similar 

levels.
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Figure 7: Comparison of lexical filter and information redundancy filter 
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In preliminary experiments, we verified that the information redundancy model was superior 

to using an absolute frequency threshold. One strategy was to use a very simple noise filter 

that promotes every candidate with a higher frequency than 2 or 3. However, this strategy 

gives poor results, often under the baseline of Figure 6. This is explained by the fact that the 

frequency threshold is dependent on the number of valid entities C  and the current number 

of n draws. For instance, knowing that there are only 200 valid country names, if the 

extraction process returns 100,000 candidates, then the frequency threshold must be very 

high to filter that amount of noise. Even with highly precise information extraction 

techniques (e.g., p = 90%), there would be 10,000 noisy entries and 90,000 repetitions of the 

200 valid countries. A candidate repeated four or five time would likely be noise, since we 

expect a valid country to be repeated 450 times. In this scenario, the information redundancy 

model seems perfectly suited to filter noise.  

 

4.4 Noise Filter Combination 

Both the lexical filter and the information redundancy filter can output a probability estimate. 

Moreover, they use different sources of information: one is based on the internal properties 

of NEs, considered character strings; and the other is based on the external properties of NEs, 

derived from their statistical distributions in lists on the Web. We can combine the 

probability estimates of the two filters by taking their average. Figure 8 compares the 

independent components and their combination. 

 

The combined noise filter probability function (SMOTE+IR) is the weighted sum of the 

SMOTE and IR components’ probability functions. Since both components give comparable 

performances, we give them equal weight. The combination of both noise filters brings 

interesting improvements. For instance, the “country” type performance increases by almost 

10%.  
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Figure 8: Comparison of individual filters and their combination 

 

The impact of filtering noise from lists can be measured on the NER task. In Table 14, we 

compare performance of BaLIE with unfiltered lists (taken from Table 9) and with filtered 

lists (using the combination of noise filters).  

 

Table 14: BaLIE performance on MUC-7 corpus with and without noise filtering 

 Without noise filtering  With noise filter ing  

Type  Precision  Recall  F- measure  Precision  Recall  F- measure  

Organization 75 71 73 75 78 76 

Person 71 83 77 71 79 75 

Location 77 80 78 76 81 78 

Text 72 74 73 74 79 76 

 

The immediate impact of noise filtering is not to improve precision on the NER task. Most 

noise is well handled, when annotating NEs, by rules such as looking at word capitalization 

(heuristic H1, Section 3.2.1).  However, the noise filter enables the gazetteer generation 

algorithm to run for more iterations and creates larger and cleaner lists. It raises the NER 

recall, particularly for the 'organization' type, which has a very large set of possibilities. We 
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believe that precision errors cannot be addressed by generating larger lists of named entities. 

There is rather a need for better disambiguation rules, particularly for resolving entity-entity 

ambiguity. This is the aim of experiments described in Chapter 5. 

 

4.5 Statistical Semantics Filter 

Statistical Semantics is the study of how the statistical patterns of word usage can be used to 

solve problems requiring semantic information. One technique in this field is called “Latent 

Relational Analysis” (LRA), and was designed for the classification of semantic relations 

between word pairs (Turney 2005). LRA measures relational similarity between two pairs of 

words. When two pairs have a high degree of relational similarity, they are analogous. For 

example, the pair “cat:meow” is analogous to the pair “dog:bark.”  

 

In this section, we show that LRA can be used as a noise filter for generating NE lists. We 

use LRA to measure the relational similarity of pairs made up of an NE candidate NE and its 

type (e.g., “London:city,” “John:first_name,” “Canada:country”). LRA lets us measure the 

similarity between known valid pairs (e.g., “Boston:city”) and candidate pairs (e.g., 

“Kolkata:city,” “Click Here:city”). For instance, a high relational similarity means that 

“Kolkata is to city as Boston is to city.”  Conversely, a low relational similarity means that 

“Click Here is not to city as Boston is to city.”   

 

The previous filters were based on lexical features and on redundancy information, whereas 

a statistical semantics filter uses information on the relation between an NE and its type by 

looking at word usage patterns in a large collection of documents. The LRA algorithm we 

used in this experiment is similar to that of Turney (2005), using a corpus of one terabyte of 

textual data (Terra & Clarke, 2003). 

 

LRA requires much more time to compute than SMOTE (Section 4.2.2) or IR (Section 4.3). 

For a lexicon of one hundred entries, LRA usually takes up to five minutes to run. Our 

lexicons will often exceed 100,000 NE candidates. For practical reasons, we apply LRA 

outside the list generation process of Figure 1. Instead of integrating LRA into the iterative 
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algorithm, we use it as a post-processing filter applied to the final NE list, obtained after all 

iterations.  

 

Our goal is to model the relations between known valid word pairs (the seed words), and to 

measure the similarity of the modeled relation with that of the NE candidate. We use it in 

two approaches: one for demoting NE that were added to the NE list; and one for promoting 

NE that were kept in the quarantine. These approaches follow the steps described in the next 

paragraphs. 

 

First, a passage-retrieval search engine is used on a 1Tb textual data corpus (Terra & Clarke, 

2003) to find passages where a word and its type (e.g., “Prague” and “city”) appear with a 

maximum of three intervening words. 

 

Generalizations of all passage are generated and listed. Passages (e.g., “Prague is a city”) and 

generalizations of passages (e.g., “Prague * a city”) are called “patterns.” A pattern is 

constructed by replacing any or all or none of the intervening words with wild cards (one 

wild card can only replace one word).  

 

Total pattern frequencies for all NEs under examination are smoothed using entropy and log 

transformations (Landauer and Dumais 1997). 

 

Singular value decomposition (SVD) is performed on a matrix made up of word pairs and 

associated patterns. SVD compensates for the sparseness of the matrix.  

 

Resulting matrix rows associated with word pairs are used as vectors to compute a similarity 

value based on vector cosine. Given two word pairs, the similarity of their associated rows is 

therefore computed using the cosine of the angle between the rows. Each candidate pair is 

compared to the seed pairs. The relational similarity is the mean of similarity between a 

candidate pair and each seed pair. The idea is to keep word pairs analogous to NE seeds by 

setting a threshold on the relational similarity. In our experiment, the threshold we use is the 

minimal similarity found by comparing each of the seeds against one another.  
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During a first approach, all NEs from the list are compared to the seed, and those that are not 

analogous are demoted and returned to the quarantine. In a second approach, all candidates 

from the quarantine are compared to the seed and the analogous candidates are promoted to 

the final NE list. 

 

We applied the statistical semantics filter on the output of the list generation process that 

uses the SMOTE+IR filter. The resulting list quality improves for two NE types out of four. 

For the “state/province” and “city” types, there is no statistically significant change. The 

improvement for “first name” and “country” types is mainly attributed to the second 

approach (promotions) and brings a recall gain. The respective f-measures rise to 39.23% 

and 73.51%. The improvement is slight yet statistically significant. 

 

We believe the statistical semantics filter is able to capture very difficult cases of noise such 

as concept drift (e.g., a continent name appearing in list of countries; a full name appearing 

in a list of first names), as well as highly redundant noise (table headers such as “country,” 

“population,” etc.). However, we require further investigation and experiments to better 

understand LRA’s contribution to noise filtering. 

 

4.6 Conclusion 

Generating NE lists using a semi-supervised learning technique applied on large collections 

like the Web is a noisy process. Filtering noise early on is essential since bootstrapping 

algorithms use knowledge of a given iteration to extract new knowledge at the next iteration.  

 

In this research, we look at three noise-filtering techniques. Our main contribution is the 

development of a lexical filter that classifies NE candidates according to surface cues like 

capitalization, punctuation, etc. We compare and combine this to a noise-filtering technique 

based on information redundancy. We show that combining both filters performs better than 

using any of them in isolation. In the final experiment, we demonstrate the use of a statistical 

semantics filter making use of the LRA algorithm. This last experiment had a slightly 
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positive outcome, and most of our future works will aim at better integrating and 

understanding the use of statistical semantics in the NE list generation algorithm. 

Successfully generating large NE lists is a key component in semi-supervised NER. Such 

technology will enable autonomous deployment of NER systems, as well as automatic 

maintenance of existing systems 
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Chapter 5 

Discovering Unambiguous NEs for Disambiguation Rule Generation 

In this chapter, we put forth a second BaLIE improvement. In the baseline system (Chapter 

3), ambiguity between two entity types (e.g., “France” is either a country or a person) is 

resolved only if there is a very strong cue for one entity type in its alias network (e.g., the 

unambiguous passage “Ms. France Beaudoin” appears in the text). This is rarely the case. 

We improved the resolution of this ambiguity by learning disambiguation rules that are 

applicable to any textual passage. This way, an entity-entity ambiguity can be resolved even 

without an alias network (Section 3.2.3). If such a network exists, each instance of a 

resolution can contribute to the final decision.   

 

NE ambiguity resolution is not novel. Many techniques were proposed in supervised learning 

settings using classifiers (e.g., Sekine 1998 decision tree) and sequence-labelling techniques 

(e.g., Bikel et al. 1997 HMM). However, in a semi-supervised learning setting, this presents 

more challenges. Cucerzan and Yarowsky (1999) proposed an algorithm, and highlight that 

the general precondition for building a semi-supervised NE ambiguity resolution system is 

the need for unambiguous NE examples. Manually listing unambiguous NEs is a bottleneck 

in this kind of system. Our contribution is the following: 

  

• The demonstration of a simple strategy based on set intersection, which helps 

identify unambiguous NE examples. 

 

This chapter presents an improvement for the “Rule learner” module of Figure 1 that serves 

the purpose of the “Classify” step of McDonald’s (1993) paradigm. Figure 9 details the 

process of training and evaluating disambiguation rules. 

 

An NE is unambiguous if its label refers to only one object. Examples of ambiguous NEs are 

common: “Apple” refers to a company as well as a fruit; “Chicago” refers to a city and a 

musical, etc. Finding unambiguous NEs is a difficult task because examples that may seem 

unambiguous at first (e.g., Nevada, Vancouver, etc.) often turn out to be ambiguous due to 
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the broad range of certain entity types, such as brands (e.g., “Nevada” is a Sears Canada 

clothing brand), and linguistic phenomena, such as metonymy (e.g., “Vancouver” also stands 

for the “Vancouver Canucks” hockey team).  

 

Figure 9: Details of training disambiguation rules in a semi-supervised manner 

We present a technique that can identify the unambiguous NE in a list. The idea is that 

Training the system 

(semi-supervised learning) 

Testing the system 

(actual use and evaluation) 

Rule learner (from Figure 1):  

Input : generated lists 

of named entities 

Identification of 

unambiguous examples 

Intermediate: unambiguous 
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Finding passages of these entities 
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Learning disambiguation rules 

for each possible pair of NE type  

Classify: hard-coded rules 

Input : annotated document 

(ambiguity not resolved) 

Output : annotated document 

(ambiguity partially resolved) 

Classify: apply binary classifiers 

From training : family of 

binary classifiers 
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unambiguous NEs can be used to automatically generate training data for NE disambiguation 

(Cucerzan & Yarowsky 1999).  

 

This chapter is built on the hypothesis that the set differences of automatically generated 

multiple gazetteers are a set of unambiguous NEs. That is, if an NE appears in exactly one 

gazetteer, given a large set of gazetteers, then we assume that the NE is unambiguous. It may 

sound simple, but testing this requires extensive linguistic resources.  

 

In Section 5.1, we present related work in the NER field wherein unambiguous NEs are 

collected and used for various tasks. In Section 5.2, we describe the result of a massive 

gazetteer generation for 100 NE types. In Section 5.3, we measure and qualify the ambiguity 

between NEs. In Section 5.4, we explain how to create disambiguation rules from 

unambiguous NE examples. Then, in Section 5.5, we put forth a framework for evaluation 

that supports our hypothesis, which states that the set differences of automatically generated 

multiple gazetteers are a set of unambiguous NEs. Section 5.6 presents the conclusion.  

 

5.1 Related Work 

Unambiguous NEs are discovered and used to develop baseline NER systems for 

benchmarking (Mikheev et al. 1999), as well as features in standard NER systems (Szarvas 

2006). A baseline system can be created by tagging all NEs in a training data set, and by 

removing the ambiguous NEs that appear under more than one type. The remainder is used 

to search for an exact match in the unambiguous list, then to tag a test corpus.  This 

technique is known as “supervised learning,” since the NE list is derived from annotated 

data. In our work, we do not use annotated data.  

 

Unambiguous NEs are also used in related work by Cucerzan and Yarowsky (1999). It 

begins with a small seed of unambiguous NE examples to bootstrap a larger set of NEs 

paired with sense-disambiguation rules. This technique falls into the semi-supervised 

systems category, but it requires manually feeding the system with unambiguous examples 

listed by an expert linguist. Our technique identifies unambiguous NEs automatically. 
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A popular technique to identity ambiguity in NE lists consists of applying the set intersection 

operator between an NE list and a general dictionary (e.g., Mikheev 1999). It is mainly used 

to disambiguate ambiguous common-noun NEs (e.g., “Apple”).  In our work, we address 

both entity-noun ambiguity and entity-entity ambiguity (e.g., “Chicago”).  

 

Identifying unambiguous NE using set differences of automatically generated multiple 

gazetteers is novel for three reasons: 

1. Our technique is not based on analysis of annotated data; 

2. We eliminate the constraint of manually finding unambiguous NE examples; 

3. We address entity-entity ambiguity.  

 

5.2 Massive Generation of NE Lists 

We generated NE lists for the 100 types specified in the Appendix. Our choice of type is 

influenced by Sekine’s hierarchy (Sekine and Nobata 2004) and the BBN corpus13. The 

following table demonstrates statistics for all these types. We included the overlap 

measurement between BaLIE and Oak lexicons (Sekine and Nabota 2004) calculated as the 

number of named entities belonging to both lexicons. Oak is a handmade NE system of 

lexicons and rules.  

 

Table 15: BaLIE and Oak lexicon comparison 

Type 

BaLIE lexicon 

size 

Oak lexicon 

size Overlap size 

first_name          40,000 7,000 4,852 

last_name           6,700 82,000 3,334 

person_title        15 7 6 

celebrity           6,600 1,400 226 

title               915 121 25 

character           1,600 3 2 

company             27,200 13,900 3,125 

                                                 
13 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2005T33 
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military            32 502 1 

association         1,700 568 65 

government          1,300 1,700 406 

political_party     430 987 23 

nationality       285 161 99 

market              243 56 43 

sports_team         163 288 123 

city                15,500 1,300 1,144 

state_province      1,600 393 188 

country             1,000 777 610 

county              867 1,700 867 

region              548 1034 44 

landform            74 2,500 0 

river               1,100 2,800 506 

sea                 138 8 6 

planet              17 10 10 

star                310 84 35 

cathedral           25 2 1 

school              3,600 4,800 2,375 

museum              2,800 4,300 1,153 

airport             580 7,500 256 

port                155 2 2 

library             159 14 2 

road                313 2 1 

bridge              78 2 1 

station             64 5 2 

railroad            404 2 0 

amusement_park      300 3 2 

monument            67 2 1 

car                 961 33 6 

ship                1,300 736 72 

train               20 5 1 

aircraft            53 731 2 

spaceship           179 47 24 

opera_musical       238 259 78 

song                5,900 1 1 

sculpture           57 1 1 

broadcast           2,400 10 4 

movie               327 654 42 

book                2,000 52 12 

newspaper           1,300 1,700 419 

magazine            125 107 35 
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weapon              259 9 2 

drug                5,300 14,800 437 

food                130 3 2 

game                243 42 2 

war                 145 57 21 

crime               351 5 1 

conference          41 23 4 

mammal              99 4 4 

mineral             139 30 23 

disease            1,400 1,200 547 

religion            166 3 3 

colour               25 4 4 

language            127 2 1 

award               226 317 12 

sport               189 3 1 

academic            80 3 3 

rule                213 869 10 

theory              121 161 2 

total 141,000 157,000 21,312 

 

Overlap in Table 15 should not be interpreted as an evaluation of the BaLIE lists’ quality. 

Rather, it gives an idea of the intersection between the BaLIE and Oak lexicons. In addition, 

BaLIE handles 29 NE types that are not implemented in Oak. Table 16 reports these types 

and the size of each list. 

 

Table 16: Additional BaLIE lexicons 

Type  Lexicon size  

vocation 1,700 

political_line 19 

religious_group 300 

lake 600 

ocean_bay 20 

continent 8 

amphitheatre 271 

castle 16 

skyscraper 142 

sport_place 251 

hotel 13 

hospital 25 
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park 55 

painting 73 

food_brand 663 

clothing_brand 799 

holiday 41 

hurricane 138 

insect 73 

sea_animal 170 

fish 45 

reptile 15 

bird 202 

vegetal 20 

measure 67 

currency 83 

month 22 

weekday 14 

god 15 

Total 5860 

 

5.3 NE Ambiguity 

Here, we observe automatically generated NE lists. In Section 5.3.1, we manually qualify 

ambiguity by finding its source in four important entity types. In Section 5.3.2, we quantify 

ambiguity levels in generated lists to highlight the proportion of ambiguous entities, as well 

as the most and least ambiguous entity type. 

 

5.3.1 Qualifying Ambiguity 

We looked at ambiguity in four important NE types: first name, city, clothing brand, and 

song. We chose these entity types because they have high cardinality, and also because they 

intuitively exhibit different kinds of ambiguity. We randomly sampled 100 elements from 

these lists and queried a passage-retrieval search engine, which leveraged 1Tb of data (Terra 

& Clarke 2003). For each entity, we retrieved up to 50 textual passages, for a total of up to 

5,000 passages per entity type. When 50 passages of an entity refer to the correct type 

(manually verified), the entity is considered unambiguous. If one or more passages refer to 

the wrong type or to something else, the entity considered ambiguous. This criterion is more 
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rigorous than that of Szarvas et al. (2006), which consider an entity unambiguous if it has the 

same sense 90% of the time in a training corpus. In the following table, we qualify the 

ambiguity between entity types. 

 

Table 17: Source of ambiguity between entity types 

Source of ambiguity  First name  City  Clo thing 

brand 

Song 

No ambiguity 38% 48% 23% 39% 

Common noun/phrase 3% 4% 11% 47% 

First name N/A 6% 2% 1% 

Last name 34% 13% 16% 1% 

Full name 5% 1% 38% 3% 

City 6% N/A 1% 1% 

State - 3% - - 

County 2% 4% - - 

Country - 6$ - - 

Company 4% 2% 2% 2% 

Street 5% 2% - - 

Prayer 1% - - - 

Product 1% 1% - - 

Tree - 2% - - 

Car - 1% - - 

Sports team - 3% - - 

Nationality - 1% - - 

Scientific journal - - 1% - 

Lake - - 1% - 

Dance - - 1% - 

National Park - - 1% 1% 

Award - - 1% - 

Hotel - - - 2% 

Book - - - 1% 

Movie - - - 1% 

 

The surveyed entity types show high levels of ambiguity: 52% (city) to 77% (clothing brand) 

of all NE instances were ambiguous. First names are predominantly ambiguous with last 

names (e.g., Frank, Isabel, Matthews, Robert), full names (e.g., Robert William, Sarah Jane, 

etc.), cities (e.g., Carlton, Clarinda, Orlando, etc.), companies (e.g., Nielsen, Sierra), and 
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street names. Streets are often named after people, and while they often contain street 

markers such as “Drive” or “Avenue,” metonymic references render them completely 

ambiguous (e.g., “…go to the Carol Sue intersection (third stoplight). Turn left…”). 

 

Approximately half of cities are non-ambiguous. Therefore, in NER, one city out of two can 

be recognized in a simple lexicon look-up. Ambiguity is mainly identified in last names (e.g., 

Branson, Laval, Nurnberg), common nouns (e.g., cork, little rock), and countries (e.g., Texan 

city “Italy,” Mexico’s capital “Mexico city”). 

 

Clothing brands are highly ambiguous because of the tendency to name brands after the 

designer’s full name (e.g., Christian Dior, Tommy Hilfiger, Ralph Lauren) or last name (e.g., 

Armani, Puma, Gant). Clothing brands also often use common nouns (e.g., Fossil, Iceberg, 

Polo). There are also some interesting ambiguities such as “Joop” (clothes and perfumes) and 

“JOOP” (Journal of Object-Oriented Programming). 

 

Finally, songs are unique due to their broad intersection with common nouns and phrases 

(e.g., “Black velvet,” “Crazy,” “Don’t be cruel,” “On the road again,” “Satisfaction,” “You 

really got me”). Songs can also be named after people (e.g., “Billie Jean,” “Gloria”) and, 

interestingly, we identified ambiguity with hotel names (“Heartbreak Hotel,” an Elvis 

Presley song that is also the name of numerous hotels worldwide, in Graceland, Florida, and 

more). However, we found no ambiguity with the song “Hotel California” in our sample. 

 

An interesting conclusion can be drawn from these observations: most ambiguities can be 

identified by intersecting NE lists. In the Table 17, only 3 entities out of 400 are ambiguous 

with an NE type outside of BaLIE: a first name that also describes a kind of prayer (Marian: 

“…of the most popular Marian prayers of the Western…”); a clothing brand that is also the 

name of a scientific journal (JOOP: “…Dr. Dobb's Journal, JOOP…”); and a clothing brand 

that also describes a kind of dance (Samba: “…just heed a Samba rhythm, carried north 

on…”). 
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5.3.2 Quantifying Entity-Entity Ambiguity 

In this section, we demonstrate the proportion of entity-entity ambiguity per type. Table 18 

presents the entity types sorted from the most to the least ambiguous.  

 

Table 18: Percentage of entity-entity ambiguity per type 

Type 

Ambiguity 

(%) Type 

Ambiguity 

(%) Type 

Ambiguity 

(%) 

language 93.60  ship 22.32  celebrity 8.21 

nationality 74.81  religion 21.85  railroad 8.10 

country 70.16  food_brand 21.68  song 8.03 

last_name 61.58  city 21.20  drug 7.44 

state_province 60.09  first_name 19.76  sports_team 6.45 

god 60.00  monument 19.70  road 6.42 

planet 58.82  food 18.60  bridge 6.15 

mammal 56.57  mineral 17.99  spaceship 5.75 

region 54.28  political_line 17.65  crime 5.42 

religious_group 51.28  broadcast 16.43  train 5.00 

weekday 50.00  bird 16.34  award 4.95 

colour 50.00  star 16.12  association 4.54 

fish 48.33  aircraft 15.69  cathedral 4.00 

currency 47.06  ocean_bay 15.38  rule 3.57 

month 45.71  government 15.37  military 3.33 

sea_animal 44.31  game 15.00  disease 2.97 

measure 42.42  war 14.50  market 2.88 

reptile 42.11  station 14.29  theory 2.67 

magazine 41.53  book 14.11  car 2.09 

movie 38.54  castle 12.50  park 1.75 

clothes 37.89  title 12.28  museum 1.68 

opera_musical 36.91  sculpture 12.28  sports_place 1.65 

vegetable 35.00  lake 11.53  skyscraper 1.49 

person_title 33.33  weapon 11.22  port 0.67 

sea 32.56  river 10.97  school 0.22 

character 30.78  painting 9.59  county 0.00 

academic 28.85  library 9.47  continent 0.00 

amphitheatre 27.71  company 9.31  airport 0.00 

holiday 27.50  newspaper 8.73  hotel 0.00 

insect 24.66  landform 8.70  hospital 0.00 

sport 24.54  amusement_park 8.70  hurricane 0.00 

vocation 23.35  political_party 8.29  conference 0.00 
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Ambiguity is measured by the intersection of a type with all other types. Intersecting names 

must exactly match so that the airport “Toronto Lester B Pearson International Airport” is 

not ambiguous with the city “Toronto” or the person “Lester B Pearson”. An ambiguity of 

93.6% means that 93.6% of the type’s instances intersect with an instance of another type.  

 

Two problems arise from analyzing this table. First, some types intersect heavily. This is the 

case for the “language” and “nationality” types, as well as “planet” and “god,” which share 

lot of elements naturally (there’s a fuzzy line between languages and nationality; planets are 

named after Roman deities). This is also the case where slight concept drifts bring lot of 

ambiguity. For instance, the “region” and “country” types can share lot of island names.  

 

The second problem is the inconsistency between the level of ambiguity in Table 18 and that 

which is calculated in Table 17 of the previous section. For instance, the manual ambiguity 

analysis revealed that 59% of first names, 48% of cities, 66% of clothing brands, and 14% of 

songs are ambiguous with elements of another entity type (excluding ambiguity with 

common nouns and phrases). The intersection of lists allows us to identify, respectively, 

19.76%, 21.2%, 37.89%, and 8% of ambiguity.  This is approximately half of the manually 

assessed ambiguity. We believe the main reason for this discrepancy is the recall of BaLIE 

lists versus the true extension of entity lists.  

 

5.4 From Unambiguous NE to Disambiguation Rules 

Cucerzan and Yarowsky (1999) demonstrate that disambiguation rules can be learned from a 

set of unambiguous NEs. Their semi-supervised learning technique illustrates the problem of 

learning from positive examples. In this section, we show that we can greatly disentangle the 

problem by using heuristics and classical binary classification exclusively. On the one hand, 

we can resolve a great deal of noun-entity ambiguity with simple capitalization constraints as 

outlined by the Mikheev (1999) technique (see Section 3.2.1). On the other hand, given an 

ambiguity between two or more types, we can create one or many Boolean classifiers made 

of positive examples of one type against those of another type. In the following sections, we 
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present the experimental set-up for entity-entity disambiguation. 

 

5.4.1 Entity-Entity Disambiguation Rules  

Disambiguation is required when an entity is described by two or more NE types. Let’s 

examine a case with two ambiguous types. A scenario with more than two types is covered in 

the next section. 

 

A Boolean classifier is built using positive examples of two entity types under examination. 

Positive examples of a given type are found by querying a passage-retrieval search engine 

(Terra & Clarke, 2003) with unambiguous NE instances. These unambiguous NEs are found 

by removing entities that intersect with any other type. According to our hypothesis, the 

retrieved passages are therefore positive examples of a correct NE type in its context.  

 

We chose to build classifier similar to the baseline system aimed at word sense 

disambiguation (WSD) called “Duluth 6” (Pedersen 2002). Duluth 6 is an ensemble of naive 

Bayes classifiers trained on different sets of features. A first classifier uses word unigrams in 

the context of the ambiguous word. A second classifier uses word bigrams in the context of 

the ambiguous word. A third classifier uses word unigrams adjacent to the ambiguous word. 

The context of an ambiguous word is made of ten words on its left and ten words on its right. 

 

Above and beyond Duluth 6, we added a fourth classifier that uses features of the present 

NEs in the context of the ambiguous words. For example, “Dell” is ambiguous between a 

person and a company name. In the phrase “Michael Dell”, the fourth classifier would use 

the information that “Dell” is preceded by a known first name. This additional classifier is 

based on the common assumption (e.g., Carreras et al. 2003) that contextualized NEs can 

predict other NEs (e.g., a last name usually follows a first name, city and state names are 

commonly co-occurring; the enumeration of entities is a strong indicator of other entities, 

etc.). Carreras et al. use predicted entities in “left context,” which are entities that the system 

has already identified and classified. Conversely, we opted to use every entity type candidate 

from both sides by searching the lexicon, and by not resolving potential ambiguity.  
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Problem with prior probabilities 

The training data that we develop from unambiguous NE is not representative of the real 

distribution and importance of entities. For instance, we have very few examples for the 

language type because the vast majority of it is considered ambiguous. In a naive Bayes 

classifier, the impact on prior probabilities can be severe. To work around the problem, we 

created perfectly balanced data sets in accordance with the entity under examination with the 

fewest examples. For instance, since we only have 200 examples of sentences with an 

unambiguous language, we create classifiers for ambiguous languages (e.g., language-

nationality, language-country) by sampling 200 examples from the other NE type. 

 

There are some semi-supervised strategies that could be used to approximate the real prior of 

each class, but we report on this in the section of Chapter 7 on future work. 

 

5.4.2 Entity Ambiguity for More Than Two Types 

When there are more than two possible types for a given entity (e.g., “Murray” can be a first 

name, a last name, a city, and a river), we apply a round-robin technique (Fürnkranz 2002). 

This consists of evaluating the outcome of all possible pairwise classifiers, summing up 

victories, and guessing the class with the most victories. A random decision is used to break 

ties. 

 

5.4.3 Entity-Entity Classifier Cross-Validation 

We proceed to the classifier evaluation using 10-fold cross-validation on the training data. 

This is not equivalent to the classifier evaluation in the extrinsic NER task, a topic covered in 

Section 5.5. In the following table, we demonstrate the accuracy of the classifiers compared 

to random guesses. The result of random guessing always tends toward 50% accuracy 

because of our balanced data set.  
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Table 19: Accuracy of entity-entity classifiers 

 Binary classifier Accuracy (%) 

Worst classifier currency–measure 65.05 

Median classifier state_province–amusement park 82.69 

Best classifier drug–person title 93.38 

 

The mean accuracy is 82.40% and the standard deviation is 4.79%. We can identify three 

groups of classifiers: weak, medium, and strong. Weak classifiers give a range of 65 to 70% 

accuracy. Examples include currency vs. measure, sculpture vs. painting, movie vs. book, 

fish vs. sea animal, and movie vs. broadcast. The low accuracy is understandable and almost 

pardonable because of the examples’ close conceptual proximity. Some weak classifiers also 

occur when the training data is insufficient, particularly when the “language,” “god,” 

“planet,” or “mammal” types are in paired. Being highly ambiguous (see Table 18), these 

types have small lexicons (see Table 15 and Table 16), thus resulting in very small training 

data. 

 

The majority of classifiers perform at a level between 78 and 87%. There is no significant 

property that distinguishes these classifiers, so we hypothesize that the size of the data set 

and the difficulty of the task account for the variation in accuracy level. 

 

Finally, there is the group of strong classifiers with accuracy ranging between 90 and 94%. 

Examples include drug vs. person title, association vs. celebrity, clothes vs. spaceship, car vs. 

city, railroad vs. government, and song vs. museum. Interestingly, most of these classifiers 

involve types that are considered among the least ambiguous (see Table 18). We believe this 

aptly supports the conclusion of Cucerzan and Yarowsky (1999), stating that unambiguous 

NEs can create accurate classifiers. 

 

5.5 Experiments on the NER Task 

In this section, we proceed with the NER task’s extrinsic evaluation of disambiguation rules. 

The BaLIE system design is unchanged with respect to Chapter 3, except for the addition of 

the noise filter of Chapter 4. However, instead of four entity types, 100 are supported. We 
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believe that one direct impact of this capability scaling is a performance drop for individual 

entity types. More entity types mean more ambiguity and, therefore, more disambiguation 

decisions. Where “Chicago” was unambiguously classified as a location, it must now be 

checked against the “musical” type. Where “David” was unambiguously classified as a 

person, it must now be checked against the “sculpture” type. Same for “Layla,” which could 

be a song, or “Queen Elizabeth,” which could be a ship, and so forth. 

 

In the following sections, we compare the system with and without disambiguation rules. 

The version without disambiguation rules is equivalent to the system described in Chapter 3. 

In case of ambiguity, the heuristics of Section 3.2.2 are applied. The version with 

disambiguation rules is the same system plus the ambiguity classifiers. 

 

We first evaluate the system on the MUC-7 corpus. This is directly comparable to results 

obtained in Section 3.3. Then, we evaluate BaLIE on the CONLL-2003 English corpus. This 

data set contains the classic MUC enamex (person, location, organization) as well as a 

“miscellaneous” type used for most NE types outside enamex. In a third evaluation, we 

evaluate the BBN data set, which is much more fine-grained than other corpora.  

 

5.5.1 Evaluation on MUC-7 Corpus with the MUC Scorer 

Let’s first report the results of Section 3.3. The MUC scorer has the particularity of allowing 

partial matches (e.g., the organization “New York Times News Service” is considered 

correctly identified even if the system tags “New York Times,” for instance). We present 

results for the three enamex types as well as the special “text” row, reporting the proportions 

of exact matches for all types. These results are extracted from Table 9 of Chapter 3. 
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Table 20: Three-type BaLIE performance on MUC-7 corpus 

Type  Precision  Recall  F- measure  

Organization 75 71 73 

Person 71 83 77 

Location 77 80 78 

Text 72 74 73 

 

Now, here are the results for 100-type BaLIE run with and without disambiguation rules. The 

portion without disambiguation rules is extracted from Table 14 of Chapter 4. 

 

Table 21: 100-type BaLIE performance on MUC-7 corpus with and without rules 

 Without rules  With rules  

Type  Precision  Recall  F- measure  Precision  Recall  F- measure  

Organization 75 78 76 75 80 77 

Person 71 79 75 76 82 79 

Location 76 81 78 80 84 82 

Text 74 79 76 74 79 76 

 

The left-hand side of the table shows results that are consistent with experiments in Chapter 

3. There are two main performance variations: a rise in recall for the organization type and a 

drop in recall for the person type. We believe the rise for the organization type is caused by 

having many more organization subtypes than in Chapter 3 (e.g., associations, government, 

military, sports team, political party, market, etc.). Conversely, the person type has fewer 

new subtypes and may be prone to higher ambiguity potential, as discussed in the 

introduction.  

 

On the right-hand side, we report improvements when using disambiguation rules. All types 

benefit from a better recall, which means ambiguous entities that were misclassified by 

Chapter 3 heuristics are now recovered. Moreover, precision for the person and location 

types is significantly improved, which means a lot of ambiguous entities that were classified 

by default are now discarded. 
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5.5.2 Evaluation on CONLL-2003 English Corpus with the CONLL Scorer 

CONLL-2003 is a difficult data set in comparison to MUC-7. It particularly consists of much 

sports news, where results and standings are given in batches, as in Figure 10. In the CONLL 

corpus, city names in a sports context are annotated as organizations (e.g., “Hartford” stands 

for the “Hartford Whalers” organization).  

 

  League games on Thursday  ( home team in CAPS ) : 
  Hartford     4  BOSTON           2 
  FLORIDA     4  Ny Islanders     2 

Figure 10: CONLL corpus metonymic references 

 

These metonymic references were all incorrectly annotated by our system. They account for 

as many as 700 occurrences and roughly 20% of precision errors for the location type and 

20% of recall errors for the organization type. Complete results are provided in  

Table 22. 

 

Table 22: BaLIE's performance on the CONLL corpus 

Type  Precision  Recall  F- measure  

Person 49.50  52.10  50.77  

Location 65.49  72.71  68.91  

Organization 43.26  51.27  46.93  

Miscellaneous 61.37  52.35  56.50  

 

These are very consistent with MUC-7 results, since the CONLL scorer only considers exact 

matches to be successful (see Section 2.6.2). Therefore, the absolute scores are pessimistic 

compared to MUC-7.  

 

The following table presents a comparison of BaLIE macro-averaged measures with the 

CONLL baseline, and with the best supervised system. We report BaLIE results without 

disambiguation rules in the first row. Even with the rules, our system performs slightly 

below the baseline. This could be due to the very large proportion of metonymic references 

in CONLL. A supervised system could easily learn this problem since we noted that all city 
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names followed by a number are classified as organizations.  

 

Table 23: System comparison on CONLL corpus 

System  Precision  Recall  F- measure  

BaLIE (without rules) 51.23  54.25  52.70  

BaLIE (with rules) 54.90  57.11  55.98  

Baseline 71.91  50.90  59.60  

Best supervised 88.99  88.54  88.76  

 

The disambiguation rules improve both precision and recall, which compares to observed 

rises on the MUC corpus. BaLIE performs slightly under the baseline, but would outperform 

it if metonymic references were disregarded. The best supervised system (Florian et al. 2003) 

is far better on the CONLL task, but may over-fit the corpus. For instance, in the online 

demo of a system trained on CONLL, city names followed by a small digit are often 

recognized as organizations. 

 

5.5.3 Evaluation on the BBN Corpus with the CONLL Scorer 

We evaluated BaLIE on the BBN corpus, which was designed for the task of question 

answering, but annotated with NEs. However, we found no published NER experiment or 

baseline for this corpus in the literature. As well, we decided not to create a baseline system 

because no training and split-testing are defined.  

 

The BBN corpus contains NE annotations for 64 types and subtypes. By design, we do not 

handle numex and timex types, so we excluded them from evaluation. In this corpus, most 

entity types are paired with a “description” type such as “ORGANIZATION: DESCRIPTION” 

(e.g., the firm, the newspaper, a library, the hospital, etc.) In the passage, “The Citizen is a 

newspaper”, “Citizen” is annotated as an “ORGANIZATION” while “newspaper” is a 

“ORGANIZATION: DESCRIPTION”. We excluded “description” types that may be useful 

for co-refence resolution, but that are not real named entities. Finally, we do not report 

results for types with zero or very few instances in the corpus (e.g., ORGANIZATION: HOTEL, 

WORK_OF_ART: PAINTING). In all, we report results for 30 types. 
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Table 24: BaLIE's performance on BBN corpus 

 Without rules  With rules  

Type  Precision  Recall  F- measure  Precision  Recall  F- measure  

PERSON               50.81  60.71  55.32  55.50  63.20  59.10  

LANGUAGE             23.46  22.62  23.03  26.98  20.24  23.13  

NORP: NATIONALITY     76.75  69.64  73.02  76.43  70.60  73.40  

NORP: RELIGION        46.07  46.59  46.33  69.31  48.89  57.33  

NORP: POLITICAL       83.58  33.09  47.41  85.23  33.23  47.82  

FAC: BUILDING         57.69  9.74  16.67  57.69  9.74  16.67  

FAC: AIRPORT          84.21  47.06  60.38  84.21  47.06  60.38  

FAC: HIGHWAY_STREET   2.89  4.31  3.46  3.51  5.17  4.18  

ORGANIZATION: GOVERN 73.74  33.12  45.71  74.65  33.14  45.90  

ORGANIZATION: CORPOR 55.71  49.47  52.41  57.73  51.59  54.49  

ORGANIZATION: EDUCATI 77.06  35.79  48.88  77.46  36.61  49.72  

ORGANIZATION: MUSEUM  6.98  42.86  12.00  7.06  42.86  12.12  

ORGANIZATION: POLITIC 25.30  10.17  14.51  25.30  10.17  14.51  

ORGANIZATION: HOSPITAL 50.00  4.35  8.00  50.00  4.35  8.00  

ORGANIZATION: OTHER   17.31  6.06  8.97  18.18  6.22  9.26  

GPE: COUNTRY          79.50  78.05  78.77  79.98  76.12  78.00  

GPE: CITY             52.29  64.32  57.68  55.41  65.26  59.93  

GPE: STATE_PROVINCE   59.37  56.46  57.88  59.55  59.50  59.52  

LOCATION: RIVER       17.07  35.90  23.14  16.45  64.10  26.18  

LOCATION: LAKE_SEA_OC 27.54  23.75  25.50  27.78  25.00  26.32  

LOCATION: REGION      15.88  10.84  12.88  38.10  15.21  21.74  

LOCATION: CONTINENT   56.46  83.59  67.40  56.46  83.59  67.40  

LOCATION: OTHER       31.31  17.13  22.14  42.67  17.68  25.00  

PRODUCT: WEAPON       13.33  9.52  11.11  11.11  9.52  10.26  

PRODUCT: VEHICLE      19.35  9.42  12.68  26.06  9.69  14.12  

EVENT: WAR            55.81  51.06  53.33  55.81  51.06  53.33  

EVENT: HURRICANE      98.28  54.81  70.37  98.28  54.81  70.37  

EVENT: OTHER          38.46  20.45  26.71  37.19  20.45  26.39  

SUBSTANCE: DRUG       43.15  18.22  25.62  45.45  18.22  26.02  

DISEASE              41.61  17.98  25.11  41.61  17.98  25.11  

 

Most evaluated types provide a good performance estimate for the NER task. For some 

types, however, the BBN corpus contains annotations for both NEs and entity descriptions. 

This is the case with the “SUBSTANCE: DRUG” type, for which references to unnamed 

drugs (e.g., drug, pill, medicine, narcotic, vaccine, hormone) are annotated. It accounts for 

approximately 312 occurrences out of 439 (71%), and it clearly explains our system’s low 
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recall in this case.  

 

5.6 Conclusion 

In this chapter, we demonstrated how to learn disambiguation rules in a semi-supervised 

manner. The technique is based on identifying unambiguous NE examples using a textual 

corpus to constitute a data set of unambiguous passages. Our hypothesis is that the set 

differences of a very large number of NE types are sets of unambiguous examples. This is 

interesting because it is not based on annotated data analysis, it eliminates the constraint of 

manually finding unambiguous NE examples, and it addresses entity-entity ambiguity.  

 

We demonstrated the validity of the hypothesis using two means. First, we manually verified 

the source of ambiguity for four important NE types. We observed that most ambiguities can 

be identified by intersecting NE lists. From the 400 examples we checked, only three fell 

outside BaLIE’s 100 NE types. Second, we tested the system with and without 

disambiguation rules on three standard NER data sets. We showed that using disambiguation 

rules learned in a semi-supervised manner always significantly improves the system’s 

performance. We claim that only rules learned from unambiguous examples can provide this 

improvement.  

 

The disambiguation rules we created take the form of pairwise classifiers for each possible 

entity-entity ambiguity. We implemented well-known baseline strategies from the word-

sense disambiguation field. A classifier relies on contextual evidence, such as preceding and 

following words, and the presence of other entities. We calculated that the majority of entity-

entity classifiers perform within a range of 78 to 87% accuracy.   

 

A problem with our technique is the lack of prior probability for NE types. In artificially 

creating a data set of textual passages, the distribution of examples is arbitrary. For instance, 

most “languages” are ambiguous with most “nationalities.” For these two entity types, we 

can retrieve a limited number of passages since unambiguous NEs are rare. We discuss this 

issue in the thesis conclusion in greater detail. 
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Chapter 6 

Detecting Acronyms for Better Alias Resolution 

In this chapter, we present the third improvement to BaLIE. This improvement falls into the 

category of the “less common and very difficult problems,” a sign that the NER field is 

maturing. Recently, much attention has been given to problems such as metonymy (e.g., 

when “New York” stands for the “New York Yankees” organization), which represents a 

fraction of the errors committed by NER systems, but requires advanced algorithms to be 

resolved. Another problem is acronym detection. Indeed, it is necessary to identify acronyms 

and their expansions (e.g., “NY” and “New York”) in text to fully benefit from alias 

resolution. Our contribution is the following: 

 

• The development of an acronym-detection algorithm that outperforms previous 

art. 

 

This chapter presents an improvement for the “Alias network” module of Figure 1 that serves 

the purpose of the “Record” step of McDonald’s (1993) paradigm. An acronym and its 

expansion are indeed aliases of a given named entity. The use of acronyms within BaLIE is 

illustrated in Figure 11. We present a supervised learning solution to acronym detection. It is 

however trained once for every acronym, and the model is not dependant on a specific 

named entity type or the named entity recognition task itself. The trained system can then be 

added to the BaLIE alias-resolution algorithm, as explained in Section 6.6. 

 

Acronym identification is the task of processing text to extract pairs consisting of a word (the 

acronym) and an expansion (the definition), where the word is the short form of, or stands 

for, the expansion. For instance, in the sentence, “The two nucleic acids, deoxyribonucleic 

acid (DNA) and ribonucleic acid (RNA), are the informational molecules of all living 

organisms,” there are two acronyms, “DNA” and “RNA,” along with their respective 

definitions, “deoxyribonucleic acid” and “ribonucleic acid.” In this work, we do not 

discriminate between acronyms (short forms of multi-word expressions) and abbreviations 

(contractions of single words). We use the term “acronym” to signify both. 
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Figure 11: Details of acronym identification as a component of the alias network 

 

The task of identifying acronyms can be extended in many ways. It is possible to try to 

resolve acronyms even when there are no explicit definitions in the text. For instance, the 

familiar acronym “HIV” will often appear without being defined. Another extension is to try 

to disambiguate polysemous acronyms (e.g., “CMU” means “Carnegie Mellon University” 

and also “Central Michigan University”). The task requires to identify the intended sense of 

the acronym, even when its definition is absent. Ambiguous acronyms are particularly 
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problematic for information retrieval. 

 

In this section, we only tackle the core task. That is, given an input text, our algorithm will 

attempt to extract all explicit acronym-definition pairs. Our goal is to create a dictionary of 

acronym-definition pairs specific to a single text. For example, an algorithm that addresses 

the core task can be used to enhance a list of key phrases by resolving acronyms. More 

importantly, such an algorithm is a key component in systems that handle the various 

extended tasks, like co-reference resolution for NER or automatic query expansion for 

information retrieval. The literature on automatic acronym identification details many 

attempts to solve the core task. Our contribution is to demonstrate a supervised learning 

approach with fewer constraints on the forms of acronyms and definitions that can be 

identified. Our results compare with what has been achieved on the same testing data by 

human-engineered rule systems with more constraints.  

 

The next section presents a detailed summary of related work. Section 6.2 presents our 

supervised learning approach to identifying acronyms, and Section 6.3 discusses the training 

and testing corpus we used. At least three other papers use the same corpus for evaluating 

their systems (Pustejovsky et al. 2001; Chang et al. 2002; Schwartz and Hearst 2003). The 

remaining sections discuss our experiments’ results, and conclude. 

 

6.1 Related Work 

In this section, we present previous work on the task of identifying acronyms. We focus on 

the constraints that these systems use to extract valid acronym–definition pairs.  

 

One of the earliest acronym identification systems (Taghva and Gilbreth, 1999) is the 

Acronym Finding Program (AFP). The AFP system first identifies acronym candidate, which 

the authors define as upper-case words of three to ten letters. It then tries to find a definition 

for each acronym by scanning a 2n-word window, where n is the number of letters in the 

acronym. The algorithm tries to match acronym letters to initial letters in the definition 

words. Some types of words receive special treatment: stopwords can be skipped, 
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hyphenated words can provide letters from each of their constituent words, and finally, 

acronyms themselves can be part of a definition. Given these special cases, the longest 

common sequence (LCS) between acronym letters and initial letters in definitions is 

computed.  

 

Yeates (1999) proposes the automatic extraction of acronym-definition pairs in a program 

called Three-Letter Acronyms (TLA). Although the name suggests that acronyms must have 

three letters, the system can find n-letter acronyms as well. The algorithm divides text into 

chunks using commas, periods, and parentheses as delimiters. It then checks whether 

adjacent chunks have acronym letters matching one or more of the three initial letters of the 

definition words. Further heuristics are then applied to each candidate, ensuring that the 

acronym is upper case, is shorter than the definition, contains the initial letters of most of the 

definition words, and has a certain words to stopwords ratio.  

 

Larkey et al. (2000) developed Acrophile. They compared various strategies and found their 

“canonical/contextual” method to be the most accurate. First, they force acronym candidates 

to be upper-cased, allowing only embedded lower case letters (internal or final), periods 

(possibly followed by spaces), hyphens or slashes, and digits (at most one, non-final digit). 

They allow a maximum of nine alphanumeric characters in acronyms. They search for 

expansions in a 20-word window adjacent to the given acronym. Stopwords can contribute to 

an inner letter, but only once for the entire acronym. Furthermore, an expansion is only valid 

if it fits a given pattern, such as being surrounded by parentheses or preceded by a cue phrase 

(e.g.,“also known as”).  

 

Recently the fields of genetics and medicine have become especially interested in acronym 

detection (Pustejovsky et al., 2001, Yu et al. 2002). Pustejovsky et al. present an approach 

with few constraints, designed to capture a wide range of acronyms that are abundant in 

medical literature. For example, “PMA” stands for “phorbol ester 12-myristate-13-acetate” 

and “E2” stands for “estradiol-17 beta.” Pustejovsky et al.’s acronym detection technique 

searches for acronym definitions within noun phrases. Acronym-definition pair candidates 

must match a given set of regular expressions, designed to be very general. The final 
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decision about whether a pair is valid relies on counting the number of acronym characters 

and definition words that match. 

 

Another strategy, also developed for the medical field, comes from Schwartz and Hearst 

(2003)14. Their approach is similar to Pustejovsky et al.’s (2001) strategy, and the emphasis 

is again on complicated acronym-definition patterns for cases in which only a few letters 

match (e.g., “Gen-5 Related N-acetyltransferase” [GNAT]). First, they identify acronym-

definition pair candidates by looking for patterns, particularly “acronym (definition)” and 

“definition (acronym).” The length of the definition must be at most 2)A5,Amin( ⋅+ , 

where |A| is the number of letters in the acronym15. Then, they count the number of 

overlapping letters in the acronym and its definition, and compare the sum to a given 

threshold. They force the first letter of the acronym to match the first letter of a definition 

word. They also handle various cases where an acronym is entirely contained in a single 

definition word.   

 

Park and Byrd (2001) combine mechanisms such as text-markers and linguistic cues with 

pattern-based recognition. Larkey (2000) uses the same combination. This eliminates some 

constraints on identifiable acronyms. The reason for these mechanisms is to cope with the 

growing popularity of acronyms that deviate from the tradition of using only the first letter of 

each word of the definition. They use cue expressions (e.g., “or,” “short,” “acronym,” 

“stand”) to reinforce the confidence in acronym-definition pairs. They also allow acronyms 

to include a digit at the beginning or the end. Thus, “5GL (Fifth Generation Language)” 

would be a valid candidate. 

 

Adar (2002) presents a technique that requires only four scoring rules for evaluating 

acronym-definition pairs: add one to the score if an acronym letter begins a definition word; 

subtract one for each extra word that does not match acronym letters; add one if the 

definition is next to a parenthesis; and finally, as the number of definition words should be 

                                                 
14 The Java source code for their system is available at http://biotext.berkeley.edu/software.html. 
15 This formula is borrowed from Y. Park and Byrd (2001). 
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less than or equal to the number of acronym letters, subtract one for each extra word.  

 

Chang et al. (2002) present a supervised learning approach to identifying acronyms. In order 

to circumscribe the learning, they impose a strongly restrictive condition on acronym-

definition pair candidates by searching only for “definition (acronym)” patterns. 

Interestingly, this pattern accounts for the majority of positive cases in their evaluation 

corpus. Chang et al.’s learning algorithm uses eight features that describe the mapping 

between acronym letters and definition letters (e.g., percentage of letters aligned with the 

beginning of a word, number of definition words that are not aligned with the acronym, etc.). 

The learning algorithm they use is logistic regression. 

 

Zahariev (2004) dedicates a thesis on a complete review of acronym identification literature. 

He also extends the task to the multilingual perspective and offers in-depth analysis of the 

acronym phenomenon. However, the proposed system uses the same constraint patterns as 

Larkey et al. (2000). 

 

Table 25 summarizes related work on acronym identification. In this table and in the 

forthcoming sections, “participation” means that an acronym letter is found in a definition 

word. Generally, either there are many constraints on the acronym (e.g., “all acronym letters 

must be capitals” or “the number of letters must exceed some minimum”) or the definition 

pattern is fixed (e.g., “the definition must be in parentheses”). Such strong constraints ensure 

reasonable precision but, generally (for heterogeneous text from unrestricted domains), they 

necessarily limit recall. In our work, we try to use few constraints on both the acronym and 

the definition. 

 

Table 25: Summary of constraints on acronyms and definitions  

Author (Year)  Strongest constraints 

on acronym candidates 

Strongest constraints 

on definition 

candidates 

Taghva and 

Gilbreth (1999) 

upper-case word of 3 

to 10 characters 

must be adjacent 

only first letters of 

definition words can 
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participate 

 

Yeates (1999) upper-case word must be adjacent 

first 3 letters of 

definition words can 

participate 

 

Larkey et al. 

(2000)  

need some upper-case 

letters  

pattern “acronym 

(definition)” or  

 maximum size of 9 

characters 

“definition (acronym)” 

cue (e.g.: “also known 

as”) 

 

Pustejovsky et 

al. (2001) 

a word between 

parentheses or 

adjacent to 

parentheses 

 

pattern “acronym 

(definition)” or 

“definition (acronym)” 

Schwartz and 

Hearst (2003) 

a word between 

parentheses or 

adjacent to 

parentheses 

 

pattern “acronym 

(definition)” or 

“definition (acronym)” 

Park and Byrd 

(2001) 

at least 1 capital 

from 2 to 10 

characters 

parentheses pattern or 

linguistic cue (also 

known as, short for, 

etc.) 

 

Adar (2002) 

 

1 word between 

parentheses 

adjacent on the left 

of parenthesis 

 

Chang et al. 

(2002) 

1 word between 

parentheses 

adjacent on the left 

of parenthesis 

 

Zahariev (2004) 1 word between 

parentheses or 

adjacent to 

parentheses 

pattern “acronym 

(definition)” or 

“definition (acronym)” 
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6.2 Supervised Learning Approach 

The acronym identification task can be framed in terms of supervised learning. The concept 

we want to learn is a pair DA,  made of an acronym A  (a single token) and a definition D  

(a sequence of one or more consecutives tokens). Given a sequence T of  n  tokens, 

nttT ,...,1= , from which we wish to extract a pair DA, , there are n  possible choices for 

itA = . Each possible acronym ( itA = ) can be defined (D ) by any combination of one or 

more consecutive tokens taken from the left context { }11,..., −itt  or from the right context 

{ }ni tt ,...,1+ . The number of possible pairs, in the worst case, is ( )3nO  (n  choices for itA =  

multiplied by n  choices for the first token in D  multiplied by n  choices for the last token in 

D ). Therefore, before applying supervised learning, we reduce the space of possible DA,  

pairs with some heuristics.  

 

We describe our heuristics for reducing the search space for acronym candidates, and then 

we discuss the constraints for definition candidates. Together, these sections explain how we 

reduce the space of DA,  pairs that the supervised learning algorithm must consider. After 

the space has been reduced, the remaining pair candidates must be represented as feature 

vectors to apply standard supervised learning algorithms (Witten and Frank, 2000).  

 

The constraints that follow are relatively weak, compared to most past work on acronym 

identification, but they still exclude some possible acronym-definition pairs from 

consideration by the supervised learning algorithm. The resulting decrease in recall is 

discussed in Section 6.5.3. 

 

6.2.1 Space-Reduction Heuristics for Acronym Candidates 

The acronym space (the set of choices for itA = ) is reduced using syntactic constraints on 

the tokens, nttT ,...,1= , expressed by the conjunction of the following statements: 

 

• itA = , where ni ≤≤1 . 
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• 2)Size( ≥it , where )Size( it  is the number of characters in the token it  (including 

numbers and internal punctuation). 

• 1)NumLetter( ≥it , where )NumLetter(it  is the number of alphabetic letters in the 

token it  (excluding numbers and punctuation). 

• )Cue())(UnknownPOS)((Cap iii ttt ∨∧ , where )(Cap it  means that the token starts 

with a capital letter, )(UnknownPOS it  means that the token’s part-of-speech is 

neither conjunction, determiner, particle, preposition, pronoun, nor verb, and 

)Cue( it  means that the token contains a digit, punctuation, or a capital letter.  

 

The rationale behind 2)Size( ≥it  is that, in most cases, isolated letters like “H” will not be 

acronyms (although “H” can stand for “Hydrogen”). Statement 4 says that the it  token 

should have some capitalization or special characters, but in the former case, the token 

should not have a known part-of-speech. The calculation of )(UnknownPOS it  requires 

applying a part-of-speech tagger to the text. We used qTag (Tufis and Mason, 1998) as our 

part-of-speech tagger. 

 

The above heuristic constraints are less restrictive than previous approaches (compare with 

Table 25).  

 

6.2.2 Space-Reduction Heuristics for Definition Candidates 

Once an acronym candidate itA =  is found in the text, we search its definition D  on both 

sides of it . First, we require that both acronym and definition appear in the same sentence. 

This considerably reduces the search space for DA,  by reducing the n  of T  size, although 

the space is still ( )3nO . We then need stronger criteria to define a reasonable set of definition 

candidates. We impose the following additional constraints: 

 

• The first word of a definition must use the first letter of the acronym (Pustejovsky 

et al. 2001). 
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• A definition can skip one letter of the acronym, unless the acronym is only two 

letters long. 

• The definition can skip any number of digits and punctuation characters inside the 

acronym. 

• The maximum length for a definition is ( )2,5min ×+ acronymlenacronymlen  

(Park and Byrd 2001). 

• A definition cannot contain a bracket, colon, semi-colon, question mark, or 

exclamation mark. (We found counter-examples for other punctuation. For 

instance, the acronym “MAM” expands to “meprin, A5, mu,” where the comma 

is used.) 

 

Usually, these constraints will dramatically reduce the number of definition candidates. thus 

increasing precision, while including the vast majority of true positive cases, thus preserving 

recall.  

 

To illustrate the remaining search space, consider the following sentence: 

 

“Microbial control of mosquitoes with special emphasis on bacterial control (Citation).” 

 

The word “Citation” is not an acronym, but it fits our constraints since it is a capitalized 

noun. Even with the above constraints, there are 92 definition candidates in this example. 

Note that according to the second rule above, the definition can skip one letter of the 

acronym, except the leading “C.” Here is one of the definition candidates (acronym letters 

are marked with square brackets): 

 

[c]ontrol of mosqu[i]toes wi[t]h speci[a]l emphas[i]s [o]n bacterial co[n]trol 

 

6.2.3 Acronym-Definition Features for Supervised Learning 

The above heuristics reduce the search space significantly, so that the number of ways to 

extract a pair DA,  from a token sequence nttT ,...,1=  is now much less than ( )3nO . The 
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next step is to apply supervised learning to select the best DA,  pairs from the remaining 

candidates. Standard supervised learning algorithms require input in the form of feature 

vectors. We defined seventeen features to describe an instance of an acronym-definition 

candidate. The handcrafted rules described in previous work inspired the design of many of 

the following features. Our features mainly describe the mapping of acronym letters to 

definition letters, and syntactic properties of the definition. 

 

1. The number of participating letters matching the first letter of a definition word; 

2. (1) normalized by the acronym length; 

3. the number of participating definition letters that are capitalized; 

4. (3) normalized by the acronym length; 

5. the length (in words) of the definition; 

6. the distance (in words) between the acronym and the definition; 

7. the number of definition words that do not participate; 

8. (7) normalized by the definition length; 

9. the mean size of the words in the definition that do not participate; 

10. whether the first definition word is a preposition, a conjunction, or a determiner 

(inspired by Park and Byrd, 2001); 

11. whether the last definition word is a preposition, a conjunction, or a determiner 

(inspired by Park and Byrd, 2001); 

12. the number of  prepositions, conjunctions, and determiners in the definition; 

13. the maximum number of letters that participate in a single definition word; 

14. the number of acronym letters that do not participate; 

15. the number of acronym digits and punctuations that do not participate; 

16. whether the acronym or the definition is between parentheses; 

17. the number of verbs in the definition. 

 

If the heuristics propose an acronym-definition pair candidate 11,DA , then there are three 

possibilities: 

 

(1) In the manual annotation of the corpus, there is an officially correct acronym-definition 
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pair 22,DA such that A1 = A2 and D1 = D2. In this case, 11,DA  is labelled as positive for 

both training and testing the algorithm. 

 

(2) In the manual annotation of the corpus, there is an officially correct acronym-definition 

pair 22,DA  such that A1 = A2 but D1 ≠ D2. In this case, 11,DA  is ignored during training 

(see Section 6.3 for details). 

 

(3) In the manual annotation of the corpus, there is no officially correct acronym-definition 

pair 22,DA  such that A1 = A2. In this case, 11,DA  is labelled as negative for both training 

and testing.  

 

6.3 Evaluation Corpus 

We use the Medstract Gold Standard Evaluation Corpus16 (Pustejovsky et al., 2001) to train 

and test our algorithm. The corpus is made of Medline abstracts in which each acronym-

definition pair is annotated. The training set is composed of 126 pairs and the testing set is 

composed of 168 pairs. What is most interesting about this corpus is that it was annotated by 

a biologist using an informal definition of a valid pair. Therefore the corpus reflects human 

interpretation of acronym-definition pairs, and acronym identification is rendered 

challenging for an automated process.  

 

Past results with this corpus are reported in Table 26. All of the results are based on modified 

versions of the Medstract Gold Standard Evaluation Corpus, and, unfortunately, they all use 

different modifications. Here are some remarks on each of the modifications: 

 

1. Chang et al. (2002) do not describe their modifications. 

2. Pustejovsky et al. (2001) note that they removed eleven elements, which they judged 

as non-acronyms. 

                                                 
16 http://medstract.org/gold-standards.html 
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3. Schwartz and Hearst (2003) mention that they made modifications, but do not 

describe what modifications they made. 

4. We attempted to replicate the results of Schwartz and Hearst (2003), while making 

only minimal modifications to the original corpus. Our modifications were aimed at 

creating a valid XML file and a consistent set of tags. We had to remove embedded 

acronyms and remove or correct obvious errors.  

 

Since Schwartz and Hearst’s system is available online, we were able to repeat their 

experiment on our modified version of the corpus. This is the version of the corpus that we 

use in the following experiments, detailed in Section 6.4.  

 

Table 26: Acronym detection performance reported various teams 

Team Pr  Re F1 Corpus 

Modification 

Chang et al. (2002) 80% 83% 81.5% See (1) 

Pustejovsky et al. (2001) 98% 72% 83.0% See (2) 

Schwartz and Hearst (2003) 96% 82% 88.4% See (3) 

Schwartz and Hearst   

(our replication) 

89% 88% 88.4% See (4) 

 

6.4 Experiment Results 

We use the Weka Machine Learning tool kit to test various supervised learning algorithms. 

The results are reported in Table 27. We found that performance varies greatly depending on 

the chosen algorithm. Good classifiers were PART rules (rules obtained from a partially 

pruned decision tree), with somewhat low recall but high precision. The Support Vector 

Machine (Weka’s SMO) reaches F1 = 88.3%, a performance that rivals that of handcrafted 

systems. The Bayesian net also performs well. The OneR (one rule) classifier is shown as a 

baseline. Table 27 includes our replication of Schwartz and Hearst (2003) for comparison. 

Note that all results in this table are based on the same corpus. 
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Table 27: Performance of various classifiers on the Medstract corpus 

Learning Algorithm  Pr  Re F1 

OneR 69.0% 33.1% 44.7% 

Bayesian Net 89.6% 81.7% 85.5% 

PART rules 95.3% 79.6% 86.7% 

SVM (SMO kernel degree = 2) 92.5% 84.4% 88.3% 

Schwartz and Hearst  

(our replication) 

88.7% 88.1% 88.4% 

 

We claim that our system has weaker hand-coded constraints than competing approaches. To 

support this claim, it is worth mentioning that 1,134 acronym-definition pair candidates 

fulfilled the constraints in Section 6.2.1 and Section 6.2.2, but the supervised learning 

algorithms only classified 141 candidates (12%) as positive. Therefore, the hand-coded part 

of our system allowed more candidates than did Schwartz and Hearst’s system. In 

comparison, the latter system considered 220 patterns that involve parentheses, and 148 

(67%) are accepted by the rule-based system. In our system, the decrease from 1,134 

candidates to 141 is done by the supervised learning component rather than by hand-coded 

constraints. The advantage of this approach is that the supervised learning component can 

easily be retrained for a new corpus. The hand-coded constraints are designed to be weak 

enough to not require modifications for a new corpus. 

 

6.5 Discussion 

In this section, we interpret the results of our experiments. 

 

6.5.1 The Parenthesis Feature 

In our examination of previous work (Section 6.1), we criticized many authors using overly 

constrained patterns. One of the problems is the use of parentheses. Many authors only 

accept acronym-definition pairs when one of the expressions is between parentheses. To 

avoid this kind of limitation, we did not impose this constraint on our model. However, the 

only way we were able to perform as well as hand-built systems was to use the feature 

“whether the acronym or the definition is between parentheses” (feature 16 in Section 6.2.3). 
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The learner uses this feature since it works well on the Medstract corpus. Our relatively few 

constraints (Section 6.2.1 and Section 6.2.2) allow 889 acronym-definition pair candidates 

for which the parenthesis feature is false (neither the acronym candidate nor the definition 

candidate is between parentheses). In the Medstract corpus, these 889 candidates are 

negative instances (none are true acronym-definition pairs). Thus, this feature dramatically 

increases precision with no loss of recall. It is a very informative feature, but we do not wish 

to hard-code it into our constraints, since we believe it may not adapt well to other corpora. 

With a new corpus, our system can learn to use the feature if it is helpful, or ignore it if it 

does not apply. This robustness is an advantage of using few constraints combined with 

supervised learning. 

 

6.5.2 The Best Features 

When evaluating the contribution of the individual features (using the Chi Square Test), we 

found that three features significantly outperform others. Those features are, in order of 

predictive power: the distance between the definition and the acronym (feature 6); the 

number of acronym letters that match the first letters of definition words (feature 1); and the 

parentheses feature (feature 16). 

 

6.5.3 Effects of the Space-Reduction Heuristics 

In Section 6.2, we presented heuristics for reducing the space of possible acronym-definition 

candidates. A particular case can be misleading for the supervised learning algorithm.  

  

Consider a case in which our heuristics identify <PKA, protein kinase A> but the corpus 

annotation is <PKA, cAMP-dependent protein kinase A>. It is tempting to say that <PKA, 

protein kinase A> must count as a negative example for the supervised learner, but this could 

confuse the learner since the PKA and protein kinase A match is actually very credible and 

reasonable. Instead of counting <PKA, protein kinase A> as a negative example, we found 

that it is better to ignore this case during training. It would be incorrect to count this case as a 

positive example, but it would be misleading to count it as a negative example, so it is best to 

ignore it. During testing, however, such instances are added to the false negatives, thus 
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reducing recall, because this is an error and the system must be penalized for it. 

 

6.5.4 External Evaluation 

In her master’s thesis, Dannélls (2006) evaluated four acronym detection systems, including 

ours, on the Swedish language. She provided us with Swedish training data and testing data. 

Our system performs at significantly higher levels than other systems that were tested. 

Dannélls’s results are presented in Table 28. 

 

Table 28: Acronym detection on Swedish texts 

Learning Algorithm  Pr  Re F1 

Acrophile (Larkey et al.  2000) 97% 20% 33% 

Stanford (Chang et al.  2002) 77% 66% 71% 

Simple (Schwartz & Hearst 2003) 100% 6% 11.3% 

Our approach (Nadeau & Turney 2005) 96% 91% 93% 

 

6.6 Improving Alias Resolution in NER Systems 

The acronym detection module described in this chapter can be integrated with BaLIE’s alias 

resolution algorithm (Section 3.2.3, Figure 3). When a definition is added to a set of aliases 

“ ia ,” the corresponding acronym is also added. Moreover, a side-effect of identifying an 

acronym definition is identifying the exact boundary of the potential entity. For instance, 

let’s look at this sentence containing one “organization” type entity: 

 

 

“The court convicted the head of the South <ENAMEX TYPE="ORG"> Lebanon 

Army</ENAMEX> (SLA) of collaborating with Israel.” 

 

In this sentence, the acronym detection module recognizes the acronym SLA: 

 

 SLA,  [S]outh [L]ebanon [A]rmy 

 

On the one hand, it corrects the organization boundary, and on the other hand, it associates 

“SLA” to the “South Lebanon Army” alias set. Eventually, the annotations are corrected 
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accordingly: 

 

“The court convicted the head of the <ENAMEX TYPE="ORG"> South Lebanon 

Army</ENAMEX> (<ENAMEX TYPE="ORG">SLA</ENAMEX>) of collaborating with 

Israel.” 

 

In our experiments, we measured no significant improvements on the MUC-7 and the BBN 

corpora. In fact, only four acronyms are identified in MUC-7, and no acronyms are found in 

BBN. However, the CONLL corpus is rich in acronyms, and the improvement in 

organization recall is important, as shown in Table 29. We identified 19 acronyms in the 

CONLL corpus, and one was a false positive (<New, [N]orm H[e][w]itt> ). 

 

Table 29: BaLIE's performance on the CONLL corpus with acronym detection 

 Without acronym  With acronym  

Type  Precision  Recall  F- measure  Precision  Recall  F- measure  

Person 49.5  52.10  50.77  49.69  52.16  50.90  

Location 65.49  72.71  68.91  65.52  72.71  68.92  

Organization 43.26  51.27  46.93  44.60  52.43  48.20  

Miscellaneous 61.37  52.35  56.50  61.59  52.35  56.60  

 

6.7 Conclusion 

In this chapter, we described a supervised learning approach to the task of identifying 

acronyms. The approach consists in using few hand-coded constraints to reduce the search 

space, and then using supervised learning to impose more constraints. The advantage of this 

approach is that the system can easily be retrained for a new corpus when the previously 

learned constraints no longer apply. The hand-coded constraints reduce the set of acronym-

definition pair candidates that must be classified by the supervised learning system, yet they 

are weak enough to be transferable to a new corpus with little or no change.  

 

In our experiments, we tested various learning algorithms and found that an SVM is 

comparable in performance to rigorously designed handcrafted systems, as presented in the 

literature. We reproduced experiments by Schwartz and Hearst (2003) and showed that our 
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testing framework was comparable to their work.  

 

We integrated the acronym detection module with BaLIE’s alias resolution. We demonstrate 

that it brings an interesting improvement, particularly at the level of organization recall in an 

acronym-rich corpus. 

 

Our future work will consist of applying the supervised learning approach to different 

corpora, especially corpora in which acronyms or definitions are not always indicated by 

parentheses.  
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Chapter 7 

Discussion and Conclusion 

This thesis is about creating a semi-supervised NER system. It has the desirable property of 

requiring, as input, that an expert linguist lists a dozen examples of each supported entity 

type. It contrasts with the annotation of thousands of documents with hundreds of entity 

types, which is required for supervised learning. It also contrasts with manually harvesting 

NE lists and designing a complex rule system, which are usually required for handmade 

systems. The NER system we present in this thesis therefore requires very little supervision 

and we’ve included this human input in the Appendix. 

 

The system presented in this thesis falls in the new category of semi-supervised and 

unsupervised systems. Work in this category is relatively rare and recent, and we believe 

ours to be the first that is devoted exclusively to the autonomous creation of an NER system.  

  

Our overall goal is to create proof-of-concept software. In completing this system, we claim 

four major contributions that impact the NER field, and also have the potential to be used in 

other domains. First, we designed the first semi-supervised NER system that performs at a 

comparable level to that of a simple supervised learning-based NER system (Chapter 3). 

Second, we present a noise filter for generating NE lists based on computational linguistics 

and statistical semantic techniques (Chapter 4). This noise filter outperforms previous 

systems devoted to the same task. Then, we demonstrate a simple technique based on set 

intersections that can identify unambiguous examples for a given NE type (Chapter 5). 

Unambiguous NEs are a requirement for creating semi-supervised disambiguation rules. 

Finally, our fourth contribution is an acronym detection algorithm—part of an alias 

resolution system—that outperforms previous system and allows improvement in NER for a 

“less common and very difficult problem” (Chapter 6). 

 

These contributions are crucial components to a successful semi-supervised NER system, 

and they are explained in the context of the whole system, for which the architecture is 

detailed in Figure 1. In the course of completing this system, however, we met many 
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limitations and difficulties, which we discuss in Section 7.1. We conclude this thesis by 

presenting our future work and some general long-term research ideas.  

 

We believe the resulting system requiring little supervision has two important advantages 

over past systems put forth in the literature, and this is generally in favour of a shift towards 

semi-supervised and unsupervised techniques in the machine learning community. Our 

system is first extensible to new entity types. The design we adopted is free of linguistic 

knowledge or type-dependant heuristics. Therefore, we can modify the hierarchy or add new 

types, and let the system generate lists and rules. The system is also easily maintained over 

time. While supervised learning-based systems get most of their knowledge from large static 

training corpora, the system we present gets most of its knowledge from the Web. 

Recrawling the Web and periodically verifying the Web pages from which lists were 

extracted is a straightforward approach to maintenance. 

 

7.1 Limitations 

7.1.1 NE Hierarchy Design 

The choice of NE types supported in this thesis is not completely free of constraints. Instead 

of choosing to recognize “cities,” we may want to divide this type into “North American 

cities,” “European cities,” etc. However, our technique depends on the “natural order of 

things” or, more precisely, the way the majority of people decided to list entities on the Web. 

Noteworthy examples include the “cathedral,” “hospital” and “hotel” types, which we 

decided to recognize in order to fit Sekine’s hierarchy and/or BBN corpus. However, these 

entities rarely occur in exhaustive Web lists. We may have had more success in defining 

finer types by dividing according to country (there are a lot of regional and national hospital 

lists, for instance). 

 

7.1.2 Controlling the Uncontrollable 

When a bootstrapping algorithm is started, it is well-known that noise can impact and bias 

the result. If we have relative success in handling noise, we are still exposed to problems of 
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concept drift. For instance, cities, states, and countries are often mixed up in a single Web 

page, and the drift potential is very high. The worst case we met was with the “nationality” 

type. Not only it is highly ambiguous with the “language” type, but it also tends to drift 

toward “cuisine” type (an unsupported entity type). In our final nationality list, we find 

entries such as “sandwiches,” “buffet,” “seafood,” etc.).  

 

7.1.3 Extending to Other Languages 

One natural extension for our system is applying it to many languages. However, it is limited 

in at least two ways. First, there is a need for a critical mass of structured information on the 

Web. In English, the “airport” list relies on 311 Web pages, the “drug” list was created from 

1,323 Web pages, and common types such as “city” or “first_name” are usually aggregated 

from tens of thousands of Web pages. The Web seems to have reached this critical point for 

many entity types, in English. In some preliminary French-language experiments, we noticed 

that the task is much more difficult since many entity types may not meet the pages’ critical 

mass. A second limitation is the very large corpus used for creating rule disambiguation. In 

this thesis, we use a Terabyte-sized corpus mainly composed of English texts. We would 

need comparable corpora for other languages. 

 

7.1.4 Inaccurate Prior Probabilities  

The rule disambiguation creation technique presented in Chapter 5 has an important problem 

with prior probabilities. For example, suppose we want to classify the word “April” between 

the “month” and “first_name” classes. A Bayesian classifier will evaluate each class 

probability by using the entity’s prior probability and the conditional probabilities of the 

words in context. In this case, the prior probability that April is a month is much higher than 

its prior probability of being a first_name. However, our technique has absolutely no 

information on real priors. Instead of learning on a corpus representing the distribution of 

entities in the world, we create a data set of passages using unambiguous examples of 

entities. Because it is not representative of the reality, we choose to balance our data set so 

that priors are 50% for both classes. Correcting this prior is discussed in the section on future 

work. 
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7.1.5 Out-of-Vocabulary Entities 

We presented a technique based primarily on lexicon look-up. When an entity is not part of 

our lexicon, it cannot be recognized. This is a limitation compared to a supervised learning-

based system that usually classifies unknown words NEs if their contexts are sufficiently 

similar to the context of an entity class. On the one hand, we may use the disambiguation 

rules to recognize out-of-vocabulary entities. On the other hand, we may combine our system 

with an existing supervised learning-based system. 

 

7.1.6 Lower-Case Entities 

Some entity types in our hierarchy occur naturally in lower case. This is particularly true 

with species (e.g., bird, mammal) and substances (e.g., food, mineral). In this case, the 

heuristics aimed at resolving noun-entity ambiguity (Section 3.2.1) basically filter out every 

entity. In our experiments, we noticed very low recall for these types. 

 

7.2 Future Work 

The limitations presented in the previous section are all topics to broach in our future work. 

We believe none of them are completely beyond resolution. However, we identified three 

interesting research avenues that may impact the NER field or semi-supervised learning 

methods at large. 

 

7.2.1 Statistical Semantics Technique as a Noise Filter 

Our preliminary experiments using latent relational analysis (LRA; see Section 4.5) was only 

scratching the surface of the problem. We believe this kind of technique is the key to 

controlling concept drifts and other forms of difficult and subtle noise. One improvement we 

will explore is applying LRA on specific entities with high probability of being noise, such 

as ambiguous entities (entities belonging to two or more lists).  
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7.2.3 Prior Probabilities Correction 

We will also address the correction of naive Bayes classifiers’ prior probabilities in creating 

disambiguation rules. One way to do it is to calculate mutual information between an entity 

and each possible type to which it can belong. For instance, to disambiguate between the city 

of “Martin” and the first name “Martin,” we may calculate Pointwise mutual information and 

information retrieval (PMI-IR) scores between this word and some unambiguous words of 

the class. In this case, preliminary experiments suggest that Martin is more likely to be a first 

name, and therefore, the prior probability that Martin is a first name should be higher. 

 

7.2.4 Hybrid System 

In this thesis, we present a standalone NER system. However, it could easily be used to 

maintain existing handmade or supervised systems. We are particularly interested in creating 

a hybrid system for which the core engine would be the Oak system (Sekine and Nabota 

2004), and on top of which we would add our generated lists and disambiguation rules.  

 

Another way to create a hybrid system would be to use one or many other NER systems to 

create an ensemble that would vote on each decision, and fall back in case of out-of-

vocabulary entities. 

 

7.3 Long-Term Research Ideas 

The long-term objective of this research is to recognize and classify all the possible entity 

types with high precision. Then, it will be necessary to proceed to disambiguation within 

objects that have the same name and are within the same class. This problem is known as 

“personal name disambiguation” (e.g., Is “Jim Clark” the race driver, the film editor, or the 

Netscape founder?), but the idea extends to other types (e.g., Is “NRC” the National 

Research Council in Canada or in the United States?). To close the loop, it would be 

necessary to connect entities worldwide by resolving entity references across languages, a 

problem already garnering much interest from the machine translation community.  
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Appendix: Seed words (system input) 

<?xml version="1.0" ?>  
<entityHierarchy InspiredBy="Satoshi Sekine, Ada Brunstein" Modification="December 12th 2006"> 
<entity type="name"><entity type="person"> 
<entity type="first_name" classwords="first name;given name" estimatedpopulation="10E3"> 
 <seed>Mary</seed>    <seed>Elizabeth</seed>   
 <seed>Rose</seed>    <seed>Britney</seed>   
 <seed>David</seed>    <seed>Veronica</seed>   
 <seed>Susan</seed>    <seed>Thomas</seed>   
 <seed>Robert</seed>    <seed>Louise</seed>   
 <seed>Aaron</seed>    <seed>Napoleon</seed>   
 <seed>James</seed>    <seed>Catherine</seed>   
 <seed>Michael</seed> 
</entity>   
<entity type="person_title" classwords="title" estimatedpopulation="10E0"> 
 <seed>Mr</seed>    <seed>Msr</seed>   
 <seed>Sir</seed>    <seed>Madam</seed>   
 <seed>Ms</seed>    <seed>Mister</seed>   
 <seed>Dr</seed>     <seed>Jr</seed>   
 <seed>Prof</seed>    <seed>Doctor</seed>   
 <seed>Lt</seed>     <seed>Col</seed>   
 <seed>Sgt</seed>    <seed>Phd</seed>   
 <seed>Miss</seed> 
</entity>  
<entity type="last_name" classwords="last name;familly name" estimatedpopulation="10E3"> 
 <seed>Smith</seed>    <seed>Johnson</seed>   
 <seed>O'Connor</seed>    <seed>Tremblay</seed>   
 <seed>Clinton</seed>    <seed>Williams</seed>   
 <seed>Miller</seed>    <seed>Fletcher</seed>   
 <seed>Woods</seed>    <seed>Anderson</seed>   
 <seed>Clark</seed>    <seed>Robinson</seed>   
 <seed>Peterson</seed>    <seed>Foster</seed>   
 <seed>Perkins</seed> 
</entity>   
<entity type="celebrity" classwords="celebrity;name" estimatedpopulation="10E3"> 
 <seed>Robert De Niro</seed>   <seed>Edgar Allan Poe</seed>  
 <seed>Albert Einstein</seed>   <seed>Marie Curie</seed>  
 <seed>Isaac Newton</seed>   <seed>George Washington</seed>  
 <seed>Galileo Galilei</seed>   <seed>Charles Darwin</seed>  
 <seed>William Shakespeare</seed>  <seed>Abraham Lincoln</seed>  
 <seed>Mark Twain</seed>   <seed>Sigmund Freud</seed>  
 <seed>Pablo Picasso</seed>   <seed>Ernest Hemingway</seed>  
 <seed>John F. Kennedy</seed> 
</entity>   
<entity type="vocation" classwords="vocation;profession" estimatedpopulation="10E2"> 
 <seed>firefighter</seed>    <seed>journalist</seed>   
 <seed>bodyguard</seed>    <seed>nurse</seed>   
 <seed>teacher</seed>    <seed>Banker</seed>   
 <seed>Athlete</seed>    <seed>Entertainer</seed>   
 <seed>Electrician</seed>    <seed>Carpenter</seed>   
 <seed>Union leader</seed>   <seed>salesperson</seed>   
 <seed>Civil Engineer</seed>   <seed>Police Officer</seed>  
 <seed>Dental Hygienist</seed> 
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</entity>  
<entity type="title" classwords="title" estimatedpopulation="10E2"> 
 <seed>Executive Director</seed>   <seed>Chief administrative officer</seed> 
 <seed>Chief Executive Officer</seed>  <seed>manager</seed>   
 <seed>Foreman</seed>    <seed>secretary general</seed>  
 <seed>vice president</seed>   <seed>Treasurer</seed>   
 <seed>Vice President</seed>   <seed>chairman</seed>   
 <seed>Vice Chairman</seed>   <seed>representative</seed>  
 <seed>Secretary</seed>    <seed>Press Secretary</seed>  
 <seed>President</seed>     
</entity>   
<entity type="character" classwords="character;fictional" estimatedpopulation="10E2"> 
 <seed>Mickey Mouse</seed>   <seed>Pink Panther</seed>  
 <seed>Peter Rabbit</seed>   <seed>Pinocchio</seed>   
 <seed>Yoda</seed>    <seed>Tarzan</seed>   
 <seed>Spider-Man</seed>   <seed>Batman</seed>   
 <seed>Captain America</seed>   <seed>Superman</seed>   
 <seed>Flash Gordon</seed>   <seed>Peanuts</seed>   
 <seed>Donald Duck</seed>   <seed>Bambi</seed>   
 <seed>Woody Woodpecker</seed> 
</entity></entity>   
<entity type="organization"> 
<entity type="company" classwords="company" estimatedpopulation="10E3"> 
 <seed>Citigroup Inc.</seed>   <seed>Coca-Cola Company</seed> 
 <seed>Groupe Danone</seed>   <seed>Toyota Motor Corp.</seed>  
 <seed>Verizon</seed>    <seed>Continental Airlines</seed>  
 <seed>General Electric</seed>   <seed>Kellogg Company</seed>  
 <seed>New York Times</seed>   <seed>Panasonic</seed>   
 <seed>US Airways</seed>   <seed>Radio Shack</seed>  
 <seed>Nokia</seed>    <seed>Walgreens</seed>   
 <seed>Office Depot</seed> 
</entity>   
<entity type="company_designator" classwords="company" estimatedpopulation="30"> 
 <seed>Co</seed>    <seed>corp</seed>   
 <seed>inc</seed>    <seed>Ltd</seed>   
 <seed>PLC</seed>    <seed>AENP</seed>   
 <seed>CPORA</seed>    <seed>LLC</seed>   
 <seed>L.L.C</seed>    <seed>LP</seed>   
 <seed>L.P</seed> 
</entity> 
<entity type="military" classwords="military" estimatedpopulation="10E2"> 
 <seed>Canadian Forces</seed>   <seed>Israeli Defense Forces</seed> 
 <seed>Marine Troops</seed>   <seed>Italian Navy</seed>  
 <seed>United States Marine Corps</seed>  <seed>West India Regiment</seed> 
 <seed>Serenissima Regiment</seed>  <seed>Marina Militare</seed>  
 <seed>Royal Marines</seed>   <seed>Continental Marines</seed>  
 <seed>Korps Mariniers</seed>   <seed>Spanish Marine Infantry</seed> 
 <seed>Italian Army</seed>   <seed>Russian Naval Infantry</seed> 
 <seed>Portuguese Navy</seed> 
</entity>   
<entity type="association" classwords="association" estimatedpopulation="10E2"> 
 <seed>Amnesty International</seed>  <seed>Council of Europe</seed>  
 <seed>World Bank</seed>   <seed>United Nations</seed>  
 <seed>Friends of the Earth</seed>   <seed>International Monetary Fund</seed> 
 <seed>Human Rights Watch</seed>  <seed>World Health Organization</seed> 
 <seed>League of Nations</seed>   <seed>UNICEF</seed>   
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 <seed>African Union</seed>   <seed>Foreign Policy Association</seed> 
 <seed>Commonwealth</seed>   <seed>Asian Development Bank</seed> 
 <seed>UNESCO</seed> 
</entity>   
<entity type="government" classwords="government" estimatedpopulation="10E2"> 
 <seed>Department of Justice</seed>  <seed>DARPA</seed>   
 <seed>NASA</seed>    <seed>Department of Transportation</seed>
 <seed>Food and Drug Administration</seed> <seed>Department of Defense</seed> 
 <seed>Department of Agriculture</seed>  <seed>Department of Energy</seed> 
 <seed>Securities and Exchange Commission</seed> <seed>National Science Foundation</seed> 
 <seed>Social Security Administration</seed> <seed>Central Intelligence Agency</seed> 
 <seed>Federal Communications Commission</seed> <seed>Department of Commerce</seed> 
 <seed>Department of Labor</seed> 
</entity>   
<entity type="political_party" classwords="political party;political" estimatedpopulation="10E1"> 
 <seed>Democratic Party</seed>   <seed>Republican Party</seed>  
 <seed>Liberal Party of Canada</seed>  <seed>Conservative Party of Canada</seed>
 <seed>New Democratic Party</seed>  <seed>Libertarian Party</seed>  
 <seed>Constitution Party</seed>   <seed>Green Party</seed>  
 <seed>Socialist Party</seed>   <seed>Bloc Quebecois</seed>  
 <seed>Labour Party</seed>   <seed>Conservative Party</seed>  
 <seed>Liberal Democrats</seed>   <seed>Democratic Unionist Party</seed> 
 <seed>The Greens</seed> 
</entity>   
<entity type="political_line" classwords="political movement;political" estimatedpopulation="50E0"> 
 <seed>democrat</seed>    <seed>Communist</seed>   
 <seed>socialist</seed>    <seed>Fascist</seed>   
 <seed>republican</seed>    <seed>Republican</seed>   
 <seed>Libertarian</seed>    <seed>Independent</seed>  
 <seed>anarchist</seed>    <seed>Leninism</seed>   
 <seed>Marxism</seed>    <seed>Trotskyism</seed>   
 <seed>nationalism</seed>    <seed>liberalism</seed>   
 <seed>totalitarianism</seed> 
</entity>   
<entity type="nationality" classwords="nationality;nation" estimatedpopulation="20E1"> 
 <seed>American</seed>    <seed>japanese</seed>   
 <seed>Israeli</seed>    <seed>korean</seed>   
 <seed>chinese</seed>    <seed>Dutch</seed>   
 <seed>Arabic</seed>    <seed>Portuguese</seed>   
 <seed>Turkish</seed>    <seed>Czech</seed>   
 <seed>Algerian</seed>    <seed>Canadian</seed>   
 <seed>Taiwanese</seed>    <seed>Haitian</seed>   
 <seed>Mexican</seed> 
</entity>   
<entity type="market" classwords="market" estimatedpopulation="10E1"> 
 <seed>Amsterdam Stock Exchange</seed>  <seed>NASDAQ</seed>   
 <seed>Toronto Stock Exchange</seed>  <seed>Tokyo Stock Exchange</seed> 
 <seed>NYSE</seed>    <seed>Korea Stock Exchange</seed> 
 <seed>Philadelphia Stock Exchange</seed>  <seed>London Stock Exchange</seed> 
 <seed>Australian Stock Exchange</seed>  <seed>London Metal Exchange</seed> 
 <seed>Helsinki Stock Exchange</seed>  <seed>Taiwan Stock Exchange</seed> 
 <seed>Winnipeg Commodity Exchange</seed> <seed>Singapore Exchange</seed>  
 <seed>NYMEX</seed> 
</entity>   
<entity type="religious_group" classwords="religious group;religious" estimatedpopulation="10E1"> 
 <seed>Jewish</seed>    <seed>catholic</seed>   
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 <seed>Hindu</seed>    <seed>Muslim</seed>   
 <seed>protestant</seed>    <seed>Buddhist</seed>   
 <seed>Protestant</seed>    <seed>Taoist</seed>   
 <seed>Anglican</seed>    <seed>Christian</seed>   
 <seed>Sindhi</seed>    <seed>Hindi</seed>   
 <seed>Gujarati</seed>    <seed>Telugu</seed>   
 <seed>Tamil</seed> 
</entity>   
<entity type="sports_team" classwords="team;sports" estimatedpopulation="10E2"> 
 <seed>Los Angeles Raiders</seed>  <seed>New York Mets</seed>  
 <seed>Calgary Flames</seed>   <seed>Montreal Canadiens</seed>  
 <seed>Dallas Stars</seed>   <seed>Edmonton Oilers</seed>  
 <seed>Los Angeles Kings</seed>   <seed>Houston Astros</seed>  
 <seed>San Diego Padres</seed>   <seed>Pittsburgh Pirates</seed>  
 <seed>Cincinnati Reds</seed>   <seed>New York Knicks</seed>  
 <seed>Detroit Pistons</seed>   <seed>Indiana Pacers</seed>  
 <seed>Boston Celtics</seed> 
</entity></entity>   
<entity type="location"><entity type="geo_political"> 
<entity type="city" classwords="city;town" estimatedpopulation="10E3"> 
 <seed>Ottawa</seed>    <seed>Toronto</seed>   
 <seed>Paris</seed>    <seed>Dallas</seed>   
 <seed>Sydney</seed>    <seed>Boston</seed>   
 <seed>New York</seed>    <seed>Amsterdam</seed>   
 <seed>Nashville</seed>    <seed>Rome</seed>   
 <seed>Barcelona</seed>    <seed>Montreal</seed>   
 <seed>Dublin</seed>    <seed>Washington DC</seed>  
 <seed>Prague</seed> 
</entity>   
<entity type="state_province" classwords="state;province" estimatedpopulation="10E1"> 
 <seed>Quebec</seed>    <seed>Ontario</seed>   
 <seed>Texas</seed>    <seed>Alaska</seed>   
 <seed>California</seed>    <seed>Rhode Island</seed>  
 <seed>British Columbia</seed>   <seed>Virginia</seed>   
 <seed>Louisiana</seed>    <seed>North Carolina</seed>  
 <seed>Manitoba</seed>    <seed>Michigan</seed>   
 <seed>Hawaii</seed>    <seed>Delaware</seed>   
 <seed>Florida</seed> 
</entity>   
<entity type="county" classwords="state;province" estimatedpopulation="10E1"> 
 <seed>Autauga County</seed>   <seed>Albany County</seed>  
 <seed>Washington County</seed>   <seed>York County</seed>  
 <seed>Pacific County</seed>   <seed>Tuscaloosa County</seed>  
 <seed>Montgomery County</seed>  <seed>Taylor County</seed>  
 <seed>Williamson County</seed>   <seed>Tallapoosa County</seed>  
 <seed>Sevier County</seed>   <seed>Summit County</seed>  
 <seed>Rockingham County</seed>   <seed>Wayne County</seed>  
 <seed>Winneshiek County</seed> 
</entity>   
<entity type="country" classwords="country" estimatedpopulation="20E1"> 
 <seed>Canada</seed>    <seed>United States</seed>  
 <seed>France</seed>    <seed>Egypt</seed>   
 <seed>Morocco</seed>    <seed>New Zealand</seed>  
 <seed>South Africa</seed>   <seed>Indonesia</seed>   
 <seed>Iraq</seed>    <seed>Togo</seed>   
 <seed>Germany</seed>    <seed>Brasil</seed>   
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 <seed>Netherlands</seed>   <seed>Austria</seed>   
 <seed>Mexico</seed> 
</entity></entity>   
<entity type="region" classwords="region;subregion" estimatedpopulation="10E1"> 
 <seed>Latin America</seed>   <seed>Caribbean</seed>   
 <seed>Middle East</seed>   <seed>Scandinavia</seed>  
 <seed>Australasia</seed>    <seed>Asia Pacific</seed>  
 <seed>North America</seed>   <seed>Mediterranean</seed>  
 <seed>Eastern Europe</seed>   <seed>Western Europe</seed>  
 <seed>North Africa</seed>   <seed>South Asia</seed>   
 <seed>East Africa</seed>    <seed>Central America</seed>  
 <seed>South America</seed> 
</entity>     
<entity type="geological"> 
<entity type="landform" classwords="landform;mountain" estimatedpopulation="10E1"> 
 <seed>Mount Everest</seed>   <seed>K2</seed>   
 <seed>Kangchenjunga</seed>   <seed>Lhotse</seed>   
 <seed>Makalu</seed>    <seed>Manaslu</seed>   
 <seed>Dhaulagiri</seed>    <seed>Annapurna</seed>   
 <seed>Cho Oyu</seed>    <seed>Broad Peak</seed>   
 <seed>Nanga Parbat</seed>   <seed>Gasherbrum II</seed>  
 <seed>Gasherbrum I</seed>   <seed>Shishapangma</seed>  
 <seed>Shisha Pangma</seed> 
</entity>   
<entity type="waterform"> 
<entity type="river" classwords="river;waterway" estimatedpopulation="10E2"> 
 <seed>Tennessee River</seed>   <seed>Mississippi river</seed>  
 <seed>Buller river</seed>    <seed>Amazon river</seed>  
 <seed>Orange River</seed>   <seed>Susquehanna River</seed>  
 <seed>Savannah River</seed>   <seed>Missouri River</seed>  
 <seed>Mackenzie River</seed>   <seed>Murray River</seed>  
 <seed>Arkansas River</seed>   <seed>Niagara River</seed>  
 <seed>Hudson River</seed>   <seed>Colorado River</seed>  
 <seed>Columbia River</seed> 
</entity>   
<entity type="lake" classwords="lake" estimatedpopulation="10E2"> 
 <seed>Lake Michigan</seed>   <seed>Lake Superior</seed>  
 <seed>Lake Ontario</seed>   <seed>Lake Huron</seed>  
 <seed>Lake Erie</seed>    <seed>Lake Baikal</seed>  
 <seed>Lhagba Pool</seed>   <seed>Nettilling Lake</seed>  
 <seed>Lake Toba</seed>    <seed>Lake Wanapitei</seed>  
 <seed>Lake Enriquillo</seed>   <seed>Lake Victoria</seed>  
 <seed>Lake Vostok</seed>   <seed>Lake Eyre</seed>   
 <seed>Lake Titicaca</seed> 
</entity>   
<entity type="sea" classwords="sea" estimatedpopulation="10E1"> 
 <seed>Dead sea</seed>    <seed>Mediterranean Sea</seed>  
 <seed>Red sea</seed>    <seed>Caspian Sea</seed>  
 <seed>Irish Sea</seed>    <seed>Gulf of St. Lawrence</seed> 
 <seed>Gulf of Mexico</seed>   <seed>Philippine Sea</seed>  
 <seed>Bohai Sea</seed>    <seed>Timor Sea</seed>   
 <seed>North Sea</seed>    <seed>Baltic Sea</seed>   
 <seed>Beaufort Sea</seed>   <seed>Norwegian Sea</seed>  
 <seed>Gulf of Oman</seed> 
</entity>   
<entity type="ocean_bay" classwords="ocean;bay" estimatedpopulation="10E0"> 
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 <seed>Hudson bay</seed>   <seed>Atlantic ocean</seed>  
 <seed>Pacific ocean</seed>   <seed>Indian ocean</seed>  
 <seed>Artic ocean</seed>    <seed>Antartic ocean</seed>  
 <seed>Baffin Bay</seed>    <seed>Bay of Fundy</seed>  
 <seed>Bay of Biscay</seed>   <seed>James Bay</seed>   
 <seed>Khanty Ocean</seed>   <seed>Paleo-Tethys Ocean</seed>  
 <seed>Proto-Tethys Ocean</seed>   <seed>Pan-African Ocean</seed>  
 <seed>Southern Ocean</seed> 
</entity></entity>   
<entity type="continent" classwords="continent" estimatedpopulation="10E0"> 
 <seed>North America</seed>   <seed>South America</seed>  
 <seed>Europe</seed>    <seed>Asia</seed>   
 <seed>Africa</seed>    <seed>Antarctica</seed>   
 <seed>Antarctic</seed>    <seed>Australia</seed> 
</entity></entity>   
<entity type="astral_body"> 
<entity type="planet" classwords="planet" estimatedpopulation="10E0"> 
 <seed>Pluto</seed>    <seed>Mercury</seed>   
 <seed>earth</seed>    <seed>Mars</seed>   
 <seed>Venus</seed>    <seed>Saturn</seed>   
 <seed>Ceres</seed>    <seed>Jupiter</seed>   
 <seed>Eris</seed>    <seed>Uranus</seed>   
 <seed>Neptun</seed>    <seed>Moon</seed>   
 <seed>Titan</seed>    <seed>Miranda</seed>   
 <seed>Phobos</seed> 
</entity>   
<entity type="star" classwords="star" estimatedpopulation="10E1"> 
 <seed>Solar system</seed>   <seed>Orion</seed>   
 <seed>Great Bear</seed>    <seed>Zeta Ophiuchi</seed>  
 <seed>Rigel</seed>    <seed>Altair</seed>   
 <seed>Procyon A</seed>    <seed>Sun</seed>   
 <seed>Epsilon Indi</seed>   <seed>Proxima Centauri</seed>  
 <seed>BPM 37093</seed>   <seed>Nemesis</seed>   
 <seed>P Cygni</seed>    <seed>Zeta Bootis</seed>   
 <seed>Cygnus X-1</seed> 
</entity></entity></entity> 
<entity type="facility"><entity type="property"> 
<entity type="amphitheatre" classwords="amphitheatre" estimatedpopulation="10E1"> 
 <seed>Molson amphitheatre</seed>  <seed>Universal amphitheatre</seed> 
 <seed>Hollywood Bowl</seed>   <seed>Colosseum</seed>   
 <seed>Ford amphitheatre</seed>   <seed>Arles Amphitheatre</seed>  
 <seed>Mediolanum Santonum</seed>  <seed>Perigueux</seed>   
 <seed>Amphitheatrum Castrense</seed>  <seed>Ludus Magnus</seed>  
 <seed>Porolissum</seed>    <seed>Verona Arena</seed>  
 <seed>Augusta Raurica</seed>   <seed>Caerleon</seed>   
 <seed>Venta Silurum</seed> 
</entity>  
<entity type="cathedral" classwords="cathedral" estimatedpopulation="10E1"> 
 <seed>St Patrick's Cathedral</seed>  <seed>Saint Louis Cathedral</seed> 
 <seed>Peterborough Cathedral</seed>  <seed>Saint Raphael's Cathedral</seed> 
 <seed>Bristol cathedral</seed>   <seed>Canterberry Cathedral</seed> 
 <seed>Cathedral of Sao Paulo</seed>  <seed>Wells Cathedral</seed>  
 <seed>Wawel Cathedral</seed>   <seed>Cathedral of Parma</seed>  
 <seed>Saint Louis Cathedral</seed>  <seed>Lutheran Helsinki Cathedral</seed> 
 <seed>Mexico City Metropolitan Cathedral</seed> <seed>Ulm Munster</seed>  
 <seed>Saint Isaac's Cathedral</seed>   
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</entity>  
<entity type="castle" classwords="castle" estimatedpopulation="50E0"> 
 <seed>Prague Castle</seed>   <seed>Uppsala Castle</seed>  
 <seed>Bran Castle</seed>    <seed>St. Olaf's Castle</seed>  
 <seed>Trakai Island Castle</seed>   <seed>Medina del Campo</seed>  
 <seed>Wawel Castle</seed>   <seed>Craigievar Castle</seed>  
 <seed>Cahir Castle</seed>   <seed>Moscow Kremlin</seed>  
 <seed>Harlech Castle</seed>   <seed>Aberdeenshire</seed>  
 <seed>Hunyad Castle</seed>   <seed>Turku Castle</seed>  
 <seed>Castrum Danorum</seed> 
</entity>  
<entity type="skyscraper" classwords="skyscraper;building" estimatedpopulation="10E1"> 
 <seed>Taipei 101</seed>    <seed>Sears tower</seed>  
 <seed>Empire State Building</seed>  <seed>Bank of China Tower</seed> 
 <seed>Chrysler Building</seed>   <seed>Central Plaza</seed>  
 <seed>John Hancock Center</seed>  <seed>CITIC Plaza</seed>  
 <seed>Petronas Towers</seed>   <seed>Shun Hing Square</seed>  
 <seed>AT&amp;T Corporate Center</seed>  <seed>Jin Mao Building</seed>  
 <seed>Emirates Office Tower</seed>  <seed>Baiyoke Tower II</seed>  
 <seed>First Canadian Place</seed> 
</entity>  
<entity type="sport_place" classwords="stadium;arena" estimatedpopulation="10E1"> 
 <seed>Wrigley Field</seed>   <seed>Busch Stadium</seed>  
 <seed>Yankee stadium</seed>   <seed>Allianz Arena</seed>  
 <seed>Cameron Indoor Stadium</seed>  <seed>Tiger Stadium</seed>  
 <seed>Minute Maid Park</seed>   <seed>Bank One Ballpark</seed>  
 <seed>Comiskey Park</seed>   <seed>Crosley Field</seed>  
 <seed>Candlestick Park</seed>   <seed>Rogers Centre</seed>  
 <seed>Fenway Park</seed>   <seed>Qualcomm Stadium</seed>  
 <seed>Griffith Stadium</seed> 
</entity>  
<entity type="school" classwords="school;college;university" estimatedpopulation="10E1"> 
 <seed>University of California</seed>  <seed>University of Ottawa</seed> 
 <seed>Harvard university</seed>   <seed>Acadia University</seed>  
 <seed>University of Otago</seed>   <seed>University of Michigan</seed> 
 <seed>University of Canterbury</seed>  <seed>Northwestern University</seed> 
 <seed>University of Toronto</seed>  <seed>University of Minnesota</seed> 
 <seed>La Trobe University</seed>   <seed>University of Utah</seed>  
 <seed>University of Cambridge</seed>  <seed>University of Connecticut</seed> 
 <seed>Johns Hopkins University</seed> 
</entity>    
<entity type="museum" classwords="museum" estimatedpopulation="10E1"> 
 <seed>Metropolitan Museum of Art</seed>  <seed>Museum of Natural History</seed> 
 <seed>Louvre</seed>    <seed>Guggenheim museum</seed> 
 <seed>British Museum</seed>   <seed>National Gallery of Art</seed> 
 <seed>Art Institute of Chicago</seed>  <seed>Museum of Modern Art</seed> 
 <seed>Whitney Museum of American Art</seed> <seed>National Gallery</seed>  
 <seed>Tate Gallery</seed>   <seed>Philadelphia Museum of Art</seed> 
 <seed>National Palace Museum</seed>  <seed>Museo del Prado</seed>  
 <seed>High Museum of Art</seed> 
</entity>    
<entity type="airport" classwords="airport" estimatedpopulation="10E1"> 
 <seed>Croydon Airport</seed>   <seed>Heathrow airport</seed>  
 <seed>Linate Airport</seed>   <seed>Zurich International Airport</seed> 
 <seed>Auckland International Airport</seed> <seed>Frankfurt International Airport</seed>
 <seed>Taliedo Airport</seed>   <seed>Philadelphia International Airport</seed>
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 <seed>Indira Gandhi International Airport</seed> <seed>O'Hare International Airport</seed> 
 <seed>Los Angeles International Airport</seed> <seed>Liverpool John Lennon Airport</seed>
 <seed>John F. Kennedy International Airport</seed> <seed>Gardermoen Airport</seed>  
 <seed>Stewart International Airport</seed> 
</entity>    
<entity type="port" classwords="port" estimatedpopulation="10E1"> 
 <seed>Port of New York</seed>   <seed>Sydney Harbour</seed>  
 <seed>Port of Antwerp</seed>   <seed>Port of Duluth</seed>  
 <seed>Port of Hong Kong</seed>   <seed>Nhava Sheva</seed>  
 <seed>Port of Montreal</seed>   <seed>Chennai Port</seed>  
 <seed>Port of Oakland</seed>   <seed>Port of Vancouver</seed>  
 <seed>Port of Shanghai</seed>   <seed>Port of Rotterdam</seed>  
 <seed>Port Klang</seed>    <seed>Port of Los Angeles</seed>  
 <seed>Port Miou</seed>     
</entity>    
<entity type="library" classwords="library" estimatedpopulation="10E1"> 
 <seed>Library of Congress</seed>   <seed>National Library of Education</seed>
 <seed>Malmo City Library</seed>   <seed>Geisel Library</seed>  
 <seed>British Library</seed>   <seed>Bodleian Library</seed>  
 <seed>Library of Alexandria</seed>  <seed>Library of Gundishapur</seed> 
 <seed>Francis Trigge Chained Library</seed> <seed>Library and Archives Canada</seed> 
 <seed>Library of Alencon</seed>   <seed>Bibliotheque Nationale de France</seed>
 <seed>Vatican Library</seed>   <seed>Mitchell Library</seed>  
 <seed>Harold B. Lee Library</seed>   
</entity>    
<entity type="hotel" classwords="hotel" estimatedpopulation="10E1"> 
 <seed>Waldorf Astoria</seed>   <seed>hotel Sacher</seed>  
 <seed>Grand Hotel Europe</seed>   <seed>Ritz Hotel</seed>  
 <seed>Beverly Hills Hotel</seed>   <seed>Cecilienhof</seed>  
 <seed>Raffles Hotel</seed>   <seed>Hotel Chelsea</seed>  
 <seed>Chateau Marmont</seed>   <seed>Hotel Hermitage</seed>  
 <seed>Palazzo Versace</seed>   <seed>Hotel George V</seed>  
 <seed>Hotel Bel-Air</seed>   <seed>Grand Hotel Europe</seed> 
</entity>    
<entity type="hospital" classwords="hospital" estimatedpopulation="10E1"> 
 <seed>Charite</seed>    <seed>Guy's Hospital</seed>  
 <seed>Allgemeines Krankenhaus</seed>  <seed>hotel-Dieu</seed>  
 <seed>Hospicio Cabanas</seed>   <seed>Pennsylvania General Hospital</seed>
 <seed>Gillette Children's Specialty Healthcare</seed><seed>Turriff Cottage Hospital</seed> 
 <seed>Holy Cross Hospital</seed>   <seed>Shriners Hospital-Canada</seed> 
 <seed>Fairview Hospital</seed>   <seed>Bethlem Hospital</seed>  
 <seed>Easton Hospital</seed>   <seed>Victoria General Hospital</seed> 
 <seed>Christ Hospital</seed>    
</entity></entity>   
<entity type="line"> 
<entity type="road" classwords="road" estimatedpopulation="10E2"> 
 <seed>Garden State Parkway</seed>  <seed>Queen Elizabeth way</seed> 
 <seed>European route</seed>   <seed>Alaska highway</seed>  
 <seed>Trans-Canada highway</seed>  <seed>Jefferson Highway</seed>  
 <seed>Lincoln Highway</seed>   <seed>New Jersey Turnpike</seed> 
 <seed>Great River Road</seed>   <seed>Coquihalla Highway</seed>  
 <seed>400-Series Highways</seed>  <seed>Boston Post Road</seed>  
 <seed>Yellowhead Highway</seed>  <seed>Trans-Canada Highway</seed> 
 <seed>Pan-American Highway</seed>   
</entity>    
<entity type="bridge" classwords="bridge" estimatedpopulation="10E1"> 
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 <seed>Brooklyn bridge</seed>   <seed>Golden Gate bridge</seed>  
 <seed>Tower Bridge</seed>   <seed>Confederation bridge</seed> 
 <seed>Millau viaduct</seed>   <seed>Sydney Harbour Bridge</seed> 
 <seed>Mackinac Bridge</seed>   <seed>Tacoma Narrows Bridge</seed> 
 <seed>Lake Pontchartrain Causeway</seed> <seed>Trajan's bridge</seed>  
 <seed>Vasco da Gama Bridge</seed>  <seed>Tsing Ma Bridge</seed>  
 <seed>Sundial Bridge</seed>   <seed>Akashi-Kaikyo Bridge</seed> 
 <seed>Victoria Falls Bridge</seed> 
</entity>    
<entity type="station" classwords="station" estimatedpopulation="10E1"> 
 <seed>London Victoria Station</seed>  <seed>Sydney Bus Depot</seed>  
 <seed>Jerusalem Central Bus Station</seed> <seed>South Station</seed>  
 <seed>The Union Station GO Bus Terminal</seed> <seed>Kyoto Station</seed>  
 <seed>Shinjuku Station</seed>   <seed>Ikebukuro Station</seed>  
 <seed>Nagoya Station</seed>   <seed>Grand Central Terminal</seed> 
 <seed>Toronto Bus Terminal</seed>  <seed>Leningradsky Rail Terminal</seed> 
 <seed>Lewes railway station</seed>  <seed>Central Station</seed>  
 <seed>Union Station</seed> 
</entity>    
<entity type="railroad" classwords="railroad" estimatedpopulation="10E1"> 
 <seed>Amtrak</seed>    <seed>Canadian National</seed>  
 <seed>Canadian Pacific Railway</seed>  <seed>Metro-North Railroad</seed> 
 <seed>Ferromex</seed>    <seed>Great Western Railway</seed> 
 <seed>London and North Eastern Railway</seed> <seed>Southern Railway</seed>  
 <seed>London, Midland and Scottish Railway</seed><seed>SNCF</seed>  
 <seed>Okinawa Monorail</seed>   <seed>Tsukuba Express</seed>  
 <seed>Toden Arakawa Line</seed>  <seed>Kowloon-Canton Railway</seed> 
 <seed>Qinghai-Tibet Railway</seed>   
</entity></entity>   
<entity type="park" classwords="park" estimatedpopulation="10E1"> 
 <seed>Elk island National Park</seed>  <seed>Glacier National Park</seed> 
 <seed>Jasper national park</seed>   <seed>Banff national park</seed>  
 <seed>Forillon national park</seed>  <seed>Wood Buffalo National Park</seed> 
 <seed>Yoho National Park</seed>   <seed>Waterton Lakes National Park</seed>
 <seed>Mount Revelstoke National Park</seed> <seed>Kootenay National Park</seed> 
 <seed>Cape Breton Highlands National Park</seed> <seed>Kouchibouguac National Park</seed>
 <seed>Pukaskwa National Park</seed>  <seed>Fundy National Park</seed> 

<seed>Prince Edward Island National Park</seed> 
</entity>   
<entity type="amusement_park" classwords="amusement park" estimatedpopulation="10E1"> 
 <seed>Adventure Island</seed>   <seed>Busch gardens</seed>  
 <seed>Canada's Wonderland</seed>  <seed>Marineland</seed>  
 <seed>La Ronde</seed>    <seed>Luna Park</seed>  
 <seed>Disneyland</seed>    <seed>Epcot Center</seed>  
 <seed>The Magic Kingdom</seed>  <seed>Bakken</seed>  
 <seed>Prater</seed>    <seed>Magic Mountain</seed>  
 <seed>Legoland</seed>    <seed>Alton Towers</seed>  
 <seed>Blackpool Pleasure Beach</seed>  <seed>Sea World</seed>  
 <seed>Playland</seed>    <seed>Dreamworld</seed>  
 <seed>Phantasialand</seed>   <seed>Pleasure Island</seed> 
</entity>   
<entity type="monument" classwords="monument" estimatedpopulation="10E1"> 
 <seed>Statue of Liberty</seed>   <seed>Eiffel tower</seed>  
 <seed>Great Sphinx of Giza</seed>  <seed>Taj Mahal</seed>  
 <seed>Great Wall</seed>    <seed>The Great Wall</seed>  
 <seed>Colosseum</seed>    <seed>Big Ben</seed>  
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 <seed>Dome of the Rock</seed>   <seed>Mount Rushmore</seed>  
 <seed>Tower of Pisa</seed>   <seed>Wailing Wall</seed>  
 <seed>Parthenon</seed>    <seed>Ming Tombs</seed>  
 <seed>Stonehedge</seed>     
</entity></entity>   
<entity type="product"><entity type="vehicules"> 
<entity type="car" classwords="car" estimatedpopulation="10E2"> 
 <seed>Volkswagen Golf</seed>   <seed>Honda Civic</seed>  
 <seed>GMC Yukon</seed>   <seed>Toyota Prius</seed>  
 <seed>Ford Focus</seed>    <seed>Volkswagen Jetta</seed>  
 <seed>Toyota Corolla</seed>   <seed>Subaru Impreza</seed>  
 <seed>Hyundai Elantra</seed>   <seed>Nissan Sentra</seed>  
 <seed>Honda Accord</seed>   <seed>Hyundai Accent</seed>  
 <seed>Fiat Stilo</seed>    <seed>Chrysler PT Cruiser</seed>  
 <seed>Toyota Camry</seed> 
</entity>   
<entity type="ship" classwords="ship" estimatedpopulation="10E1"> 
 <seed>Queen Mary 2</seed>   <seed>Titanic</seed>  
 <seed>Wilhelm Gustloff</seed>   <seed>Great Eastern</seed>  
 <seed>Calypso</seed>    <seed>Queen Mary</seed>  
 <seed>Lusitania</seed>    <seed>Olympic</seed>  
 <seed>Exxon Valdez</seed>   <seed>Bismarck</seed>  
 <seed>Lancastria</seed>    <seed>Queen Elizabeth</seed>  
 <seed>Empress of Ireland</seed>   <seed>Kon-Tiki</seed>  
 <seed>Freedom of the Seas</seed>    
</entity>   
<entity type="train" classwords="train" estimatedpopulation="10E1"> 
 <seed>Orient Express</seed>   <seed>Royal Canadian Pacific</seed> 
 <seed>Rovos Rail</seed>    <seed>Palace on Wheels</seed>  
 <seed>Trans-Siberian Express</seed>  <seed>Bullet Train</seed>  
 <seed>Eurostar</seed>    <seed>Bulgaria Express</seed>  
 <seed>Glacier Express</seed>   <seed>Golden Arrow</seed>  
 <seed>Bluenose</seed>    <seed>Atlantic Express</seed>  
 <seed>20th Century Limited</seed>  <seed>Auto Train</seed>  
 <seed>Bluebonnet</seed>     
</entity>   
<entity type="aircraft" classwords="aircraft" estimatedpopulation="10E1"> 
 <seed>Constellation</seed>   <seed>Bell X1</seed>  
 <seed>Northrop x15</seed>   <seed>U2 spy plane</seed>  
 <seed>Boeing 747</seed>    <seed>Lancair</seed>  
 <seed>Eurofighter</seed>    <seed>Voyager</seed>  
 <seed>Nemesis</seed>    <seed>Grippen</seed>  
 <seed>Starduster too</seed>   <seed>Pushy Galore</seed>  
 <seed>Piagio Avanti</seed>   <seed>X15</seed>  
 <seed>Boomerang</seed> 
</entity>   
<entity type="spaceship" classwords="spaceship;spacecraft" estimatedpopulation="10E1"> 
 <seed>Columbia</seed>    <seed>Discovery</seed>  
 <seed>Endeavour</seed>    <seed>Apollo 11</seed>  
 <seed>International Space Station</seed>  <seed>Atlantis</seed>  
 <seed>Challenger</seed>    <seed>Spacelab</seed>  
 <seed>Enterprise</seed>    <seed>Cassini-Huygens</seed>  
 <seed>Skylab</seed>    <seed>SpaceShipOne</seed>  
 <seed>Soyuz</seed>    <seed>Mir</seed>  
 <seed>Shenzhou Spacecraft</seed> 
</entity>   
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</entity> 
<entity type="art"> 
<entity type="opera_musical" classwords="opera;musical" estimatedpopulation="10E1"> 
 <seed>The Fantasticks</seed>   <seed>Les Miserables</seed>  
 <seed>Miss Saigon</seed>   <seed>Chicago</seed>  
 <seed>The Lion King</seed>   <seed>Cabaret</seed>  
 <seed>My Fair Lady</seed>   <seed>Cats</seed>  
 <seed>Evita</seed>    <seed>Annie</seed>  
 <seed>Guys and Dolls</seed>   <seed>Beauty and the Beast</seed> 
 <seed>Jesus Christ Superstar</seed>  <seed>Godspell</seed>  
 <seed>Rent</seed> 
</entity>   
<entity type="song" classwords="song;composition" estimatedpopulation="10E2"> 
 <seed>Aqualung</seed>    <seed>Bohemian Rhapsody</seed> 
 <seed>Hey Jude</seed>    <seed>Hotel California</seed>  
 <seed>Johnny B. Goode</seed>   <seed>Good Vibrations</seed>  
 <seed>Imagine</seed>    <seed>Heartbreak Hotel</seed>  
 <seed>Jailhouse Rock</seed>   <seed>Every Breath You Take</seed> 
 <seed>Brown Eyed Girl</seed>   <seed>Yesterday</seed>  
 <seed>Bridge Over Troubled Water</seed>  <seed>Light My Fire</seed>  
 <seed>California Girls</seed> 
</entity>   
<entity type="painting" classwords="painting" estimatedpopulation="10E1"> 
 <seed>Mona Lisa</seed>    <seed>Les Demoiselles</seed>  
 <seed>Still Life</seed>    <seed>Scream</seed>  
 <seed>The Kiss</seed>    <seed>Birds On A Beach</seed>  
 <seed>Garden Still Life</seed>   <seed>Hommage a Brohmann</seed> 
 <seed>Garden of Earthly Delights</seed>  <seed>Pear</seed>  
 <seed>Vase of Flowers</seed>   <seed>Self-Portrait</seed> 

<seed>Still Life: Vase with Twelve Sunflowers</seed><seed>The Matador</seed>  
<seed>La Joie de Vivre</seed> 

</entity>   
<entity type="sculpture" classwords="sculpture" estimatedpopulation="10E1"> 
 <seed>Charging Bull</seed>   <seed>Fountain of Neptune</seed>  
 <seed>The Thinker</seed>   <seed>David</seed>  
 <seed>La Joute</seed>    <seed>Venus of Melos</seed>  
 <seed>Colossus of Rhodes</seed>   <seed>Venus of Lespugue</seed>  
 <seed>Angel of the North</seed>   <seed>Lady of Auxerre</seed>  
 <seed>The Great Bear</seed>   <seed>Kleobis and Biton</seed>  
 <seed>Spiral Jetty</seed>    <seed>Goddess of Democracy</seed> 
 <seed>Falling Autumn Leaves</seed>   
</entity></entity> 
<entity type="media">   
<entity type="broadcast" classwords="broadcast;tv" estimatedpopulation="10E2"> 
 <seed>60 Minutes</seed>    <seed>Jeopardy</seed>  
 <seed>Seinfeld</seed>    <seed>Pokemon</seed>  
 <seed>Access Hollywood</seed>   <seed>Good Morning, America</seed> 
 <seed>Today</seed>    <seed>The Outer Limits</seed>  
 <seed>The Practice</seed>   <seed>The Ed Sullivan Show</seed> 
 <seed>Oprah</seed>    <seed>Tonight Show</seed>  
 <seed>C.S.I.</seed>    <seed>Wheel of Fortune</seed>  
 <seed>The Early Show</seed>    
</entity>   
<entity type="movie" classwords="movie" estimatedpopulation="10E2"> 
 <seed>The Godfather</seed>   <seed>The Shawshank Redemption</seed> 
 <seed>Star Wars</seed>    <seed>Citizen Kane</seed>  



 136

 <seed>Monty Python and the Holy Grail</seed> <seed>Casablanca</seed>  
 <seed>Schindler's List</seed>   <seed>Pulp Fiction</seed>  
 <seed>2001: A Space Odyssey</seed>  <seed>The Wizard of Oz</seed>  
 <seed>Blade Runner</seed>   <seed>Raiders of the Lost Ark</seed> 
 <seed>Goodfellas</seed>    <seed>Chinatown</seed> 

<seed>One Flew Over the Cuckoo's Nest</seed> 
</entity>   
<entity type="book" classwords="book;novel" estimatedpopulation="10E2"> 
 <seed>Harry Potter and the Half-blood Prince</seed><seed>The Da Vinci Code</seed>  
 <seed>The Historian</seed>   <seed>Fast food nation</seed>  
 <seed>The world is flat</seed>   <seed>Master of the Game</seed>  
 <seed>The Age of Reason</seed>   <seed>Animal Farm</seed>  
 <seed>Bible</seed>    <seed>The Blue Lotus</seed>  
 <seed>Mein Kampf</seed>   <seed>1984</seed>  
 <seed>Ulysses</seed>    <seed>Brave New World</seed>  
 <seed>The Satanic Verses</seed>    
</entity>   
<entity type="newspaper" classwords="newspaper" estimatedpopulation="10E1"> 
 <seed>New York Times</seed>   <seed>Chicago Tribune</seed>  
 <seed>Le Monde</seed>    <seed>Washington Post</seed>  
 <seed>The Globe and Mail</seed>   <seed>Jerusalem Post</seed>  
 <seed>China Daily</seed>   <seed>The Nation</seed>  
 <seed>National Post</seed>   <seed>USA Today</seed>  
 <seed>The Guardian</seed>   <seed>The Boston Globe</seed>  
 <seed>San Jose Mercury News</seed>  <seed>International Herald Tribune</seed> 
 <seed>Philadelphia Inquirer</seed> 
</entity>   
<entity type="magazine" classwords="magazine" estimatedpopulation="10E1"> 
 <seed>Times Magazine</seed>   <seed>Forbes</seed>  
 <seed>Vogue</seed>    <seed>Metropolitan</seed>  
 <seed>Wired</seed>    <seed>Current History</seed>  
 <seed>Newsweek</seed>    <seed>Outside</seed>  
 <seed>Guitar Player</seed>   <seed>PC Magazine</seed>  
 <seed>Popular Science</seed>   <seed>Popular Mechanics</seed>  
 <seed>American Heritage</seed>   <seed>Scientific American</seed>  
 <seed>Rolling Stone</seed> 
</entity></entity> 
<entity type="weapon" classwords="weapon" estimatedpopulation="10E2"> 
 <seed>knife</seed>    <seed>bayonet</seed>  
 <seed>handgun</seed>    <seed>sniper rifle</seed>  
 <seed>Shotgun</seed>    <seed>Patriot missile</seed>  
 <seed>44 Magnums</seed>   <seed>spear</seed>  
 <seed>cannon</seed>    <seed>Maxim gun</seed>  
 <seed>MP5K</seed>    <seed>Colt .45 Automatic</seed>  
 <seed>Thompson submachine gun</seed>  <seed>Uzi</seed>  
 <seed>Molotov cocktail</seed> 
</entity>  
<entity type="food_brand" classwords="food" estimatedpopulation="10E2"> 
 <seed>Gatorade</seed>    <seed>dr. Pepper</seed>  
 <seed>Cheese Whiz</seed>   <seed>Oreo</seed>  
 <seed>Rice Krispies</seed>   <seed>Dannon</seed>  
 <seed>Equal</seed>    <seed>Yoplait</seed>  
 <seed>Uncle Ben's</seed>   <seed>Butterball</seed>  
 <seed>Cheerios</seed>    <seed>Crisco</seed>  
 <seed>Pringles</seed>    <seed>McCormick</seed>  
 <seed>Carnation Milk</seed> 
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</entity>   
<entity type="food" classwords="food" estimatedpopulation="10E1"> 
 <seed>cereal</seed>    <seed>milk</seed>  
 <seed>vegetable</seed>    <seed>meat</seed>  
 <seed>rice</seed>    <seed>donut</seed>  
 <seed>tofu</seed>    <seed>cheese</seed>  
 <seed>mushrooms</seed>    <seed>couscous</seed>  
 <seed>pasta</seed>    <seed>olive</seed>  
 <seed>muffin</seed>    <seed>soy milk</seed>  
 <seed>bread</seed>     
</entity>   
<entity type="clothes" classwords="clothes" estimatedpopulation="10E2"> 
 <seed>Gucci</seed>    <seed>Armani</seed>  
 <seed>Ralph Lauren</seed>   <seed>Tommy Hilfiger</seed>  
 <seed>Fruit of the Loom</seed>   <seed>Calvin Klein</seed>  
 <seed>Prada</seed>    <seed>Versace</seed>  
 <seed>Dolce &amp; Gabbana</seed>  <seed>Hugo Boss</seed>  
 <seed>Diesel</seed>    <seed>Chanel</seed>  
 <seed>Adidas</seed>    <seed>Burberry</seed>  
 <seed>Nike</seed> 
</entity>   
<entity type="drug" classwords="drug;medication" estimatedpopulation="10E2"> 
 <seed>Advil</seed>    <seed>Tylenol</seed>  
 <seed>Gaviscon</seed>    <seed>Gravol</seed>  
 <seed>Sudafed</seed>    <seed>Benadryl</seed>  
 <seed>Claritin</seed>    <seed>Metamucil</seed>  
 <seed>Pepcid</seed>    <seed>Imodium</seed>  
 <seed>Nicoderm</seed>    <seed>aspirin</seed>  
 <seed>motrin</seed>    <seed>Maalox</seed>  
 <seed>Triaminic</seed> 
</entity></entity>   
<entity type="event"> 
<entity type="game" classwords="game" estimatedpopulation="10E1"> 
 <seed>Olympic games</seed>   <seed>Wimbledon</seed>  
 <seed>tour de France</seed>   <seed>US Masters</seed>  
 <seed>Superbowl</seed>    <seed>World Cup</seed>  
 <seed>Commonwealth Games</seed>  <seed>PGA Championship</seed>  
 <seed>Rugby World Cup</seed>   <seed>British Open</seed>  
 <seed>Roland Garros</seed>   <seed>Stanlet Cup Finals</seed>  
 <seed>Evergreen Tournament</seed>  <seed>FA Challenge Cup</seed>  
 <seed>World Poker Tour</seed>    
</entity>   
<entity type="holiday" classwords="holiday" estimatedpopulation="20E0"> 
 <seed>christmas</seed>    <seed>easter</seed>  
 <seed>Halloween</seed>    <seed>thanksgiving</seed>  
 <seed>mother's day</seed>   <seed>Valentine's Day</seed>  
 <seed>St. Patrick's Day</seed>   <seed>4th of July</seed>  
 <seed>Father's Day</seed>   <seed>New Year</seed>  
 <seed>Labor Day</seed>    <seed>Memorial Day</seed>  
 <seed>Chinese New Year</seed>   <seed>Ramadan</seed>  
 <seed>Earth Day</seed> 
</entity>   
<entity type="war" classwords="war" estimatedpopulation="10E1"> 
 <seed>Vietnam war</seed>   <seed>World War II</seed>  
 <seed>World War I</seed>   <seed>Cold war</seed>  
 <seed>The Gulf War</seed>   <seed>Korean War</seed>  
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 <seed>Iraq War</seed>    <seed>War of 1812</seed>  
 <seed>American Civil War</seed>   <seed>Russian Civil War</seed>  
 <seed>Croatian War of Independence</seed> <seed>Battle of Carthage</seed>  
 <seed>Second Congo War</seed>   <seed>Romanian Revolution</seed> 
 <seed>Iran-Iraq War</seed> 
</entity>   
<entity type="hurricane" classwords="hurricane" estimatedpopulation="10E1"> 
 <seed>Hurricane Katrina</seed>   <seed>Hurricane Andrew</seed>  
 <seed>Hurricane Wilma</seed>   <seed>hurricane Charley</seed>  
 <seed>hurricane Ivan</seed>   <seed>Tropical Storm Arlene</seed> 
 <seed>Tropical Storm Bonnie</seed>  <seed>Tropical Storm Alberto</seed> 
 <seed>Hurricane Rita</seed>   <seed>Hurricane Frances</seed>  
 <seed>Hurricane Jeanne</seed>   <seed>Hurricane Hugo</seed>  
 <seed>Hurricane Dennis</seed>   <seed>Hurricane Isabel</seed>  
 <seed>Hurricane Lili</seed> 
</entity> 
<entity type="crime" classwords="crime" estimatedpopulation="10E1"> 
 <seed>Oklahoma City Bombing</seed>  <seed>September 11, 2001 attacks</seed> 
 <seed>Moscow Theatre Siege</seed>  <seed>Oklahoma City bombing</seed> 
 <seed>Wall Street bombing</seed>  <seed>Beslan School Siege</seed>  
 <seed>King David Hotel bombing</seed>  <seed>Circus arson</seed>  
 <seed>Dupont Plaza Hotel arson</seed>  <seed>Bath School Disaster</seed> 
 <seed>Erfurt massacre</seed>   <seed>Postal shooting</seed>  
 <seed>Jack the Ripper</seed>   <seed>Boston Strangler</seed>  
 <seed>Scarborough Rapist</seed>    
</entity>   
<entity type="conference" classwords="conference" estimatedpopulation="10E1"> 
 <seed>Halifax Summit</seed>   <seed>APEC</seed>  
 <seed>Tokyo Summit</seed>   <seed>Kyoto conference</seed>  
 <seed>Rambouillet Summit</seed>  <seed>Moscow Conference</seed>  
 <seed>International Meridian Conference</seed> <seed>Quebec Conference</seed>  
 <seed>Geneva Conference</seed>   <seed>Congress of Berlin</seed>  
 <seed>EVA Conferences</seed>   <seed>World Food Conference</seed> 
 <seed>World Summit for Children</seed>  <seed>Pan-American Conference</seed> 
 <seed>Conference of Lausanne</seed>   
</entity></entity>   
<entity type="natural_object"><entity type="living_thing"><entity type="animal"><entity 
type="invertebrate"> 
<entity type="insect" classwords="insect" estimatedpopulation="10E1"> 
 <seed>Ant</seed>    <seed>beetle</seed>  
 <seed>fly</seed>     <seed>walking stick</seed>  
 <seed>cockroach</seed>    <seed>bee</seed>  
 <seed>mosquito</seed>    <seed>dragonfly</seed>  
 <seed>cricket</seed>    <seed>butterfly</seed>  
 <seed>firefly</seed>    <seed>locust</seed>  
 <seed>spider</seed>    <seed>centipede</seed>  
 <seed>termite</seed> 
</entity>   
<entity type="sea_animal" classwords="sea animal" estimatedpopulation="10E1"> 
 <seed>crab</seed>    <seed>starfish</seed>  
 <seed>coral</seed>    <seed>anemones</seed>  
 <seed>sea cucumber</seed>   <seed>Basket Star</seed>  
 <seed>Sponges</seed>    <seed>Moon Jellyfish</seed>  
 <seed>Mantis Shrimp</seed>   <seed>Squid</seed>  
 <seed>Hermit Crab</seed>   <seed>Jellyfish</seed>  
 <seed>Seastar</seed>    <seed>Sea Urchin</seed>  
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 <seed>Octopus</seed> 
</entity></entity>   
<entity type="vertebrate"> 
<entity type="fish" classwords="fish" estimatedpopulation="10E1"> 
 <seed>shark</seed>    <seed>tuna</seed>  
 <seed>whale</seed>    <seed>trout</seed>  
 <seed>salmon</seed>    <seed>Swordfish</seed>  
 <seed>Mako Shark</seed>   <seed>Striped Bass</seed>  
 <seed>bass</seed>    <seed>perch</seed>  
 <seed>Carp</seed>    <seed>pike</seed>  
 <seed>Perch</seed>    <seed>Cod</seed>  
 <seed>Sole</seed> 
</entity>   
<entity type="reptile" classwords="reptile" estimatedpopulation="10E1"> 
 <seed>Tortoise</seed>    <seed>alligator</seed>  
 <seed>Iguana</seed>    <seed>python</seed>  
 <seed>Chameleon</seed>    <seed>Gecko</seed>  
 <seed>Bearded Dragon</seed>   <seed>Rattlesnake</seed>  
 <seed>Anaconda</seed>    <seed>Turtle</seed>  
 <seed>Komodo Dragon</seed>   <seed>Lizard</seed>  
 <seed>Snake</seed>    <seed>Frog</seed>  
 <seed>Copperhead</seed> 
</entity>   
<entity type="bird" classwords="bird" estimatedpopulation="10E1"> 
 <seed>snow goose</seed>    <seed>cormorant</seed>  
 <seed>Heron</seed>    <seed>Eagle</seed>  
 <seed>Merlin</seed>    <seed>Dove</seed>  
 <seed>Owl</seed>    <seed>Swan</seed>  
 <seed>Albatross</seed>    <seed>Blue Jay</seed>  
 <seed>Falcon</seed>    <seed>Peacock</seed>  
 <seed>cukoo</seed>    <seed>American Kestrel</seed>  
 <seed>Mocking Bird</seed> 
</entity>   
<entity type="mammal" classwords="mammal" estimatedpopulation="10E1"> 
 <seed>bear</seed>    <seed>cow</seed>  
 <seed>horse</seed>    <seed>human</seed>  
 <seed>lynx</seed>    <seed>cat</seed>  
 <seed>whale</seed>    <seed>lamb</seed>  
 <seed>Mouse</seed>    <seed>Dog</seed>  
 <seed>Mule</seed>    <seed>Deer</seed>  
 <seed>Kodiak Bear</seed>   <seed>Asian Elephant</seed>  
 <seed>Orangutan</seed> 
</entity></entity></entity>   
<entity type="vegetal" classwords="vegetal;plant" estimatedpopulation="10E1"> 
 <seed>crop</seed>    <seed>herb</seed>  
 <seed>flower</seed>    <seed>grapevine</seed>  
 <seed>tree</seed>    <seed>tree fern</seed>  
 <seed>Green algae</seed>   <seed>lichens</seed>  
 <seed>Bee orchid</seed>    <seed>oak tree</seed>  
 <seed>Giant Sequoia</seed>   <seed>white pine</seed>  
 <seed>Cypress</seed>    <seed>maple tree</seed>  
 <seed>carnivorous plant</seed>    
</entity></entity>   
<entity type="mineral" classwords="mineral;chemical element" estimatedpopulation="50E0"> 
 <seed>hydrogen</seed>    <seed>water</seed>  
 <seed>iron</seed>    <seed>mercury</seed>  
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 <seed>copper</seed>    <seed>Lead</seed>  
 <seed>Silver</seed>    <seed>Benzene</seed>  
 <seed>uranium</seed>    <seed>Calcium</seed>  
 <seed>nickel</seed>    <seed>Chlorine</seed>  
 <seed>Ozone</seed>    <seed>Carbon</seed>  
 <seed>Oxygen</seed> 
</entity></entity>   
<entity type="unit"> 
<entity type="measure" classwords="measure" estimatedpopulation="10E1"> 
 <seed>liter</seed>    <seed>kilogram</seed>  
 <seed>ohm</seed>    <seed>Decibel</seed>  
 <seed>Carat</seed>    <seed>gram</seed>  
 <seed>rad</seed>    <seed>hectare</seed>  
 <seed>fathom</seed>    <seed>inch</seed>  
 <seed>acre</seed>    <seed>ton</seed>  
 <seed>Pascal</seed>    <seed>Volt</seed>  
 <seed>Newton</seed> 
</entity>   
<entity type="currency" classwords="currency" estimatedpopulation="10E1"> 
 <seed>Yen</seed>    <seed>Euro</seed>  
 <seed>dollar</seed>    <seed>Pound</seed>  
 <seed>franc</seed>    <seed>Ruble</seed>  
 <seed>yuan</seed>    <seed>Krone</seed>  
 <seed>Peso</seed>    <seed>Ringgit</seed>  
 <seed>Real</seed>    <seed>Rupiah</seed>  
 <seed>Rand</seed>    <seed>Baht</seed>  
 <seed>Krona</seed> 
</entity>   
<entity type="month" classwords="month" estimatedpopulation="24"> 
 <seed>January</seed>    <seed>February</seed>  
 <seed>March</seed>    <seed>April</seed>  
 <seed>May</seed>    <seed>June</seed>  
 <seed>July</seed>    <seed>August</seed>  
 <seed>September</seed>    <seed>November</seed>  
 <seed>December</seed>    <seed>jan</seed>  
 <seed>feb</seed>    <seed>mar</seed>  
 <seed>apr</seed>     
</entity>   
<entity type="weekday" classwords="weekday" estimatedpopulation="14"> 
 <seed>Monday</seed>    <seed>Tuesday</seed>  
 <seed>Wednesday</seed>    <seed>Thursday</seed>  
 <seed>Friday</seed>    <seed>Saturday</seed>  
 <seed>Sunday</seed>    <seed>mon</seed>  
 <seed>tue</seed>    <seed>wed</seed>  
 <seed>thu</seed>    <seed>fri</seed>  
 <seed>sat</seed>     <seed>sun</seed> 
</entity></entity>   
<entity type="misc"> 
<entity type="disease" classwords="disease" estimatedpopulation="10E2"> 
 <seed>myocardial infarction</seed>  <seed>stroke</seed>  
 <seed>aphasia</seed>    <seed>cold</seed>  
 <seed>leukemia</seed>    <seed>Abscess</seed>  
 <seed>Alzheimer Disease</seed>   <seed>Bipolar Disorder</seed>  
 <seed>Bone Neoplasms</seed>   <seed>Encephalitis</seed>  
 <seed>Epilepsy</seed>    <seed>Facial Paralysis</seed>  
 <seed>Chronic Fatigue Syndrome</seed>  <seed>Fever</seed>  
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 <seed>Laryngitis</seed> 
</entity>   
<entity type="god" classwords="god;deity" estimatedpopulation="10E0"> 
 <seed>Allah</seed>    <seed>Zeus</seed>  
 <seed>Venus</seed>    <seed>Jesus</seed>  
 <seed>Ra</seed>     <seed>Ares</seed>  
 <seed>Aphrodite</seed>    <seed>Odin</seed>  
 <seed>Horus</seed>    <seed>Nephthys</seed>  
 <seed>Minos</seed>    <seed>Mars</seed>  
 <seed>Osiris</seed>    <seed>Valkyries</seed>  
 <seed>Diana</seed> 
</entity>   
<entity type="religion" classwords="religion" estimatedpopulation="10E1"> 
 <seed>buddhism</seed>    <seed>Islam</seed>  
 <seed>Catholic</seed>    <seed>Atheism</seed>  
 <seed>christianity</seed>    <seed>Judaism</seed>  
 <seed>Hinduism</seed>    <seed>Sikhism</seed>  
 <seed>Jainism</seed>    <seed>Shinto</seed>  
 <seed>Taoism</seed>    <seed>Protestant</seed>  
 <seed>Zoroastrianism</seed>   <seed>Baha'i</seed>  
 <seed>zen</seed> 
</entity>   
<entity type="color" classwords="color" estimatedpopulation="10E0"> 
 <seed>white</seed>    <seed>red</seed>  
 <seed>blue</seed>    <seed>yellow</seed>  
 <seed>purple</seed>    <seed>Green</seed>  
 <seed>Black</seed>    <seed>Orange</seed>  
 <seed>Pink</seed>    <seed>Brown</seed>  
 <seed>Gray</seed>    <seed>orange</seed>  
 <seed>peach</seed>    <seed>Lavender</seed>  
 <seed>cyan</seed> 
</entity>   
<entity type="language" classwords="language" estimatedpopulation="10E1"> 
 <seed>French</seed>    <seed>English</seed>  
 <seed>Dutch</seed>    <seed>Spanish</seed>  
 <seed>Japanese</seed>    <seed>German</seed>  
 <seed>Italian</seed>    <seed>Russian</seed>  
 <seed>Chinese</seed>    <seed>Greek</seed>  
 <seed>Korean</seed>    <seed>Arabic</seed>  
 <seed>Finnish</seed>    <seed>Czech</seed>  
 <seed>Turkish</seed> 
</entity>   
<entity type="award" classwords="award;prize" estimatedpopulation="10E1"> 
 <seed>Nobel prize</seed>    <seed>Academy Award</seed>  
 <seed>Pulitzer prize</seed>   <seed>Genie award</seed>  
 <seed>Razzie award</seed>   <seed>Grammy Award</seed>  
 <seed>Crystal Awards</seed>   <seed>Army Commendation Medal</seed> 
 <seed>Mtv Award</seed>    <seed>Golden Gloves</seed>  
 <seed>Library of Congress Living Legend</seed> <seed>Cross of Valour</seed>  
 <seed>Cy Young Award</seed>   <seed>Grey Cup</seed>  
 <seed>Stanley Cup</seed> 
</entity>   
<entity type="sport" classwords="sport" estimatedpopulation="10E1"> 
 <seed>football</seed>    <seed>hockey</seed>  
 <seed>baseball</seed>    <seed>racquetball</seed>  
 <seed>tennis</seed>    <seed>Giant Slalom</seed>  
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 <seed>Soccer</seed>    <seed>Basketball</seed>  
 <seed>Golf</seed>    <seed>Softball</seed>  
 <seed>Wrestling</seed>    <seed>Boxing</seed>  
 <seed>Volleyball</seed>    <seed>Swimming</seed>  
 <seed>Cross Country</seed>   <seed>Track and Field</seed> 
</entity>   
<entity type="academic" classwords="academic" estimatedpopulation="10E1"> 
 <seed>Sociology</seed>    <seed>Physics</seed>  
 <seed>Philosophy</seed>    <seed>Medecine</seed>  
 <seed>Computer Science</seed>   <seed>Chemistry</seed>  
 <seed>Psychology</seed>    <seed>History</seed>  
 <seed>Biology</seed>    <seed>Mathematics</seed>  
 <seed>Economics</seed>    <seed>English</seed>  
 <seed>Music</seed>    <seed>Education</seed>  
 <seed>Anthropology</seed> 
</entity>   
<entity type="rule" classwords="rule;law" estimatedpopulation="10E1"> 
 <seed>U.S. Constitution</seed>   <seed>Amateur Sports Act</seed>  
 <seed>World Trade Accord</seed>  <seed>Americas Free Trade Agreement</seed>
 <seed>Anti-Monopoly Law</seed>   <seed>Lindbergh Law</seed>  
 <seed>Universal Declaration of Human Rights</seed><seed>Constitutional law</seed>  
 <seed>Civil Code of Quebec</seed>  <seed>Constitution Act</seed>  
 <seed>California Penal Code</seed>  <seed>Uniform Commercial Code</seed> 
 <seed>Model Penal Code</seed>   <seed>Napoleonic Code</seed>  
 <seed>Black's Law Dictionary</seed> 
</entity>   
<entity type="theory" classwords="theory;law" estimatedpopulation="10E1"> 
 <seed>Zipf's law</seed>    <seed>Newton's Law</seed>  
 <seed>Cook's theorem</seed>   <seed>Theory of relativity</seed>  
 <seed>law of large numbers</seed>  <seed>Big Bang Theory</seed>  
 <seed>Cell theory</seed>    <seed>Decision theory</seed>  
 <seed>Theory of Global Climate Change</seed> <seed>Chaos theory</seed>  
 <seed>De Morgan's law</seed>   <seed>Euler's theorem</seed>  
 <seed>Occam's Razor</seed>   <seed>Pythagorean theorem</seed> 
 <seed>Theory of Relativity</seed>    
</entity></entity></entity> 
</entityHierarchy> 


