

Semi-Supervised Named Entity Recognition:

Learning to Recognize 100 Entity Types with Little Supervision

David Nadeau

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

in partial fulfillment of the requirements

for the PhD degree in Computer Science

Ottawa-Carleton Institute for Computer Science

 School of Information Technology and Engineering

University of Ottawa

© David Nadeau, Ottawa, Canada, 2007

 ii

Table of contents

List of tables .. iv

List of figures ... v

Abstract ... vi

Acknowledgements ... vii

1 Introduction .. 1

2 Background and Related Work .. 6

2.1 Related Work ... 7

2.2 Applications ... 9

2.3 Observations: 1991 to 2006 .. 10

2.4 Techniques and Algorithms to Resolve the NER Problem 14

2.5 Feature Space for NER ... 19

2.6 Evaluation of NER .. 26

2.7 Conclusion .. 30

3 Creating a Baseline Semi-Supervised NER System .. 32

3.1 Generating Gazetteers .. 35

3.2 Resolving Ambiguity ... 42

3.3 Evaluation with the MUC-7 Enamex Corpus ... 45

3.4 Evaluation with Car Brands .. 50

3.5 Supervised versus Unsupervised .. 51

3.6 Conclusion .. 51

4 Noise-Filtering Techniques for Generating NE Lists ... 53

4.1 Generating NE Lists from the Web ... 55

4.2 Lexical Noise Filter ... 58

4.3 Information Redundancy Filter ... 64

4.4 Noise Filter Combination ... 66

4.5 Statistical Semantics Filter ... 68

4.6 Conclusion .. 70

5 Discovering Unambiguous NEs for Disambiguation Rule Generation 72

5.1 Related Work ... 74

 iii

5.2 Massive Generation of NE Lists ... 75

5.3 NE Ambiguity .. 78

5.4 From Unambiguous NE to Disambiguation Rules ... 82

5.5 Experiments on the NER Task ... 85

5.6 Conclusion .. 91

6 Detecting Acronyms for Better Alias Resolution .. 92

6.1 Related Work ... 94

6.2 Supervised Learning Approach ... 99

6.3 Evaluation Corpus .. 103

6.4 Experiment Results ... 104

6.5 Discussion ... 105

6.6 Improving Alias Resolution in NER Systems ... 107

6.7 Conclusion .. 108

7 Discussion and Conclusion .. 110

7.1 Limitations ... 111

7.2 Future Work .. 113

7.3 Long-Term Research Ideas .. 114

Bibliography .. 115

Appendix: Seed words (system input) ... 125

 iv

List of tables

Table 1: Word-level features ... 20

Table 2: List look-up features ... 22

Table 3: Features from documents .. 24

Table 4: NER error types .. 27

Table 5: Results of a supervised system for MUC-7 .. 46

Table 6: Type and size of gazetteers built using Web page wrapper 46

Table 7: Supervised list creation vs. unsupervised list creation techniques 47

Table 8: Generated list performance on text matching ... 48

Table 9: Performance of heuristics to resolve NE ambiguity ... 48

Table 10: Estimated precision of automatically generated lists .. 49

Table 11: System performance for car brand recognition ... 50

Table 12: NE lexical features .. 59

Table 13: Reference lists for noise filter evaluation ... 63

Table 14: BaLIE performance on MUC-7 corpus with and without noise filtering 67

Table 15: BaLIE and Oak lexicon comparison ... 75

Table 16: Additional BaLIE lexicons ... 77

Table 17: Source of ambiguity between entity types .. 79

Table 18: Percentage of entity-entity ambiguity per type ... 81

Table 19: Accuracy of entity-entity classifiers ... 85

Table 20: Three-type BaLIE performance on MUC-7 corpus .. 87

Table 21: 100-type BaLIE performance on MUC-7 corpus with and without rules 87

Table 22: BaLIE's performance on the CONLL corpus .. 88

Table 23: System comparison on CONLL corpus .. 89

Table 24: BaLIE's performance on BBN corpus ... 90

Table 25: Summary of constraints on acronyms and definitions .. 97

Table 26: Acronym detection performance reported various teams 104

Table 27: Performance of various classifiers on the Medstract corpus................................. 105

Table 28: Acronym detection on Swedish texts .. 107

Table 29: BaLIE's performance on the CONLL corpus with acronym detection 108

 v

List of figures

Figure 1: Overview of the semi-supervised NER system ... 2

Figure 2: Details of the baseline named entity recognition system .. 33

Figure 3: Simple alias resolution algorithm .. 44

Figure 4: Details of noise filtering as a post-process for the Web page wrapper 54

Figure 5: Algorithm for one iteration of the NE list generation process 56

Figure 6: Comparing lexical filters ... 63

Figure 7: Comparison of lexical filter and information redundancy filter 65

Figure 8: Comparison of individual filters and their combination .. 67

Figure 9: Details of training disambiguation rules in a semi-supervised manner 73

Figure 10: CONLL corpus metonymic references .. 88

Figure 11: Details of acronym identification as a component of the alias network 93

 vi

Abstract

Named Entity Recognition (NER) aims to extract and to classify rigid designators in text

such as proper names, biological species, and temporal expressions. There has been growing

interest in this field of research since the early 1990s. In this thesis, we document a trend

moving away from handcrafted rules, and towards machine learning approaches. Still, recent

machine learning approaches have a problem with annotated data availability, which is a

serious shortcoming in building and maintaining large-scale NER systems.

In this thesis, we present an NER system built with very little supervision. Human

supervision is indeed limited to listing a few examples of each named entity (NE) type. First,

we introduce a proof-of-concept semi-supervised system that can recognize four NE types.

Then, we expand its capacities by improving key technologies, and we apply the system to

an entire hierarchy comprised of 100 NE types.

Our work makes the following contributions: the creation of a proof-of-concept semi-

supervised NER system; the demonstration of an innovative noise filtering technique for

generating NE lists; the validation of a strategy for learning disambiguation rules using

automatically identified, unambiguous NEs; and finally, the development of an acronym

detection algorithm, thus solving a rare but very difficult problem in alias resolution.

We believe semi-supervised learning techniques are about to break new ground in the

machine learning community. In this thesis, we show that limited supervision can build

complete NER systems. On standard evaluation corpora, we report performances that

compare to baseline supervised systems in the task of annotating NEs in texts.

 vii

Acknowledgements

Le rêve de bâtir un système autonome est partagé par la plupart des chercheurs du domaine

et s’étend en fait probablement à tous les ingénieurs de systèmes intelligents. Lorsque j’ai

mis au point un premier prototype de système de reconnaissance d’entités nommées, de 2001

à 2003, le problème de la maintenance est rapidement devenu manifeste. En plus, l’effort

d’annotation de documents requis pour étendre le système était tel que le rêve de départ

devenait un impératif. J’avais bien la motivation de créer ce système, mais je n’avais aucune

idée de comment y arriver. C’était la conjoncture idéale pour entreprendre une thèse.

Je tiens à remercier Peter Turney et Stan Matwin qui ont supervisé et contribué à ce travail.

En questionnant et en soupesant chaque idée et chaque phrase, ils m’ont fait comprendre

beaucoup plus que des notions abstraites et des procédures informatiques.

Je tiens aussi à remercier Caroline Barrière, Cyril Goutte et Pierre Isabelle du Groupe de

technologies langagières interactives du Conseil national de recherches Canada pour leur

aide et leur commentaires sur les versions préliminaires de cette thèse.

Merci au Fonds québécois de la recherche sur la nature et les technologies ainsi qu’à

l’Université d’Ottawa pour le support financier.

 viii

 1

Chapter 1

Introduction

The term “Named Entity” (NE) is in current use in Information Extraction (IE) applications.

It was coined at the sixth Message Understanding Conference (MUC-6) (Grishman &

Sundheim 1996), which influenced IE research in the 1990s. At the time, MUC was focusing

on IE tasks wherein structured information on company and defense-related activities are

extracted from unstructured text, such as newspaper articles. In defining IE tasks, people

noticed that it is essential to recognize information units such as names including person,

organization, and location names, and numeric expressions including time, date, money, and

percentages. Identifying references to these entities in text was acknowledged as one of IE’s

important sub-tasks and was called “Named Entity Recognition (NER).” Before the NER

field was recognized in 1996, significant research was conducted by extracting proper names

from texts. A paper published in 1991 by Lisa F. Rau (1991) is often cited as the root of the

field.

For more than fifteen years, a dynamic research community advanced the fundamental

knowledge and the engineered solutions to create an NER system. In its canonical form, the

input of an NER system is a text and the output is information on boundaries and types of

NEs found in the text. The vast majority of proposed systems fall in two categories: the

handmade rule-based systems; and the supervised learning-based systems. In both

approaches, large collections of documents are analyzed by hand to obtain sufficient

knowledge for designing rules or for feeding machine learning algorithms. Expert linguists

must execute this important amount of work, which in turn limits the building and

maintenance of large-scale NER systems.

This thesis is about the creation of an autonomous NER system. It has the desirable property

of requiring a small amount of work by an expert linguist. It falls in the new category of

semi-supervised and unsupervised systems. Influential work in this category is relatively rare

and recent, and we believe ours to be the first thesis devoted exclusively to the creation of an

autonomous NER system.

 2

This thesis is structured around the construction of an NER system and one of our goals is to

create proof-of-concept software. System architecture is shown in Figure 1 and we’ll refer to

it throughout the thesis.

Figure 1: Overview of the semi-supervised NER system

N
E

R
 s

ys
te

m

List creator

� see Section 3

Rule learner

� see Section 3 and 5

Noise filter

� see Sections 4

City : “Montréal,” “Boston,” “Paris,” “Sydney”

First name: "Mary,” "Elizabeth,” "Rose,” "Louise"

Car: "Matrix,” "Accord,” "Five Hundred,” "Maxima"

Organization: "Nortel,” "Time Warner,” "Pfizer,” "NRC"

� see the Appendix

City :

First name:

Car:

Organization:

…

City -First name classifier

City-Car classifier

City-Organization classifier

…

Lists Rules

Legend:

 Ambiguous entities

 Unambiguous entities

Alias network

� see Section 3 and 6

S
em

i-
su

pe
rv

is
ed

le
ar

ne
rs

S
ys

te
m

 in
pu

t

(m
an

ua
lly

 c
re

at
ed

)

 3

Figure 1 has three main parts. The upper part is the system input that consists of a few

examples for 100 entity types, as listed in the Appendix. This input constitutes very little

supervision.

The middle part shows the semi-supervised modules. For instance, the “List Creator” module

is explained in details in section 3.1 and it processes the system input, as illustrated by the

arrow linking upper and middle parts of the Figure 1. The semi-supervised modules require

no other manually created input. They however rely on very large corpora: the Web and a

Terabyte-sized corpus of plain text (not shown in Figure 1).

The bottom part is the NER system, which is the program that can identify named entities in

a given text. The modules of this system follow McDonald (1993) system division: Delimit,

Classify, Record. “Lists” are use to delimit named entities, “Rules” are used to classify

named entities, and an “Alias network” is used to record named entities.

The resulting semi-supervised system is in itself a significant contribution to and advance in

the NER field. In addition, the proposed system implements state-of-the-art techniques from

computational linguistics, semi-supervised machine learning, and statistical semantics. We

claim four specific contributions to these fields:

1. The design of a baseline semi-supervised NER system (called BaLIE1) that performs

at a level comparable to that of a simple supervised learning-based NER system

(Chapter 3). The architecture of this system was published at Canadian AI 2006

(Nadeau et al. 2006).

2. The design of a noise filter for an NE list generation based on computational

linguistic and statistical semantic techniques. The noise filter outperforms previous

art (Chapter 4).

3. The demonstration of a simple strategy based on set intersections that enable the

1 BaLIE is open source software released under GNU GPL: http://balie.sourceforge.net. A Web demo of

BaLIE’s NER is available at http://www.YooName.com.

 4

identification of unambiguous examples for a given NE type (Chapter 5).

Unambiguous NEs are a requirement for creating semi-supervised disambiguation

rules.

4. An acronym detection algorithm—part of an alias resolution system—that

outperforms previous art (Chapter 6), with experiments published at Canadian AI

2005 (Nadeau & Turney 2005).

These contributions are crucial components of a successful autonomous NER system, and

they are best explained in the context of the whole system. We structured this thesis

accordingly.

In Chapter 2, we introduce background work, related work, and NER applications. We give a

formal definition of the NER task. Problems that are related to and may benefit from NER

are discussed. Applications for both the research and industrial worlds are listed and

presented. We also thoroughly survey fifteen years of research—from 1991 to 2006—in a

systematic review published in a special issue of Linguisticae Investigationes (Nadeau &

Sekine 2007).

In Chapter 3, we present BaLIE (Baseline Information Extraction), a system that learns to

recognize NEs in an autonomous manner. BaLIE solves two limitations of rule-based and

supervised NER systems. First, it requires no human intervention, such as manually labelling

training data or creating gazetteers. Second, the system can handle more than the three

classical named-entity types (person, location, and organization). System performances are

shown to be comparable to that of a simple supervised learning-based system. Some

significant details of the system were published in a regional French-language conference

(Nadeau 2005b), and are translated and reported in this chapter.

Chapters 4, 5 and 6 are the core of this thesis. Here, we present extensions and improvements

to BaLIE. Our contributions come from three hypotheses that were formulated to improve

the baseline system of Chapter 3. First, we hypothesize that lexical features can improve

noise-filtering techniques aimed at generating high-quality NE lists. We have included a

 5

demonstration of this filter in Chapter 4. Then, we hypothesize that the differences between

multiple NE lists are a set of unambiguous NE examples that are useful in learning

disambiguation rules. We have included experiments that support this hypothesis in Chapter

5. Finally, we hypothesize that in the context of alias resolution, resolving acronyms would

improve the system quality. An acronym detection algorithm is provided in Chapter 6.

Chapter 7 discusses the work that was accomplished in completing this thesis. It sheds light

on the reasons behind BaLIE’s design. More importantly, it discusses the limitations we

faced at all stages of development, and the ideas we will retain in our future work. The

thesis conclusion restates our contributions and summarizes the results of our experiments.

 6

Chapter 2

Background and Related Work

The NER task consists of identifying the occurrences of some predefined phrase types in a

text. Here is an example from Mikheev et al. (1999b), marked up with four entity types:

<Date>, <Person>, <Organization>, and <Location>.

On <Date>Jan 13th</Date>, <Person>John Briggs Jr</Person> contacted

<Organization>Wonderful Stockbrockers Inc</Organization> in <Location>New

York</Location> and instructed them to sell all his shares in

<Organization>Acme</Organization>.

In the expression “Named Entity,” the word “Named” aims to restrict the task to only those

entities for which one or many rigid designators, as defined by Kripke (1982), stands for the

referent. For instance, “the automotive company created by Henry Ford in 1903” is referred

to as “Ford” or “Ford Motor Company.” Rigid designators include proper names as well as

certain natural terms, such as biological species and substances. There is a general agreement

to include temporal expressions and some numerical expressions, such as money and

measures in NEs. While some instances of these types are good examples of rigid

designators (e.g. the year “2001”), there are also many invalid NEs (e.g., I take my vacations

in “June”). In the first example, the year “2001” refers to the 2001st year of the Gregorian

calendar. In the second example, “June” may refer to the month in an undefined year (past

June, next June, June 2020, etc.). It can be argued that the NE definition is loosened in such

cases for practical reasons.

The most common alternative formulation of the NER task is using speech as input (Favre et

al. 2005). The task is considered more difficult since the capitalization of words, and

generally the words themselves, are approximated by Automatic Speech Recognition (ASR)

technologies. The same problem of degraded input arises when it comes from Optical

Character Recognition (OCR) (Maynard et al. 2002). NER can also be done for semi-

structured documents (e.g., HTML documents) (Kushmerick 1997). Supplemental

 7

information is then available in a structure that may help recognize entity boundaries and/or

entity types. However, textual context may be lost.

2.1 Related Work

In this section, we list some tasks related to NER. These tasks revolve around the notion of

rigid designation, whereby the direct goal is not to recognize the named things from

documents.

Personal name disambiguation (Mann & Yarowski 2003) is the task of identifying the

correct referent of a given designator. In a given context, it may consist of identifying

whether Jim Clark is the race driver, the film editor, or the Netscape founder. Corpus-wide

disambiguation of personal names has applications in document clustering for information

retrieval. In the work of Mann and Yarowski, it is used to create biographical summaries

from corpora. This technology is about to be mainstream, with a new generation of people

search engines, such as Zoominfo.com and Spock.com.

Identification of named entity descriptions (Radev 1998) is the identification of textual

passages that describe a given NE. For instance, Bill Clinton is described as “the President of

the U.S.,” “the democratic presidential candidate” or “an Arkansas native,” depending on the

document. Description identification can be use as a cue in personal name disambiguation

(see related work above). Radev’s intention is to reuse these describers in the context of

natural language generation.

Named entity translation (Fung 1995, Huang 2005) is the task of translating NEs from one

language to another. For instance, the French translation of “National Research Council

Canada” is “Conseil national de recherches Canada.” NE translation is acknowledged as a

major issue in machine translation as it may account for as much as 10% of translation errors

(Vilar et al. 2006).

Analysis of name structure (Charniak 2001) is the identification of the parts in a person

 8

name. For example, the name “Doctor Paul R. Smith” is composed of a person title, a first

name, a middle name, and a surname. It is presented as a preprocessing step for NER and for

the resolution of co-references to help determine, for instance, that “John F. Kennedy” and

“President Kennedy” are the same person, while “John F. Kennedy” and “Caroline

Kennedy” are two distinct persons.

Entity anaphora resolution (Dimitrov et al. 2002) mainly consists of resolving pronominal

co-reference when the antecedent is an NE. For example, in the sentence “Rabi finished

reading the book and he replaced it in the library,” the pronoun “he” refers to “Rabi.”

Anaphora resolution can be useful in solving the NER problem itself by enabling the use of

extended co-reference networks (see Section 3.2.3). Meanwhile it has many applications of

its own, such as in “question answering” (e.g., answering “Who put the book in the

library?”).

Acronym identification (Nadeau & Turney 2005) is described as the identification of an

acronym’s definition (e.g., “IBM” stands for “International Business Machines”) in a given

document. The problem is related to NER because many organization names are acronyms

(GE, NRC, etc.). Resolving acronyms is useful, again, to build co-reference networks aimed

at solving NER (see Section 6.6). On its own, it can improve the recall of information

retrieval by expanding queries containing an acronym with the corresponding definition.

Record linkage (Cohen & Richman 2001) is the task of matching named entities across

databases. It involves the use of clustering and string matching techniques (Cohen &

Sarawagi 2004) in order to map database entries having slight variations (e.g., Frederick

Mason and F. Mason). It is used in database cleaning and in data mining on multiple

databases.

Case restoration (Agbago et al. 2006) consists of restoring expected word casing in a

sentence. Given a lower case sentence, the goal is to restore the capital letters usually

appearing on the first word of the sentence and on NEs. This task is useful in machine

translation, where a sentence is usually translated without capitalization information.

 9

2.2 Applications

In this section, we list NER applications essentially built on having a textual document that

identifies entities. We label these applications using three classifications: temporal (Temp)

applications locate entities in time to analyze trends or calendar events; information retrieval

(IR) applications are extensions of the search paradigm where the goal is access to relevant

information in large corpora; and very large corpora (VLC) applications are based on

annotating vast amounts of documents to allow information mining or to link information

across documents, but not necessarily to access information.

[Temp] Event detection (e.g., Smith 2002) consists of detecting temporal entities in

conjunction with other entities. For instance, conferences are usually made up of four parts:

one conference name, one location, and two dates (e.g., name: “AAAI,” location: “Boston,”

start date: “July 16th 2006,” end date: “July 20th 2006”).A person’s birth or death is a person

name and date pair (e.g., name: “John Lennon,” date: “December 8th, 1980”). Smith uses

event detection to draw maps where war locations and dates are identified.

[Temp, VLC] Time varying entities analysis (e.g., Swan & Allan 1999) is the analysis of

key entities in a corpus at a given time or over a time period. It extends the event detection

application in a significant manner either by intelligent aggregation or analysis. Swan and

Allan extract events on multiple news, for a given topic, and they generate a story made of

chosen textual passages. For instance, the story may relate that “France elects Jacques Chirac

as president” on May 7th and “Jacques Chirac selects Alain Juppé as premier” on May 17th.

Commercial “trend” or “buzz” analysis, that is, a simple analysis of entity frequencies over

time, has already hit the market2.

[IR] Question answering (e.g., Srihari & Li 1999) often involves NER at the core of the

answering capabilities. A study by Srihari and Li shows that low-level information extraction

like NER is often a necessary component in handling most types of questions. Out of 200

2 BlogPulse, originally by Intelliseek, pioneered the idea: http://www.blogpulse.com (verified April 2007).

 10

questions of TREC-8 competition, 80% asked for an NE as a response (e.g., who [person],

when [time or date], where [location]).

[IR] Semantic information retrieval (e.g., Pasca 2004), unlike question answering, takes

conventional Boolean queries, but returns something more than a list of Web documents.

Pasca cites at least two “semantic” variants: returning a list of elements when the query is an

entity category (e.g., “SAS,” “SPSS,” “Minitab,” “BMDP” and “R” are returned for the

query “statistical packages”); and returning a list of siblings when the query is an entity (e.g.,

returning “Morpheus,” “Grokster” and “Napster” when the query is “Kazaa”).

[IR] Local search (e.g., Wang et al. 2005) is the task of using location information expressed

in a query (e.g., Ottawa restaurants) to return locally relevant results, such as a list of nearby

restaurants. NER on queries, or any short text, is arguably more challenging than on long

documents. Wang et al. proposes NER strategies for query strings. They mention that

accurately and effectively detecting that a location is the true topic of a query has huge

potential impact on increasing search relevance. Major commercial search engines are

already offering local search prototypes.

[VLC] Text/Web mining (e.g., Sánchez & Moreno 2005) is the task of extracting implicit

information from a large repository of documents. The goal is to extract knowledge from the

mass of information that is unavailable in isolated documents. In the work of Sánchez and

Moreno, NEs of the medical domains are extracted from a large corpus to build ontological

knowledge. Those ontologies, in turn, may support collection browsing and classification.

2.3 Observations: 1991 to 2006

Computational research aiming at automatically identifying NEs in texts forms a vast and

heterogeneous pool of strategies, methods, and representations. One of the first research

papers in the field was presented by Lisa F. Rau (1991) at the 7th IEEE Conference on

Artificial Intelligence Applications. Rau’s paper describes a system to “extract and recognize

[company] names.” It relies on heuristics and handcrafted rules. From 1991 (1 publication) to

 11

1995 (we found 8 publications in English), the publication rate remained relatively low. It

accelerated in 1996, with the first major event dedicated to the task: MUC-6 (Grishman &

Sundheim 1996). It has not decreased since, with steady research and numerous scientific

events: HUB-4 (Chinchor et al. 1998); MUC-7 and MET-2 (Chinchor 1999); IREX (Sekine

& Isahara 2000); CONLL (Tjong Kim Sang 2002, Tjong Kim Sang & De Meulder 2003);

ACE (Doddington et al. 2004); and HAREM (Santos et al. 2006). The Language Resources

and Evaluation Conference (LREC)3 has also been staging workshops and main conference

tracks on the topic since 2000.

2.3.1 Language Factor

A good proportion of work in NER research is devoted to the study of English, but a possibly

larger proportion addresses language independence and multilingualism problems. German is

well studied in CONLL-2003 and in earlier works. Similarly, Spanish and Dutch are strongly

represented, and were boosted as the focus of a major conference: CONLL-2002. Japanese

has been studied in the MUC-6 conference, the IREX conference, and other works. Chinese

is studied in abundant literature (e.g., Wang et al. 1992, Chen & Lee 1996, Yu et al. 1998),

and so are French (Petasis et al. 2001, Poibeau 2003), Greek (Boutsis et al. 2000), and Italian

(Black et al. 1998, Cucchiarelli & Velardi 2001). Many other languages received some

attention as well: Basque (Whitelaw & Patrick 2003), Bulgarian (Da Silva et al. 2004),

Catalan (Carreras et al. 2003), Cebuano (May et al. 2003), Danish (Bick 2004), Hindi

(Cucerzan & Yarowsky 1999, May et al. 2003), Korean (Whitelaw & Patrick 2003), Polish

(Piskorski 2004), Romanian (Cucerzan & Yarowsky 1999), Russian (Popov et al. 2004),

Swedish (Kokkinakis 1998), and Turkish (Cucerzan & Yarowsky 1999). Portuguese was

examined (Palmer & Day 1997) and, at the time this survey was written, the HAREM

conference was revisiting that language. Finally, Arabic (Huang 2005) has started to receive

a lot of attention in large-scale projects such as Global Autonomous Language Exploitation

(GALE)4.

3 http://www.lrec-conf.org/
4 http://projects.ldc.upenn.edu/gale/

 12

2.3.2 Textual Genre or Domain Factor

The impact of textual genre (journalistic, scientific, informal, etc.) and domain (gardening,

sports, business, etc.) has been rather neglected in NER literature. Few studies are

specifically devoted to diverse genres and domains. Maynard et al. (2001) designed a system

for emails, scientific texts, and religious texts. Minkov et al. (2005) created a system

specifically designed for email documents. Perhaps unsurprisingly, these experiments

demonstrated that although any domain can be reasonably supported, porting a system to a

new domain or textual genre remains a major challenge. For instance, Poibeau and Kosseim

(2001) tested some systems on both the MUC-6 collection made up of newswire texts, and

on a proprietary corpus made up of manual phone conversation translations and technical

emails. They report a drop in performance for every system (some 20% to 40% of precision

and recall).

2.3.3 Entity Type Factor

Early work formulates the NER problem as recognizing “proper names” in general (e.g.,

Coates-Stephens 1992, Thielen 1995). Overall, the most studied entity types are three

specializations of “proper names”: names of “persons,” “locations,” and “organizations.”

These types are collectively known as “enamex” since the MUC-6 competition. The

“location” type can, in turn, be divided into multiple subtypes of “fine-grained locations”

(Fleischman 2001, Lee & Geunbae Lee 2005). Similarly, “fine-grained person” sub-

categories, like “politician” and “entertainer,” appear in the work of Fleischman and Hovy

(2002). The “person” type is quite common and used at least once in an original way by

Bodenreider and Zweigenbaum (2000), who combine it with other cues for extracting

medication and disease names (e.g., “Parkinson disease”). In the ACE program, the “facility”

type subsumes entities of the “location” and “organization” types. The “GPE” type is used to

represent a location that has a government, such as a city or a country.

The “miscellaneous” type is used in the CONLL-2002 and 2003 conferences, and includes

proper names falling outside the classic “enamex.” The class is also sometimes augmented

 13

with the “product” type (e.g., Bick 2004). The “timex” (another term coined in MUC) “date”

and “time” types, and the “numex” “money” and “percent” types are also quite predominant

in the literature. Since 2003, a community named TIMEX2 (Ferro et al. 2005) has proposed

an elaborated standard for annotating and normalizing temporal expressions. Finally,

marginal types are sometime handled for specific needs: “film” and “scientist” (Etzioni et al.

2005); “email address” and “phone number” (Witten et al. 1999, Maynard et al. 2001);

“research area” and “project name” (Zhu et al. 2005); “book title” (Brin 1998, Witten et al.

1999); “job title” (Cohen & Sarawagi 2004); and “brand” (Bick 2004).

A recent interest in bioinformatics, and the availability of the GENIA corpus (Ohta et al.

2002) led to many studies dedicated to types such as “protein,” “DNA,” “RNA,” “cell line”

and “cell type” (e.g., Shen et al. 2003, Settles 2004), as well as studies exclusively targeted at

“protein” recognition (Tsuruoka & Tsujii 2003). Related works also include “drug”

(Rindfleisch et al. 2000) and “chemical” (Narayanaswamy et al. 2003) names.

Some work does not limit the possible types to extract and is referred to as “open domain”

NER (See Alfonseca & Manandhar 2002, Evans 2003). In this line of work, Sekine and

Nobata (2004) defined a named entity hierarchy, which includes many fine grained

subcategories, such as international organization, river, or airport, and adds a wide range of

categories, such as product, event, substance, animal, religion, or colour. It tries to cover

most frequent name types and rigid designators appearing in a newspaper. The number of

categories is about 200, and they are now defining popular attributes for each category to

make it ontological.

2.3.4 What’s Next?

Recent researches in multimedia indexing, semi-supervised learning, complex linguistic

phenomena, and machine translation suggest some new directions for the field. On one side,

there is a growing interest in multimedia information processing (e.g., video, speech),

particularly extracting NE from it (Basili et al. 2005). Much effort is also invested toward

semi-supervised and unsupervised approaches to NER, motivated by the use of very large

collections of texts (Etzioni et al. 2005) and the possibility of handling multiple NE types

 14

(Nadeau et al. 2006). Complex linguistic phenomena (e.g., metonymy, acronym resolution,

conjunction handling) that are common shortcomings of current systems are under

investigation (e.g., Poibeau 2006). Finally, large-scale projects such as GALE, discussed in

Section 2.3.1, pave the way for integrating NER and machine translation for mutual

improvement, and more generally, multilingual NER (Steinberger and Pouliquen 2007).

2.4 Techniques and Algorithms to Resolve the NER Problem

The ability to recognize previously unknown entities is an essential part of NER systems.

Such ability hinges upon recognition and classification rules triggered by distinctive

modeling features associated with positive and negative examples. While early studies were

mostly based on handcrafted rules, most recent ones use supervised machine learning (SL),

as a way to automatically induce rule-based systems or sequence labelling algorithms,

starting from a collection of training examples. In the research community, this is evidenced

by the fact that five out of eight systems were rule-based in the MUC-7 competition, while

the sixteen systems involved in CONLL-2003 were based on supervised learning techniques.

When training examples are not available, handcrafted rules systems remain the preferred

technique, as shown in Sekine and Nobata (2004), who developed an NER system for 200

entity types.

The idea of supervised learning is to study the features of positive and negative examples of

NE over a large collection of annotated documents and design rules that capture instances of

a given type. Section 2.4.1 explains SL approaches in more detail. The main shortcoming of

SL is the requirement of a large annotated corpus. The unavailability of such resources and

the prohibitive cost of creating them lead to two alternative learning methods: semi-

supervised learning (SSL); and unsupervised learning (UL). These techniques are presented

in Section 2.4.2 and Section 2.4.3, respectively.

2.4.1 Supervised Learning

The current dominant technique for addressing the NER problem is supervised learning. SL

techniques include Hidden Markov Models (HMM) (Bikel et al. 1997), Decision Trees

 15

(Sekine 1998), Maximum Entropy Models (ME) (Borthwick 1998), Support Vector

Machines (SVM) (Asahara & Matsumoto 2003), and Conditional Random Fields (CRF)

(McCallum & Li 2003). These are all variants of the SL approach, which typically feature a

system that reads a large annotated corpus, memorizes lists of entities, and creates

disambiguation rules based on discriminative features.

A baseline SL method that is often proposed consists of tagging test corpus words when they

are annotated as entities in the training corpus. The performance of the baseline system

depends on the vocabulary transfer, which is the proportion of words, without repetition,

appearing in both training and testing corpus. Palmer and Day (1997) calculated the

vocabulary transfer on the MUC-6 training data. They report a transfer of 21%, with the

repetition of much as 42% of location names, but only 17% of organizations and 13% of

person names. Vocabulary transfer is a good indicator of the recall (number of entities

identified over the total number of entities) of the baseline system, but it is also a pessimistic

measure since some entities are frequently repeated in documents. Mikheev et al. (1999)

precisely calculated the baseline system recall on the MUC-7 corpus. They report a recall of

76% for locations, 49% for organizations, and 26% for persons, with precision ranging from

70% to 90%. Whitelaw and Patrick (2003) report consistent results on MUC-7 for the

aggregated enamex class. For the three enamex types together, the recognition precision is

76% and the recall is 48%.

2.4.2 Semi-Supervised Learning

The term “semi-supervised” (or “weakly supervised”) is relatively recent. The main

technique for SSL is called “bootstrapping” and involves a small degree of supervision, such

as a set of seeds, for starting the learning process. For example, a system aimed at “disease

names” might ask the user to provide a small number of example names. Then, the system

searches for sentences that contain these names and tries to identify some contextual clues

common to the five examples. Then, the system tries to find other instances of disease names

appearing in similar contexts. The learning process is then reapplied to the newly found

examples, so as to discover new relevant contexts. By repeating this process, a large number

of disease names and a large number of contexts will eventually be gathered. Recent

 16

experiments in semi-supervised NER (Nadeau et al. 2006) report performances that rival

baseline supervised approaches. Here are some examples of SSL approaches

Brin (1998) uses lexical features implemented by regular expressions in order to generate

lists of book titles paired with book authors. It starts with seed examples such as {Isaac

Asimov, The Robots of Dawn} and use some fixed lexical control rules such as the

following regular expression, [A-Z][A-Za-z .,&]5,30[A-Za-z.], used to describe a title. The

main idea of his algorithm, however, is that many Web sites comply with a reasonably

standardized format throughout the site. When a given Web site is found to contain seed

examples, new pairs can often be identified using simple constraints, such as the presence of

identical text before, between, or after the elements of an interesting pair. For example, the

passage “The Robots of Dawn, by Isaac Asimov (Paperback)” would allow one to find, on

the same Web site, “The Ants, by Bernard Werber (Paperback).”

Collins and Singer (1999) parse a complete corpus in search of NE pattern candidates. A

pattern is, for example, a proper name (as identified by a part-of-speech tagger) followed by

a noun phrase in apposition (e.g., “Maury Cooper, a vice president at S&P”). Patterns are

kept in pairs {spelling, context} where “spelling” refers to the proper name and “context”

refers to the noun phrase in its context. Starting with an initial seed of spelling rules (e.g.,

rule 1: if the spelling is “New York” then it is a Location; rule 2: if the spelling contains

“Mr.” then it is a Person; rule 3: if the spelling is all capitalized then it is an organization),

the candidates are examined. Candidates that satisfy a “spelling” rule are classified

accordingly, and their “contexts” are accumulated. The most frequent contexts found are

turned into a set of contextual rules. Following the steps above, contextual rules can be used

to find further spelling rules, and so on. Collins and Singer (1999) and Yangarber et al.

(2002) demonstrate the idea that learning several types of NE simultaneously enables finding

negative evidence (one type against all) and reduces over-generation. Cucerzan and

Yarowsky (1999) also use a similar technique and apply it to many languages.

Riloff and Jones (1999) introduce mutual bootstrapping, which consists of growing a set of

entities and a set of contexts in turn. It is a looser version of Collins and Singer’s (1999) idea.

 17

Instead of working with predefined NE candidates (found using a fixed syntactic construct),

they start with a handful of seed entity examples of a given type (e.g., Bolivia, Guatemala,

and Honduras are entities of the “country” type) and accumulate all patterns found around

these seeds in a large corpus. Contexts (e.g., offices in X, facilities in X, etc.) are ranked and

used to find new examples. Riloff and Jones note that the performance of that algorithm can

deteriorate rapidly when noise penetrates the entity list or pattern list. While they report

relatively low precision and recall in their experiments, their work proved to be highly

influential.

Cucchiarelli and Velardi (2001) use syntactic relations (e.g., subject-object) to discover more

accurate contextual evidence around the entities. Again, this is a variant of Riloff and Jones

mutual bootstrapping (1999). Interestingly, instead of using human-generated seeds, they

rely on existing NER systems (called “early NE classifier”) for initial NE examples.

Pasca et al. (2006) also use techniques inspired by mutual bootstrapping. However, they

innovate by using Lin’s (1998) distributional similarity to generate synonyms—or, more

generally, words belonging to the same semantic class—allowing pattern generalization. For

instance, in the pattern “X was born in November,” Lin’s synonyms for “November” are

{March, October, April, Mar, Aug., February, Jul, Nov., etc.}, thus allowing the induction of

new patterns such as “X was born in March.” One of Pasca et al.’s contributions is to apply

this technique to very large corpora (100 million Web documents) and demonstrate that

starting from a seed of 10 sample facts (defined as “person” type entities paired with “year”

type entities, standing for the person’s year of birth), it is possible to generate one million

facts with a precision of about 88%.

Unlabelled data selection is a problem Heng and Grishman (2006) address. They

demonstrate that an existing NE classifier can be improved using bootstrapping methods.

The main lesson they report is that relying on large collections of documents is not sufficient

on its own. Selecting documents using information retrieval-like relevance measures, as well

as selecting specific contexts that are rich in proper names and co-references, bring the best

results in their experiments.

 18

2.4.3 Unsupervised Learning

The typical approach in unsupervised learning is clustering. For example, one can try to

gather NEs from clustered groups based on context similarity. There are also other

unsupervised methods. Basically, the techniques rely on lexical resources (e.g., WordNet),

on lexical patterns, and on statistics computed on a large unannotated corpus. Here are some

examples.

Alfonseca and Manandhar (2002) study the problem of labelling an input word with an

appropriate NE type. NE types are taken from WordNet (e.g., location>country,

animate>person, animate>animal, etc.). The approach is to assign a topic signature to each

WordNet synset by merely listing words that frequently co-occur with it in a large corpus.

Then, given an input word in a given document, the word context (words appearing in a

fixed-size window around the input word) is compared to type signatures and classified

under the most similar one.

In Evans (2003), the method for identification of hyponyms/hypernyms described in the

work of Hearst (1992) is applied to identify potential hypernyms of capitalized word

sequences appearing in a document. For instance, when X is a capitalized sequence, the

query “such as X” is searched on the Web and, in the retrieved documents, the noun that

immediately precedes the query can be chosen as the X hypernym. Similarly, in Cimiano and

Völker (2005), Hearst patterns are used, but this time, the feature consists of counting the

number of occurrences of passages like “city such as,” “organization such as,” etc.

Shinyama and Sekine (2004) observed that NEs often appear in several news articles

synchronously, whereas common nouns do not. They found a strong correlation between

being an NE, and appearing intermittently and simultaneously in multiple news sources. This

technique allows for identifying rare NEs in an unsupervised manner, and it can be useful

when combined with other NER methods.

In Etzioni et al. (2005), Pointwise Mutual Information and Information Retrieval (PMI-IR) is

 19

used as a feature to assess that a named entity can be classified under a given type. PMI-IR,

developed by Turney (2001), measures the dependence between two expressions using Web

queries. A high PMI-IR means that expressions tend to co-occur. Etzioni et al. create features

for each entity candidate (e.g., London) and a large number of automatically generated

discriminator phrases, like “is a city,” “nation of,” etc.

2.5 Feature Space for NER

Features are describers or characteristic attributes of words designed for algorithmic

consumption. An example of a feature is a Boolean variable with the “true” value if a word is

capitalized and “false” if not. Feature vector representation is an abstraction of text where

each word is typically represented by one or many Boolean, numeric, and nominal values.

For example, a hypothetical NER system may represent each word in a text with 3 attributes:

1) a Boolean attribute with the “true” value if the word is capitalized and “false” if not;

2) a numeric attribute corresponding to the length of the word, in characters;

3) a nominal attribute corresponding to the lower case version of the word.

In this scenario, the sentence “The president of Apple eats an apple,” excluding the

punctuation, would be represented by the following feature vectors:

<true, 3, “the”>, <false, 9, “president”>, <false, 2, “of”>, <true, 5,

“apple”>, <false, 4, “eats”>, <false, 2, “an”>, <false, 5, “apple”>

Usually, the NER problem is resolved by applying a rule system over the features. For

instance, a system might have two rules, a recognition rule (“capitalized words are entity

candidates”) and a classification rule (“the type of entity candidates of length greater than 3

words is organization”). These rules work well for the exemplar sentence above. However,

real systems tend to be much more complex, and their rules are often created by automatic

learning techniques.

In this section, we present the features most often used for the recognition and classification

 20

of named entities. We organize them along three different axes: word-level features; list

look-up features; and document and corpus features.

2.5.1 Word-Level Features

Word-level features are related to the character makeup of words. They specifically describe

word case, punctuation, numerical value, and special characters. Table 1 lists subcategories

of word-level features.

Table 1: Word-level features

Features Examples

Case

Punctuation

Digit

Character

Morphology

Part-of-speech

Function

- Starts with a capital letter

- Word is all upper case

- The word is mixed case (e.g., ProSys, eBay)

- Ends with period, has internal period (e.g., St., I.B.M.)

- Internal apostrophe, hyphen or ampersand (e.g., O’Connor)

- Digit pattern (see below)

- Cardinal and ordinal

- Roman number

- Word with digit (e.g., W3C, 3M)

- Possessive mark, first person pronoun

- Greek letters

- Prefix, suffix, singular version, stem

- Common ending (see below)

- proper name, verb, noun, foreign word

- Alpha, non-alpha, n-gram (see below)

- lower case, upper case version

- pattern, summarized pattern (see below)

- token length, phrase length

Digit pattern

Digits can express a wide range of useful information such as dates, percentages, intervals,

identifiers, etc. Special attention must be given to some particular patterns of digits. For

 21

example, two-digit and four-digit numbers can stand for years (Bikel et al. 1997), and when

followed by an “s,” they can stand for a decade; one and two digits may stand for a day or a

month (Yu et al. 1998).

Common word ending

Morphological features are essentially related to a word’s affixes and roots. For instance, a

system may learn that a human profession often ends in “ist” (e.g., journalist, cyclist) or that

nationality and languages often ends in “ish” and “an” (e.g., Spanish, Danish, Romanian).

Other examples of common word endings are organization names that end in “ex,” “tech,”

and “soft” (Bick 2004).

Functions over words

Features can be extracted by applying functions over words. An example is given by Collins

and Singer (1999), who create a feature by isolating the non-alphabetic characters of a word

(e.g., non-alpha [A.T.&T.] = ..&.). Another example is given by Patrick et al. (2002), who

use character n-grams as features.

Patterns and summarized patterns

Pattern features were introduced by Collins (2002) and then used by others (Cohen &

Sarawagi 2004 and Settles 2004). Their role is to map words onto a small set of patterns over

character types. For instance, a pattern feature might map all upper-case letters to “A,” all

lower-case letters to “a,” all digits to “0,” and all punctuation to “-”:

x = "G.M.": GetPattern(x) = "A-A-"

x = "Machine-223": GetPattern(x) = "Aaaaaaa-000"

The summarized pattern feature is a condensed form of the above, in which consecutive

character types are not repeated in the mapped string. For instance, the preceding examples

become:

x = "G.M.": GetSummarizedPattern(x) = "A-A-"

x = "Machine-223": GetSummarizedPattern(x) = "Aa-0"

 22

2.5.2 List Look-Up Features

Lists are the privileged features in NER. The terms “gazetteer,” “lexicon,” and “dictionary”

are often used interchangeably with the term “list.” List inclusion is a way to express the

relation “is a” (e.g., “Paris is a city”). It may appear obvious that if a word (Paris) is an

element of a list of cities, then the probability that this word is a city, in a given text, is high.

However, because of word polysemy, the probability is almost never 1 (e.g., the probability

of “Fast” representing a company is low because “fast” as a common adjective is much more

frequent).

Table 2: List look-up features

Features Examples

General list

List of entities

List of entity cues

- General dictionary (see below)

- Stop words (function words)

- Capitalized nouns (e.g., January, Monday)

- Common abbreviations

- Organization, government, airline, educational

- First name, last name, celebrity

- Astral body, continent, country, state, city

- Typical words in organization (see below)

- Person title, name prefix, post-nominal letters

- Location typical word, cardinal point

In Table 2, we present three significant list categories used in literature. We could enumerate

many more examples of lists, but we decided to concentrate on those aimed at recognizing

enamex types.

General dictionary

Common nouns listed in a dictionary are useful, for instance, in the disambiguation of

capitalized words in ambiguous positions (e.g., sentence beginning). Mikheev (1999) reports

that in a given corpus, from 2,677 words in ambiguous position, a general dictionary look-up

can identify 1841 common nouns out of 1851 (99.4%), while discarding only 171 NEs out of

826 (20.7%). In other words, in that corpus, 20.7% of NEs are ambiguous as common nouns.

 23

Words that are typical of organization names

Many authors propose to recognize organizations by identifying words that are frequently

used in their names. For instance, knowing that “associates” is frequently used in

organization names could lead to the recognition of “Computer Associates” and “BioMedia

Associates” (McDonald 1993, Gaizauskas et al. 1995). The same rule applies to frequent first

words (“American,” “General”) of an organization (Rau 1991). Some authors also exploit the

fact that organizations often include a person’s name (Wolinski et al. 1995, Ravin &

Wacholder 1996), as in “Alfred P. Sloan Foundation.” Similarly, geographic names can be

good indicators of an organization name (Wolinski et al. 1995), as in “France Telecom.”

Organization designators such as “Inc.” and “Corp” (Rau 1991) are also useful features.

On list look-up techniques

Most approaches implicitly require word candidates to match at least one element of a pre-

existing list exactly. However, we may want to allow some flexibility in the match

conditions. The NER field uses at least three alternate look-up strategies.

First, words can be stemmed (stripping off both inflectional and derivational suffixes) or

lemmatized (normalizing for inflections only) before they are matched (Coates-Stephens

1992). For instance, if a list of cue words contains “technology,” the inflected form

“technologies” will be considered as a successful match. For some languages (Jansche 2002),

diacritics can be replaced by their canonical equivalent (e.g., “é” replaced by “e”).

Second, a word candidate can be “fuzzy-matched” against the reference list using some kind

of thresholded edit-distance (Tsuruoka & Tsujii 2003) or Jaro-Winkler (Cohen & Sarawagi

2004). This captures small lexical variations in words that are not necessarily derivative or

inflectional. For instance, “Frederick” could match “Frederik” because the edit-distance

between the two words is very small (suppression of just one character, the “c”). Jaro-

Winkler’s metric was specifically designed to match proper names following the observation

that the first letters tend to be correct, while name ending often varies.

 24

Third, the reference list can be accessed using the Soundex algorithm (Raghavan & Allan

2004), which normalizes word candidates to their respective Soundex codes. This code is a

combination of the first letter of a word plus a three-digit code that represents its phonetic

sound. Hence, similar sounding names like “Lewinskey” (Soundex = l520) and “Lewinsky”

(Soundex = l520) are equivalent with respect to their Soundex code.

2.5.3 Document and Corpus Features

Document features are defined by both document content and structure. Large collections of

documents (corpora) are also excellent sources of features. In this section, we list features

that go beyond the single-word and multi-word expressions, and include meta-information

about documents and corpus statistics.

Table 3: Features from documents

Features Examples

Multiple occurrences

Local syntax

Meta-information

Corpus frequency

- Other entities in the context

- Upper-case and lower-case occurrences (see below)

- Anaphora, co-reference (see below)

- Enumeration, apposition

- Position in sentence, in paragraph, and in document

- Uri, email header, XML section, (see below)

- Bulleted/numbered lists, tables, figures

- Word and phrase frequency

- Co-occurrences

- Multi-word unit permanency (see below)

Multiple occurrences and multiple casing

Thielen (1995), Ravin and Wacholder (1996), and Mikheev (1999) identify words that

appear both in upper-case and lower-case form in a single document. These words are

hypothesized as common nouns that appear both in ambiguous (e.g., sentence beginning) and

unambiguous position.

 25

Entity co-reference and alias

The task of recognizing the multiple occurrences of a unique entity in a document dates back

to the earliest research in the field (McDonald 1993, Rau 1991). Co-references are the

occurrences of a given word or word sequence referring to a given entity within a document.

Deriving features from co-references is mainly done by exploiting the context of every

occurrence (e.g., Macdonald was the first, Macdonald said, was signed by Macdonald, etc.).

Aliases of an entity are the various ways in which the entity is written in a document. For

instance, we may have the following aliases for a given entity: Sir John A. Macdonald, John

A. Macdonald, John Alexander Macdonald, and Macdonald. Deriving features from aliases

is mainly done by leveraging the union of alias words (Sir, John, A, Alexander, Macdonald).

Finding co-references and aliases in a text can be reduced to the same problem of finding all

occurrences of an entity in a document. This problem is of great complexity. Gaizauskas et

al. (1995) use 31 heuristic rules to match multiple occurrences of company names. For

instance, two multi-word expressions match if one is the initial subsequence of the other. An

even more complex task is recognizing the mention of an entity documents. Li et al. (2004)

propose and compare a supervised and unsupervised model for this task. They propose the

use of word-level features engineered to handle equivalences (e.g., prof. is equivalent to

professor), and relational features to encode the relative order of tokens between two

occurrences.

For complex problems such as metonymy—the use of different words to refer to the same

entity (e.g., “Hexagon” stands for “France”) —word-level features are often insufficient.

Poibeau (2006) demonstrates that in such cases, semantic tagging is a key issue.

Document meta-information

Most meta-information about documents can be used directly: email headers are good

indicators of person names; news often starts with a location name; etc. Some authors make

original use of meta-information. Zhu et al. (2005) uses document URL to bias entity

probabilities. For instance, many names (e.g., bird names) have a high probability of being a

 26

“project name” if the URL is from a computer science department domain.

Statistics for multi-word units

Da Silva et al. (2004) propose some interesting feature functions for multi-word units that

can be thresholded using corpus statistics. For example, they establish a threshold on the

presence of rare and long lower-case words in entities. Only multi-word units that do not

contain rare lower-case words (rarity calculated as relative frequency in the corpus) of a

relatively long size (meaning size calculated from the corpus) are considered as NE

candidates. They also present a feature called permanency, which consists of calculating the

a word’s frequency (e.g., Life) within a corpus, divided by its frequency in case insensitive

form (e.g., life, Life, LIFE, etc.)

2.6 Evaluation of NER

Thorough evaluation of NER systems is essential to their progress. Many techniques were

proposed to rank systems based on their capacity to annotate a text like an expert linguist. In

the following section, we take a look at three main scoring techniques used for the MUC,

IREX, CONLL, and ACE conferences. First, let’s summarize the task from an evaluation

point of view.

In NER, systems are usually evaluated based on how their output compares with the output

of human linguists. For instance, here’s an annotated text marked up according to MUC

guidelines. Let’s call it the “solution.”

Unlike <ENAMEX TYPE="PERSON">Robert</ENAMEX>, <ENAMEX TYPE="PERSON">John

Briggs Jr</ENAMEX> contacted <ENAMEX TYPE="ORGANIZATION">Wonderful

Stockbrockers Inc</ENAMEX> in <ENAMEX TYPE="LOCATION">New York</ENAMEX> and

instructed them to sell all his shares in <ENAMEX

TYPE="ORGANIZATION">Acme</ENAMEX>.

Now, let’s hypothesize a system producing the following output:

 27

<ENAMEX TYPE="LOCATION">Unlike</ENAMEX> Robert, <ENAMEX

TYPE="ORGANIZATION">John Briggs Jr</ENAMEX> contacted Wonderful <ENAMEX

TYPE="ORGANIZATION">Stockbrockers</ENAMEX> Inc <TIMEX TYPE="DATE">in New

York</TIMEX> and instructed them to sell all his shares in <ENAMEX

TYPE="ORGANIZATION">Acme</ENAMEX>.

The system produced five different errors5, explained in Table 4. In this example, the system

gives one correct answer: (<Organization> Acme </Organization>). Ultimately, the question

is “What score should we give this system?” In the following sections, we survey how the

question was answered in various evaluation forums.

Table 4: NER error types

Correct solution System output Error

On <Location>

On

</Location>

The system hypothesized an entity

where there is none.

<Person>

Robert

</Person>

Robert An entity was completely missed by

the system.

<Person>

John Briggs Jr

</Person>

<Organization>

John Briggs Jr

</Organization>

The system noticed an entity but

gave it the wrong label.

<Organization>

Wonderful

Stockbrockers Inc

</Organization>

<Organization>

Stockbrockers

</Organization>

A system noticed there is an entity

but got its boundaries wrong.

<Location>

New York

</Location>

<Date>

in New York

</Date>

The system gave the wrong label to

the entity and got its boundary

wrong.

5 Type of errors are from an informal publication http://nlpers.blogspot.com/2006/08/doing-named-entity-

recognition-dont.html

 28

2.6.1 MUC Evaluations

In MUC events (Grishman & Sundheim 1996, Chinchor 1999), a system is scored on two

axes: its ability to find the correct type (TYPE); and its ability to find exact text (TEXT). A

correct TYPE is credited if an entity is assigned the correct type, regardless of boundaries as

long as there is an overlap. A correct TEXT is credited if entity boundaries are correct,

regardless of the type. For both TYPE and TEXT, three measures are kept: the number of

correct answers (COR); the number of actual system guesses (ACT); and the number of

possible entities in the solution (POS).

The final MUC score is the micro-averaged f-measure (MAF), which is the harmonic mean

of precision and recall calculated over all entity slots on both axes. A micro-averaged

measure is performed on all entity types without distinction (errors and successes for all

entity types are summed together). The harmonic mean of two numbers is never higher than

the geometric mean. It also tends toward the lesser number, minimizing the impact of large

outliers and maximizing the impact of small ones. The f-measure therefore tends to favour

balanced systems.

In MUC, precision is calculated as COR/ACT and the recall is COR/POS. For the previous

example, COR = 4 (2 TYPE + 2 TEXT), ACT = 10 (5 TYPE + 5 TEXT), and POS = 10 (5

TYPE + 5 TEXT). The precision is therefore 40%, the recall is 40%, and the MAF is 40%.

This measure has the advantage of taking into account all possible types of errors of Table 4.

It also gives partial credit for errors occurring on only one axis. Since there are two

evaluation axes, each complete success is worth two points. The worst errors cost these same

two points (missing both TYPE and TEXT), while other errors cost only one point.

2.6.2 Exact-Match Evaluations

IREX and CONLL share a simple scoring protocol. We can call it “exact-match evaluation.”

Systems are compared based on the micro-averaged f-measure (MAF), with the precision

being the percentage of NEs found by the system that are correct, and the recall being the

 29

percentage of NEs in the solution that are found by the system. An NE is correct only if it is

an exact match with the corresponding entity in the solution.

For the previous example, there are 5 true entities, 5 system guesses, and only one guess that

exactly matches the solution. The precision is therefore 20%, the recall is 20%, and the MAF

is 20%.

For some applications, the constraint of an exact match is unnecessarily stringent. For

instance, in some bioinformatics work, the goal is to determine whether or not a particular

sentence mentions a specific gene and its function. Exact NE boundaries are not required: all

the information needed to determine if the sentence refers to the gene is there (Tzong-Han

Tsai et al. 2006).

2.6.3 ACE Evaluation

ACE has a complex evaluation procedure. It includes mechanisms for dealing with various

evaluation issues (partial match, wrong type, etc.). The ACE task definition is also more

elaborate than previous tasks at the NE “subtypes” and “class” levels, as well as entity

mentions (co-references), and more, but these supplemental elements will be ignored here.

Basically, each entity type has weight parameters and contributes up to a maximum

proportion (MAXVAL) of the final score (e.g., if each person is worth 1 point and each

organization is worth 0.5 point, then it takes two organizations to counterbalance one person

in the final score). According to ACE parameters, some entity types such as “facility” may

account for as little as 0.05 points. In addition, customizable costs (COST) are used for false

alarms, missed entities, and type errors. Partial matches of textual spans are only allowed if

the NE head matches on at least a given proportion of characters. Temporal expressions are

not treated in ACE since they are evaluated by the TIMEX2 community (Ferro et al. 2005).

The final score called Entity Detection and Recognition Value (EDR) is 100% minus the

 30

penalties. In the Table 4 examples, the EDR score is 31.3%. It is computed as follows, using

ACE parameters from 20046. Each of the five entities contributes up to a maximum value to

the final score. Using default ACE parameters, the maximum values (MAXVAL) for person

entities is 61.54% of the final score, the two organizations worth 30.77%, and the location

worth 7.69%. These values sum up to 100%. At the individual type level, one person span

was recognized (John Briggs Jr) but with the wrong type (organization); one person entity

was missed (Robert); the two organization spans (Wonderful Stockbrockers Inc and Acme)

were considered correct, even with the former partial matches; one geopolitical span was

recognized (in New York) but with the wrong type; and there was one false alarm (On).

Globally, the person entities error (function of COST and MAXVAL) accounts for 55.31%

of the final EDR loss (30.77 for the miss and 24.54 for the type error), the false alarm

account for 5.77% of loss, and the location type error accounts for 7.58%. The final EDR of

31.3% is 100% minus these losses.

ACE evaluation may be the most powerful evaluation scheme because of its customizable

error cost and its wide coverage of the problem. However, it is problematic because the final

scores are only comparable within fixed parameters. In addition, complex methods are not

intuitive and make error analysis difficult.

2.7 Conclusion

The NER field has been thriving for more than fifteen years. It aims to extract from text and

to classify rigid designators mentions such as proper names, biological species, and temporal

expressions. In this chapter, we presented related works and applications of NER. We have

also shown the diversity of languages, domains, textual genres, and entity types covered in

the literature. More than twenty languages and a wide range of named entity types are

studied. However, most of the work has concentrated on limited domains and textual genres,

such as news articles and Web pages.

6 http://www.nist.gov/speech/tests/ace/ace04/index.htm

 31

We have also provided an overview of the techniques employed to develop NER systems,

documenting the recent trend away from hand-crafted rules towards machine learning

approaches. Handcrafted systems provide good performance at a relatively high system

engineering cost. When supervised learning is used, the availability of a large collection of

annotated data is a prerequisite. Such collections are available from the evaluation forums

but remain rather rare and limited in domain and language coverage. Recent studies in the

field have explored semi-supervised and unsupervised learning techniques that promise fast

deployment for many entity types without the prerequisite of an annotated corpus. We have

listed and categorized the features that are used in recognition and classification algorithms.

The use of an expressive and varied set of features turns out to be just as important as the

choice of machine learning algorithms. Finally we have also provided an overview of the

evaluation methods that are in use in the major forums of the NER research community. We

saw that in a simple example made up of only five NEs, the score of three different

evaluation techniques varies from 20% to 40%.

NER will have a profound impact on our society. Early commercial initiatives are already

modifying the way we use yellow pages by providing local search engines (search your

neighborhood for organizations, product and services, people, etc.). NER systems also enable

monitoring trends in the huge space of textual media produced every day by organizations,

governments, and individuals. It is also at the basis of a major advance in biology and

genetics, allowing researchers to search an abundance of literature for interactions between

named genes and cells.

 32

Chapter 3

Creating a Baseline Semi-Supervised NER System

In this chapter, we demonstrate BaLIE, a system that learns to recognize named entities in an

autonomous manner. To gain NER capabilities, BaLIE also features a tokenizer, a sentence

boundary detector, a language guesser, and a part-of-speech tagger. These modules were

developed using well-known techniques, and we do not consider them major contributions.

More details are available in a technical report (Nadeau 2005a). Frunza et al. (2005) made a

significant contribution by adding Romanian language support to BaLIE. However, in this

chapter we exclusively cover BaLIE’s NER module.

BaLIE solves two common limitations of rule-based and supervised NER systems. First, it

requires no human intervention such as manually labelling training data or creating

gazetteers. Second, the system can handle more than the three classical named-entity types

(person, location, and organization). The chapter is structured around one contribution:

• The design of a baseline semi-supervised NER system that performs at a level

comparable to that of a simple supervised learning-based NER system.

This chapter covers the “List Creator” module along with primitive version of the “Rule

learner” and the “Alias Network” of Figure 1. The resulting baseline system has therefore all

the required functionalities defined in the McDonald’s (1993) “Delimit, Classify, Record”

paradigm. Figure 2 expands these modules and details the process of training and evaluating

them.

BaLIE builds on past work in unsupervised NER by Collins and Singer (1999) and Etzioni et

al. (2005). Our goal is to create a system that can recognize NEs in a given document without

prior training (supervised learning) or manually constructed gazetteers. (For our purposes,

the terms “gazetteer” and “named-entity list” are interchangeable.)

 33

Figure 2: Details of the baseline named entity recognition system

Training the system

(semi-supervised learning)

Testing the system

(actual use and evaluation)

List creator (from Figure 1):

Input : seed examples

(see Appendix)

Rule Learner (from Figure 1):

Alias Network (from Figure 1):

Information retrieval using Web

search engine (Yahoo! API)

Web page wrapper

(learning from positive and

unlabelled examples)

Output : generated lists

of named entities

From training : generated

lists of named entities

Delimit : exact match list lookup

(No training)

(No training)

Classify: hard-coded rules

Record: hard-coded rules

Output : annotated

document

Input : unannotated

document

 34

Collins and Singer’s system exploits a large corpus to create a generic list of proper names

(NEs of arbitrary and unknown types). Proper names are gathered by looking for syntactic

patterns with specific properties. For instance, within a noun phrase, a proper name is a

sequence of consecutive words that are tagged as NNP or NNPS by a part-of-speech tagger,

and in which the last word is identified as the head of the noun phrase. Like Collins and

Singer, we use a large corpus to create NE lists, but we present a technique that can exploit

diverse types of text, including text without proper grammatical sentences, such as tables and

lists (marked up with HTML).

Etzioni et al. refer to their algorithm as an NE “extraction” system. It is not intended for NE

“recognition.” In other words, it is used to create large lists of NEs, but it is not designed for

resolving ambiguity in a given document. The distinction between these tasks is important. It

might seem that having a list of entities on hand makes NER trivial. One can extract city

names from a given document merely by searching it for each city name in a city list. Still,

this strategy often fails because of ambiguity. For example, consider the words “It” (a city in

the state of Mississippi and a pronoun) and “Jobs” (a person’s surname and a common noun).

The task addressed by Etzioni et al. could be called “automatic gazetteer generation.”

Without ambiguity resolution, a system cannot perform robust, accurate NER. This claim is

supported by the experiments we present in Section 3.2

In this chapter, we propose an NER system that combines NE extraction with a simple form

of NE disambiguation. We use some simple yet highly effective heuristics, based on the

work of Mikheev (1999), Petasis et al. (2001), and Palmer and Day (1997), to perform NE

disambiguation. Using the MUC-7 NER corpus (Chinchor 1999), we compare the

performance of our unsupervised system with that of a basic supervised system. We also

show that our technique is general enough to be applied to other NE types, such as car brands

or bridge names. To support this claim, we include an experiment with car brands.

The chapter is divided as follows. First, we present the system architecture. The system is

made up of two modules. The first one, presented in Section 3.1, is used to create large

gazetteers of entities, such as a list of cities (the “List creator” of Figure 1). The second

 35

module, presented in Section 3.2, uses simple heuristics to identify and classify and record

entities in the context of a given document (primitive versions of the “Rule Learner” and

“Alias Network” of Figure 1). We compare BaLIE’s performance with a supervised baseline

system on the MUC-7 corpus in Section 3.3. Next, in Section 3.4, we show that the system

can handle other type of entities in addition to the classic three (person, location, and

organization). We discuss the degree of supervision in Section 3.5. We conclude in Section

3.6 by arguing that our system advances the state-of-the-art of NER by avoiding the need for

supervision and by handling novel types of NEs. The system’s source code is available under

the GPL license at http://balie.sourceforge.net. A Web demo of BaLIE’s NER is available at

http://www.YooName.com.

 3.1 Generating Gazetteers

The task of automatically generating lists of entities has been investigated by several

researchers. In Hearst (1999), the studied lexical patterns can be used to identify nouns from

the same semantic class. For instance, a noun phrase that follows the pattern “the city of” is

usually a city. In Riloff and Jones (1999), a small set of lexical patterns and entities are

developed using mutual bootstrapping. Finally, Lin and Pantel (2001) show how to create

large clusters of semantically related words using an unsupervised technique. Their idea is

based on examining words with similar syntactic dependency relationships. They show they

can generate semantic classes such as car brands, drugs, and provinces. However, their

technique does not discover the labels of the semantic classes, which is a common limitation

of clustering techniques.

The algorithm of Etzioni et al. (2005) outperforms all previous methods for creating a large

list of a given type of entity or semantic class: the task of automatic gazetteer generation. In

the remainder of this section, we explain how to generate a list of thousands of cities from

only a few seed examples, in two steps (Section 3.1.1 and 3.1.2) repeated if necessary.

3.1.1 Retrieve Pages with a Seed

The first step is information retrieval from the Web. We used the Yahoo! Web search engine

 36

(through the developer API). A query is composed of k manually chosen entities (e.g.,

“Montreal” AND “Boston” AND “Paris” AND “Mexico City”). In our experience, when k is

set to 4 (as suggested by Etzioni et al. 2005) and the seed entities are common city names,

the query generally retrieves Web pages that contain many names of cities, in addition to the

seed names. The basic idea of the algorithm is to extract these additional city names from

each retrieved Web page. In the query, less than four entities results in lower precision, and

more than four entities results in lower recall.

The same strategy can be applied to person names, company names, car brands, and many

other types of entities. In Chapter 5 of this thesis, we present the resulting list generation for

100 entity types.

3.1.2 Apply Web Page Wrapper

The second step is to apply a Web page wrapper that acts as an abstract layer over HTML

whose goal is to isolate desired information. Given it is provided with the location of a subset

of the desired information within a page, the wrapper isolates the entire set of desired

information and hides the remainder of the page. The goal of the wrapper is therefore to hide

everything in the page but the named entities that are likely to be in HTML structures similar

to that of the seed names. This step is explained in greater details in section 3.1.4.

3.1.3 Repeat

The two steps above (3.2.1, 3.2.2) are repeated as needed. Each iteration brings new entities

that are added to the final gazetteer. At each iteration, k new randomly chosen entities are

used to refresh the seed for the system. Entities are chosen from the gazetteer under

construction. Preference is given to seed entities that are less likely to be noise, such as those

appearing in multiple Web pages.

3.1.4 Detailed algorithm for Web page wrapping

Learning to isolate desired information on a Web page starting with a few seed examples is

 37

an instance of learning from positive and unlabelled data. A Web page is encoded in a tree

structure, where the top node <html> contains the entire page. The HTML nodes containing

the desired information are labelled “positive,” and other nodes are unlabelled. For instance,

in the following HTML code, the <a> node that contains the city name “Ottawa” is the

desired information and is labelled “positive” for the purpose of training the wrapper.

<tr>

<td>Day5</td>

<td>

 Ottawa </td>

<td>Ottawa, Museum of Civilization: Morning drive to Canada's capital city,

Ottawa. This afternoon visit the Canadian Museum of Civilization…</td>

</tr>

Identifying all the relevant nodes in a Web page is a classification problem (to show or to

hide a node). Eighteen features are used to describe a node within the HTML tree. In Cohen

and Fan (1999), the learning algorithm in use is Ripper (Cohen, 1995). In comparison with

the original Cohen and Fan set of features, we dropped three features that seem redundant or

less pertinent and we added two novel features.

An important improvement on the original approach is the addition of two new features with

a significant predictive power. These features describe the nodes by row and column number

of the innermost table to which they belong.

3.1.4.1 Web page wrapper attributes

We describe all attributes and assert their type as either “numeric” (real value) or “nominal”

(set of predefined values).

Tag name: nominal {div, td, img, p, a, …} 7

Text length: numeric

Non-white text length: numeric

Recursive text length: numeric

7 This enumeration of nominal values should contain every valid HTML tag.

 38

Recursive non-white text length: numeric

Depth: numeric

Normalized 8 depth: numeric

Number of children: numeric

Normalized number of children: numeric

Number of siblings: numeric

Normalized number of siblings: numeric

Parent tag name: nominal {div, td, img, p, a, …}

Node prefix count: numeric

Normalized node prefix count: numeric

Node suffix count: numeric

Normalized node suffix count: numeric

Cell row in innermost table: numeric

Cell column in innermost table: numeric

Class: {Positive, Negative}

Here is the description of a typical HTML node using this representation:

 a,6,0,0,4002,26,0.684211,8,0.222222,1,0.027778,td,104,0.514851,0,0,2,1,

 Positive

This instance describes a positive node. The tag name is “a” and parent is “td.” The node

wraps around six immediate characters, but there are zero characters embedded in children

nodes. Among other features, the value of the “node prefix count” means that 104 other

nodes in the page share the same “prefix” (e.g., html>body>table>tr>td) . Other noteworthy

features indicate that the cell containing this node is in row 2, column 1, of the innermost

table.

3.1.4.2 Web page wrapper as classification rules

We designed a Web page wrapper as a rule-based system that identifies the location of

specific types of information within the Web page. For example, a wrapper for isolating the

location of city names on craigslist.org Web site might contain the following rule: “A city

name is contained in an HTML node of type <a>, with text length between 4 and 20

characters, in the first or second column of the a table of depth 2, and with at least 20 other

8 Refer to W. Cohen and Fan (1999) for normalization issues and information on each attribute.

 39

nodes in the page that satisfy the same rule.”

The gazetteer generation algorithm proceeds by learning rules that identify the locations of

named entity examples. The Web page wrapper is trained on the k-positive examples (from

Section 3.1.1) that are known to appear in the page, but only if they are strictly contained in

an HTML node (e.g., <td> Boston </td>). The advantage of this constraint is that HTML

tags act as named entity boundary delimiters. It allows identifying complex named entities

such as “<td> Saint-Pierre and Miquelon </td>” without additional parsing.

It is also possible train the wrapper on nodes containing a small amount of text around a

named entity within an HTML node (e.g., <td> Boston hotel </td>). A technique, that we

called “node cleaning” is described in Nadeau (2005b) and is presented in section 3.1.4.6.

The remaining HTML nodes are unlabelled: some are positive, some are negative but we

can’t separate them at this point. Our strategy is to treat the unlabelled nodes in the page as if

they were negative examples, but we only include in the negative set the nodes with the same

HTML tags as the positive examples. For instance, if the positive k nodes are tagged as bold

(i.e., “”), then the negative examples will be restricted to the Web page’s remaining bold

text. All other nodes are hidden by default.

As described above, Web page wrapping is a classification problem. A supervised learning

algorithm is used to classify unknown entities in the current Web page. In this application,

the training and testing sets are the same. The learning algorithm is trained on the given Web

page, then the learned model is applied to reclassify the text in the same Web page. The idea

is to learn rules, during training, that identify the locations of the known entities (the seed

entities) and can be applied, during testing, to identify entities appearing in similar contexts,

which may provide more positive examples.

Three main problems make this task difficult. First, there is noise in the training data class

labels, since everything but the seed words are initially labelled as negative. If the page

contains more than k entities of the desired type, the very nodes we want to extract were

 40

labelled as negative.

The second problem is the class imbalance. Along with the positive k examples, there are

usually hundreds or thousands of negative examples. These two problems are handled by

noise-filtering and wise data sampling, respectively. At this point, our technique goes beyond

the system of Etzioni et al. (2005), which uses a simple Web page wrapper consisting of

handcrafted rules.

Interestingly, the first and second problems are typical of learning that uses only positive

examples. In the Web page wrapper, the positive examples are the initial seeds. We solved

the first and second problems by under-sampling and then over-sampling the data set. The

notion of using these types of sampling to force focused learning is described by Chawla et

al. (2002) in an algorithm called SMOTE. The Web page wrapper uses a SMOTE-like

algorithm. In Section 4.2.2, we’ll use the exact same strategy to guide learning in another

one-class problem.

The third problem is the residual noise, that is, invalid entity candidates that pass through the

Web page wrapper and are added to the final lexicon. We discuss the three problems in much

detail in the following subsections.

3.1.4.3 Class noise problem

To handle the problem of noise in the class labels, we use a filtering approach inspired by

Zhu et al. (2003). The noise-filtering strategy is to simply remove any instance similar to a

positive instance. We say that two nodes are similar when their feature vectors are identical,

except for the text length feature. Removing class noise is a kind of “wise” under-sampling

of negative examples.

The noise filter is not used on the testing set. When the trained model is applied to the testing

set, some of the examples that were absent in training may be classified as positive, while

others may be classified as negative.

 41

We evaluated this technique on 40 Web pages retrieved from 9 “k-city queries” (i.e., queries

composed of k names of city). These pages were found by manually verifying the 100 first

hits for each query and keeping all pages in which all the queried city names are exactly

contained in an HTML node. Using the class noise filter, a mean of 42% of the HTML nodes

that are initially labelled as negative are removed from the training set; thus significantly

under sampling the initial dataset. When testing the Web page wrapper on the 40 manually

annotated Web pages with class noise filtering, the performance of finding city names

improves by 30% (from 65% accuracy to 84.8%).

3.1.4.4 Class imbalance

To handle the problem of class imbalance, we use over-sampling of positive examples. Using

the original unbalanced data set, the wrapper is almost incapable of extracting new entities. It

mainly guesses the majority class (negative) and only extracts the initial seed from Web

pages. To discourage the learning algorithm from using the trivial solution of always

guessing the majority class, the positive examples are over-sampled to rebalance the data set.

This rebalancing must be done for each individual Web page, to take into account the

imbalance ratio of each wrapper. Rebalancing is performed automatically by randomly

choosing HTML nodes to add to the data set, up to the desired ratio of positive to negative

examples.

Past research suggests that supervised learning algorithms work best when the ratio is near

1:1 (Ling & Li, 1998). We hypothesized that the wrapper would work best when we

rebalanced the data set by duplicating positive instances until the ratio reached 1:1.

On the dataset presented in the previous section, positive example over-sampling provides an

additional 2% gain in accuracy. When used alone, that is without class noise filtering, over-

sampling accounts for up to 8% of improvement in classification accuracy.

3.1.4.5 Residual noise problem

Web page wrapper frequently extracts invalid candidates from pages. For instance, it may

extract table headers, wrong lists, or simply extract elements of a heterogeneous list of valid

 42

and invalid entities (e.g., drug names mixed with symptoms and disease names).

In the baseline system, in order to filter noise, we used hard-coded rules. For each entity

types, we defined a minimum and maximum length, a valid set of characters, and an absolute

minimum redundancy (number of times the entity is extracted from distinct Web pages). In

Chapter 4, we demonstrate advanced noise filtering based on semi-supervised techniques.

3.1.4.6 HTML node cleaning

In section 3.1.4.2, we set the constraint that HTML nodes must exactly embed named entity

examples so we don’t need additional boundary delimitation inside the node. However, this

is not always the case. A significant amount of web pages presents the desired information

with extra words inside the node (e.g., <td> New York Hotels </td>).

If these extra words are present in all positive nodes, we apply the wrapper algorithm and

post-process newly found named entity by removing the constant noise. In our experiments,

we found that this simple technique augments the number of named entity found

significantly. It allows finding 76% more city names, for instance, in the list of Table 6, and

17% more car brand names in the list of Section 3.4.

3.2 Resolving Ambiguity

The “list look-up strategy” is the method of performing NER by scanning through a given

input document to look for terms that match a list entry. The list look-up strategy has three

main problems: entity-noun ambiguity errors (Section 3.2.1); entity boundary detection

errors (Section 3.2.2); and entity-entity ambiguity errors (Section 3.2.3). Due to these three

problems, the gazetteer-generating module presented in Section 3.1 is not in itself adequate

for reliable NER. We found heuristics in the literature to tackle each of these problems.

3.2.1 Entity-Noun Ambiguity

Entity-noun ambiguity occurs when an entity is the homograph of a noun. The plural word

“jobs” and the surname “Jobs” is an example of this occurrence. To avoid this problem,

 43

Mikheev (1999) proposes the following heuristic: in a given document, assume that a

capitalized word or phrase (e.g., “Jobs”) is a named-entity, unless it sometimes appears in the

document without capitals (e.g., “jobs”); it only appears at the start of a sentence or at the

start of a quotation (e.g., “Jobs that pay well are often boring.”); or it only appears inside a

sentence in which all words with more than three characters start with a capital letter (e.g., a

title or section heading). This heuristic is called H1 in the remainder of this chapter.

3.2.2 Entity Boundary Detection

A common problem with the list look-up strategy involves errors in recognizing where an

NE begins and ends in a document (e.g., finding only “Boston” in “Boston White Sox”). This

can happen when an NE is composed of two or more words (e.g., “Jean Smith”) that are each

listed separately (e.g., “Jean” as a first name and “Smith” as a last name). It can also happen

when an entity is surrounded by unknown capitalized words (e.g., “New York Times” as an

organization followed by “News Service” as an unlisted string). Palmer and Day (1997)

propose the longest match strategy for these cases. Accordingly, we merge all consecutive

entities of the same type and every entity with any adjacent capitalized words. We did not,

however, merge consecutive entities of different types, since we would not have known the

resulting type. This heuristic is called H2 in the remainder of this chapter.

The rule above is general enough to be applied independently of the entity type. We found

that other merging rules could improve the precision of our system, such as “create a new

‘organization’ type entity by merging a location followed by an organization.” However, we

avoided rules like this because we believe that this kind of manual rule engineering results in

brittle, fragile systems that do not adapt well to new data. Our goal is to make a robust,

portable, general-purpose NER system, with minimally embedded domain knowledge.

3.2.3 Entity-Entity Ambiguity

Entity-entity ambiguity occurs when the string standing for an NE belongs to more than one

type. For instance, if a document contains the “France” NE, it could be either the name of a

person or the name of a country. For this problem, Petasis et al. (2001) and others propose

 44

that at least one occurrence of the NE should appear in a context where the correct type is

clearly evident. For example, in the context “Dr. France,” it is clear that “France” is the name

of a person.

We could have used cues, such as professional titles (e.g., farmer), organizational designators

(e.g., Corp.), personal prefixes (e.g., Mr.) and personal suffixes (e.g., Jr.), but as discussed in

the preceding section, we avoided this kind of manual rule engineering.

Figure 3: Simple alias resolution algorithm

Instead, we applied a simple alias resolution algorithm, presented in Figure 3. When an

Definitions:

D = a given input document.

},...,{ 1 naaA = = the set of all sets of aliases in the document D .

},...,{ 1 mi eea = = a set of aliases = a set of different entity instances, referring to

the same actual entity in the world.

psDe ,,= = a unique instance of an NE, consisting of a string s in document

D at position p .

),(overlap ji ee = a Boolean function; returns true when iii psDe ,,= and

jjj psDe ,,= and the strings is and js share at least one word with more

than three characters; returns false otherwise.

Algorithm:

Let {}=A .

For each instance of an NE e in document D :

If there is exactly one alias set ia with a member je such that

),(overlap jee , then modify A by adding e to ia .

If there are two or more alias sets ia , ja with members ke , le such that

),(overlap kee and),(overlap lee , then modify A by creating a new

alias group pa that is the union of ia , ja , and }{e , add pa to A , and

remove ia and ja from A .

Otherwise, create a new alias set qa , consisting of }{e , and add qa to A .

 45

ambiguous entity is found, its aliases are used in two ways. First, if a member of an alias set

is unambiguous, it can be used to resolve the whole set. For instance, “Atlantic ocean” is

clearly a location, but “Atlantic” can be either a location or an organization. If both belong to

the same alias set, then we assume that the whole set is a “location” type. Another way of

using the alias resolution is to include unknown words in the model. Typical unknown words

are introduced by the heuristics in Section 3.2.2. If an entity (e.g., “Steve Hill”) is formed

from a known entity (e.g., “Steve”) and an unknown word (e.g., “Hill”), we allow

occurrences of this unknown word to be added in the alias group. This heuristic is called H3

in the remainder of this chapter.

3.3 Evaluation with the MUC-7 Enamex Corpus

In the Message Understanding Conferences (MUC), the NER track focuses on three classic

NE types: person, location, and organization. These three NE types are collectively called

“enamex.” In this section, we compare the performance of our system with a baseline

supervised system using the corpus from MUC-7. For this experiment, a portion of the

corpus is given to the supervised system in order to train it. Our unsupervised system simply

ignores this portion of the corpus.

The same baseline experiment was conducted on the MUC-6 and MUC-7 corpora by Palmer

and Day (1997) and Mikheev et al. (1999), respectively. Their systems work as follows. A

training corpus is read, and the tagged entities are extracted and listed. Given a testing

corpus, the lists are used in a simple look-up strategy, so that any string that matches a list

entry is classified accordingly.

Table 5 presents Mikheev et al.’s results on the MUC-7 corpus (in the “Learned lists”

columns). There is also a comparison with a system that uses handmade lists of common

entities (in the “Common lists” columns). The “Combined lists” columns are based on a

combination of both approaches. These results are also published experiments by Mikheev et

al. In the following tables, “re” is the recall, “pr” is the precision, and “f” is the f-measure

(the harmonic mean of precision and recall), all expressed in percentages.

 46

Table 5: Results of a supervised system for MUC-7

 Learned lists Common lists Combined lists

 re Pr f re pr f re pr f

organization 49 75 59 3 51 6 50 72 59

person 26 92 41 31 81 45 47 85 61

location 76 93 84 74 94 83 86 90 88

For the purpose of comparison, we ran our system on the MUC-7 corpus using the gazetteers

we generated, as described in Section 3.1. We generated gazetteers for some of the NE

subtypes given by Sekine and Nobata (2004). The generated gazetteers are described in

Table 6. We also used a special list of the months of the year because we noticed they were

an abnormally important source of noise on the development (dry run) set9. Many months are

also valid as personal first names.

Table 6: Type and size of gazetteers built using Web page wrapper

Gazetteer Size

Location: city 14,977

Location: state/province 1,587

Location: continent/country/island 781

Location: waterform 541

Location: astral body 85

Organization: private companies 20,498

Organization: public services 364

Organization: schools 3,387

Person: first names 35,102

Person: last names 3,175

Person: full names 3,791

Counter-examples: months 12

List size depends on how efficiently the Web page wrapper extracts entities. Section 3.3.1

9 It can be argued that the month list is a form of manual rule engineering, contrary to the principles discussed

in Section 3.2.2. We decided to use it because most of the noise was clearly corpus-dependent, since each

article contains a date header. For results without the month list, subtract 5% from the “person” type precision.

 47

puts forth an experiment suggesting that these lists have a precision of at least 90%. We did

not restrict Web mining to a specific geographic region, and we did not enforce strict

conditions for list elements. As a result, the “state/province” list contains elements from

around the world (not just Canada and the U.S.), and the “first name” list contains a

multitude of compound first names although, as explained in Section 3.2.2, our algorithm is

designed to capture them by merging sequences of first names.

Table 7 shows the result of a pure list look-up strategy, based on our generated gazetteers (in

the “Generated lists” columns). For the sake of comparison, the table also shows the best

supervised results from Table 5 (in the “Mikheev combined lists” columns). The results we

report in previous tables are all based on the MUC-7 held-out formal corpus.

Table 7: Supervised list creation vs. unsupervised list creation techniques

 Mikheev

combined lists

Generated lists

 r e pr F re pr f

organization 50 72 59 70 52 60

person 47 85 61 59 20 30

location 86 90 88 83 31 45

We believe this comparison gives a good sense of the characteristics of both approaches. The

supervised approach is quite precise but its recall is lower, since it cannot handle rare

entities. The unsupervised approach benefits from large gazetteers, which make for higher

recall at the cost of lower precision.

The case of locations is interesting. There is evidence of a substantial vocabulary transfer

between the training data and the testing data, which allows the supervised method to have

an excellent recall on the unseen texts. Mikheev’s lists get a high recall with a list of only

770 locations. The supervised method benefits from highly repetitive location names in the

MUC corpus.

These results are slightly misleading. The MUC scoring software that produces these

 48

measures allows partial matching. This means that if a system tags the expression “Virgin

Atlantic” when the official annotated key is “Virgin Atlantic Group,” it will be interpreted as

a success. In Table 8, we provide another view of the system’s performance, which may be

less misleading. For our system, it gives the precision and recall of all entity types at the

“text” level; that is, how well it finds exact string matches.

Table 8: Generated list performance on text matching

 Generated lists

re Pr f

text 61 29 39

The next step in our evaluation consists of adding the heuristics presented in sections 3.2.1 to

3.2.3. These heuristics are designed to be unsupervised; that is, they require no training

(unlike n-gram contexts, for example), and they are not deduced from our domain knowledge

about a specific entity type. Table 9 demonstrates the contribution of each heuristic. The

“Generated lists” columns are copied from Table 7 and Table 8, to show the performance of

the list look-up strategy without disambiguation.

Table 9: Performance of heuristics to resolve NE ambiguity

 Generated

lists

 H1 (Entity -

noun

ambiguity)

 H1 + H2

(Entity

boundary)

 H1 + H2 + H3

(Entity- entity

ambiguity)

 re pr f re pr f Re pr f re pr f

org. 70 52 60 69 73 71 69 74 71 71 75 73

per. 59 20 30 58 53 55 66 63 64 83 71 77

loc. 83 31 45 82 69 75 81 77 79 80 77 78

text 61 29 39 61 57 59 72 72 72 74 72 73

The contribution of each heuristic is additive. H1 (Section 3.2.1) procures a dramatic

improvement in precision with negligible loss of recall. The main source of ambiguity is

entity-noun homographs such as “jobs,” “gates,” and “bush.”

 49

Heuristic H2 (Section 3.2.2) provides small gains in precision and recall of individual entity

types (the first three rows in Table 9). As explained, these scores are misleading because they

count partial matches, thus these scores are not sensitive to the boundary detection errors

corrected by H2. However, the text matching performance is greatly improved (last row in

Table 9). We noticed that most corrected boundaries are attributed to person entities

composed of a known first name and an unlisted capitalized string, presumably standing for

the surname.

H3 (Section 3.2.3) mainly increases precision and recall for “person” type NEs, due to the

alias resolution algorithm. An occurrence of a full person name is usually unambiguous, so it

can help to annotate isolated surnames, which are often either ambiguous (confused with

organization names) or simply unlisted strings.

3.3.1 List Precision

In Nadeau (2005b), we evaluated the precision of a list of 17,065 automatically generated

city names. We sampled 100 names randomly and counted a precision penalty for each noisy

entry. The list precision is 97% (by the Binomial Exact Test, the 95% confidence interval is

91.4% to 99.4%).

We did this again with lists created for Chapter 5 experiments: city, first name, clothing

brand, and song title. Again, we sampled 100 examples randomly and calculated the

precision from there. Table 10 reports population sizes and estimated precisions.

Table 10: Estimated precision of automatically generated lists

List Population size Precision 95% confidence interval

City 15,500 97.0% 91.4% - 99.4%

First name 40,000 99.0% 94.6% - 99.9%

Clothing brand 799 98.0% 93.0% - 99.8%

Song title 5,900 99.0% 94.6% - 99.9%

 50

3.4 Evaluation with Car Brands

There are many more NE types than those three classic enamex types. Sekine and Nobata

(2004) propose a hierarchy of 200 NE types. Evans (2003) proposes a framework to handle

such a wide variety. His approach is based on lexical patterns, inspired by Hearst (1992). He

paired this technique with a heuristic for handling ambiguity in capitalized words. Our

system is similar, but it is based on a method proven to give better entity-finding recall.

In this section, we show how well the system recognizes car brands. Intuitively, it seems that

this type would be easier to handle than something like “person,” which has an almost

infinite extension. Yet recognizing car brands poses many difficulties. Car brands can be

confused with common nouns (e.g., Focus, Rendez-Vous, Matrix, Aviator) and with

company names (e.g., “Ford” versus “Ford Motor Company”). Another difficulty is the fact

that new car brands are created every year, so it is challenging to keep a gazetteer up-to-date.

We created a small pilot corpus composed of news specifically about cars from some popular

news feeds (CanWest, National Post, and The Associated Press). We use eight documents,

for a total of 5,570 words and 196 occurrences of car brands.

The Web page wrapper technique was used to generate a list of 5,701 car brands, and the

heuristics of sections 3.2.1 to 3.2.3 were applied without any modifications. Table 11 reports

the results.

Table 11: System performance for car brand recognition

 Generated list H1, H2 and H3

 Re pr f re pr f

cars 86 42 56 85 88 86

text 71 34 46 79 83 81

The performance on this task is comparable to that of the enamex. Without ambiguity

resolution (in the “Generated list” columns), the precision is low, usually under 50%. This is

the impact of frequent and ambiguous words like “will” (Toyota Will), and noise in our list

(e.g., new, car, fuel). The ambiguity resolution algorithms (in the “H1, H2, and H3”

 51

columns) increase the precision to above 80%. The remaining recall errors are due to rare car

brands (e.g., “BMW X5 4.8is” or “Ford Edge”). The remaining precision errors are due to

organization-car ambiguity (e.g., “National” as in “National Post” versus “Chevrolet

National”) and noise in the list (e.g., Other, SUV). We believe that the good performance of

gazetteer generation, combined with ambiguity resolution on an entirely new domain,

emphasizes their domain-independent quality and shows the strength of the unsupervised

approach.

3.5 Supervised versus Unsupervised

We describe our system as unsupervised, but the distinction between supervised and

unsupervised systems is not always clear. In some systems that are apparently unsupervised,

it could be argued that the human labour involved in generating labelled training data has

merely been shifted to embedding clever rules and heuristics in the system.

In our gazetteer generator (Section 3.1), the supervision is limited to a seed of four entities

per list, a primitive noise filter (Section 3.1.4.5), the knowledge that month-person ambiguity

is particularly problematic in MUC-7 (Section 3.3, Table 6) and three heuristics (Section 3.2)

for handling entity ambiguity and adjusting entity boundaries. In our ambiguity resolver

(Section 3.2), we attempt to minimize the use of domain knowledge of specific entity types.

Our system exploits human-generated HTML mark-up in Web pages to generate gazetteers.

However, because Web pages are available in such a quantity, and because the creation of

Web pages is now intrinsic to the work-flow of most organization and individuals, we

believe this annotated data comes at a negligible cost. For these reasons, we believe it is

reasonable to describe our system as unsupervised.

3.6 Conclusion

In this chapter, we presented a named-entity recognition system that advances the NER state-

of-the-art by avoiding the need for supervision and by handling novel NE types. In a

comparison on the MUC corpus, our system outperforms a baseline supervised system, but it

is still not competitive with more complex supervised systems. There are fortunately many

 52

ways to improve our model. One interesting way would be to generate gazetteers for a

multitude of NE types (e.g., all 200 of Sekine’s types), and use list intersection as an

indicator of ambiguity. This idea would not resolve the ambiguity itself, but it would clearly

identify where to invest further efforts.

 53

Chapter 4

Noise-Filtering Techniques for Generating NE Lists

In this chapter, we present a first improvement to BaLIE. It comes from the observation that

entities of a given type tend to be lexically similar, in that they are comparable in length, they

are made up of characters from a given character set, they often have common prefixes and

suffixes, and so forth. We therefore formulated the hypothesis that lexical features are useful

in identifying valid instances of an NE type. Our contributions are the following:

• The design of a noise filter for NE list generation based on lexical features;

• First experiments in using statistical semantics as noise filter.

This chapter covers the “Noise filter” that is an improvement to the “List creator” module of

Figure 1. The noise filter works on the output of the Web page wrapper module of BaLIE in

order to generate NE lists of greater quality, as shown in Figure 4. Both the noise filter we

present in this chapter and the Web page wrapper presented in the previous chapter are

instances of the problem of learning from positive and unlabelled examples. In both case, we

use an algorithm inspired by SMOTE (Chawla et al. 2002) to solve the problem. SMOTE is

reviewed in Section 4.2.2.

NE lists—also called dictionaries, lexicons, or gazetteers—are a typical component of NER

systems. Lists are either an explicit system component (e.g., Cunningham et al. 2002), or

they are derived from an annotated training data set (e.g., Bikel et al. 1999). For instance, a

typical NER system that recognizes city names will refer to a list of cities and apply a

mechanism to resolve entity boundary and type ambiguity. However, lists are rarely

exhaustive and they require ongoing maintenance to stay up-to-date. This is particularly true

with NE types such as “company,” which are very volatile. Moreover, the initial cost of

creating a list of NEs is usually high because it either requires manual NE harvesting, or

manually annotating a large collection of documents.

 54

Figure 4: Details of noise filtering as a post-process for the Web page wrapper

Recently, many techniques have been proposed to generate large NE lists starting from an

initial seed of a few examples (e.g., Etzioni et al. 2005). Techniques have also been proposed

to autonomously maintain an existing NER system (e.g., Heng and Grishman 2006) by

increasing its underlying training data set. These semi-supervised learning techniques are

Training the system

(semi-supervised learning)

List creator (from Figure 1):

Output : annotated

document (ambiguity

not resolved)

Output : generated lists

of named entities

Input : seed examples

(see Appendix)

Information retrieval using Web

search engine (Yahoo! API)

Web page wrapper

(learning from positive and

unlabelled examples)

Testing the system

(actual use and evaluation)

Input : unannotated

document

From training : generated

lists of named entities

(noise filtered)

Delimit : exact match list lookup

Noise filtering

(learning from positive and

unlabelled examples)

 55

based on bootstrapping lexical knowledge from a large collection of unannotated documents

(e.g., the Web). An early example of a bootstrapping algorithm is provided by Riloff and

Jones (1999).

In Section 3.2 of the previous chapter, we proposed our own technique for NE list generation

based on a bootstrapping algorithm. For efficiency, we kept this algorithm simple. The

penalty for simplicity is noise in the generated NE list, but even the most sophisticated

algorithm will generate noise. Most of our research focuses on the problem of noise. In

Section 4.1, we summarize our NE list generation technique and explain the role of noise

filtering. Our main contribution, detailed in Section 4.2, is a new noise-filtering technique,

based on lexical NE features. In Section 4.3, we compare our technique to an existing noise-

filtering technique, based on information redundancy, and we also examine the combination

of our lexical filter with the information redundancy filter. In Section 4.4, we show that the

combination of the two noise filters is better than either filter taken individually. In Section

4.5, we demonstrate the use of a third noise filter, based on statistical semantics techniques.

Because of the computational complexity of this filter, we report the results of its use as a

post-processing step, after the list generation process. Section 4.6 summarizes and concludes.

4.1 Generating NE Lists from the Web

The technique described in this section is inspired by Etzioni et al.’s (2005) “List Extraction”

technique combined with “Wrapper Induction” (Section 3.1.2). The algorithm requires, as

input, a seed list of a few examples of a given NE type (e.g., cities). Some seed examples are

conjoined in a query sent to a Web search engine (e.g., “Boston” AND “New Delhi” AND

“Louvain-la-Neuve” AND “Tokyo”). A query composed of four seeds seems to be optimal

(Etzioni et al. 2005). A smaller query returns many irrelevant documents, and a longer query

returns too few documents.

The returned documents necessarily contain occurrences of all of the seed examples in the

given query. The list extraction technique consists of detecting whether or not the seed

examples appear inside an HTML list structure in the returned documents (e.g., a table or a

 56

bulleted list). If a list structure is detected, then the entire list is extracted from the document

and the elements of the list (except the seed NEs) are considered to be new NEs. In order to

detect a list structure and extract elements from it, a wrapper induction algorithm is used.

The new examples of NEs found are kept in quarantine until a noise filter has been applied.

Entities that pass the noise filter are promoted to a list of “accepted” entities and the

remainders are held in quarantine.

The algorithm is iterative, and an iteration consists of:

Let S be a list of seed elements.

Let A be a list of accepted named entities.

Let Q be a quarantine list of candidate named entities.

At the first iteration, let initialize A = S and Q = {}.

INPUT: A, Q

1. Sample 4 elements from A and conjoin them to create a query;

2. Send the query to a Web search engine and get top documents;

3. Detect documents with a list structure;

4. Apply list extraction technique to gather all elements of the list;

5. Accumulate new NE examples in the quarantine list Q;

6. Apply the noise filter test to all elements of Q:

 6.1. A’ := Add elements that pass the test to A ;

 6.1. Q’ := Only keep elements that fail the test in Q .

OUTPUT: A’, Q’

Figure 5: Algorithm for one iteration of the NE list generation process

The quarantine Q is persistent so that an element that is not promoted at a given iteration

may be promoted in a subsequent iteration.

The notion of NE frequency is very important here. If an NE is seen on n Web pages, then its

frequency is n. The frequency of the input examples is initialized to one. We use the

following parameter settings, which were experimentally found by manually adjusting the

 57

parameter values and observing their qualitative effect. Making small changes to the

parameters usually has a minor impact. We manually generate a seed list S containing three

times the number of elements required at step 1 (3 · 4 = 12 seeds). This lets the algorithm run

for three iterations without having to promote elements from Q. At each iteration, four

examples are sampled from the list A of accepted NEs. Preference is determined first by NE

frequency, and second, by order of appearance. A query is formed by quoting the elements

(for exact phrase matching) and joining them with AND. We used the Yahoo! Web search

engine (through the developer API). We retrieved the top 200 results for each query. We

performed three initial iterations before applying step 6 (i.e., all new NEs are kept in Q). The

goal of these preliminary iterations is to gather sufficient data for the filter to be effective

(the filter benefits from a larger sample size). After the third iteration, and for all subsequent

iterations, step 6 is applied (i.e., the best new NEs are moved from quarantine to the list of

accepted NEs). We stopped the bootstrapping process after 10 iterations.

The NE list generation process involves three lists: the seed list (S), the list of accepted NEs

(A) and the quarantine list (Q). The seed list is only use at the first iteration to initialize the

list of accepted NEs. When a new NE is retrieved from the Web, it is put in the quarantine

list. It is promoted to the list of accepted NEs only if it successfully passes a noise-filtering

test.

A noise filter based on information redundancy performed well in the task of generating a list

of cities and a list of mayors (Downey et al. 2005). We present this filter in Section 4.3. It

uses the frequency of an extraction as its filtering criterion. In our experiments, we also noted

this noise filter’s good performance.

However, this filter’s weakness is that it does not take into account lexical information such

as capitalization, punctuation, and the length of the NE candidate. Our hypothesis is that

lexical information is useful to filter NEs.

In the following section, we present our novel noise-filtering technique based on lexical

features. Then, in Section 4.1.2, we compare and combine it with Downey et al.’s (2005)

 58

information redundancy filter.

4.2 Lexical Noise Filter

Our experience with people’s names suggests that a person’s first name may contain a

hyphen but probably not an ampersand, and that the name may often be less than six

characters long. Conversely, a company name may contain an ampersand, and it will often be

more than six characters long. This experience, indicative of distinctive lexical NE

characteristics of a given type, drives the design of our noise filter.

The role of a noise filter is to distinguish valid NEs despite the noise involved in the process

of generation lists. The hypothesis that lexical features may be used for filtering noise comes

from the observation that entities of a given type often appear similar at the character string

level. To calculate entity string similarity, we defined more than fifty features. Table 12

presents a list of our features and their data types. All these features can be found in NER

literature, and in various NER systems. An explanation for each feature can be found in the

Section 2.5.

As explained earlier, NE candidates come from lists and tables on Web pages. The wrapper

induction algorithm is designed so that extracted the tables and lists are made up of HTML

nodes that wrap around NEs exactly (e.g., <td>Tokyo</td>). When the seeds are wrapped in

HTML nodes exactly, NE candidates (the table’s remaining nodes) are usually wrapped

accordingly. NE candidates are not full sentences. The NE boundary is usually resolved by

the HTML mark-up (e.g., <td>), but in some cases, there is additional context (e.g., <td>city

of Ottawa</td>, <td>Ottawa, Canada</td>, etc.). These examples are considered noise since

the list extraction algorithm does not implement contextual patterns or parsing of any kind.

 59

Table 12: NE lexical features

Type Feature

Boolean HasCapitalLetter

Boolean StartWithCapitalLetter

Boolean IsAllCapitalized

Boolean IsMixedCase

Boolean HasPunctuation

Boolean HasDigit

Boolean HasDigitsOnly

Boolean EndsInPeriod

Boolean ApostropheIsSecondChar

Boolean HasSpecificPunctuation 10

Boolean IsRomanDigit

Numeric Length

Numeric NumSpace

Numeric NumericValue

Numeric NumLeadingDigits

Numeric NumTrailingDigits

Nominal Pattern

Nominal SummarizedPattern

Nominal Prefix (of length 1,2,3)

Nominal Suffix (of length 1,2,3)

Nominal Alphabetical

Nominal NonAlphabetical

4.2.1 Learning to Filter Noise with Lexical Features

In the context of the current task, learning to filter noise illustrates the general problem of

learning from positive and unlabelled examples. At a given iteration, the list of accepted NEs

(A) is a pool of presumably positive examples (examples that were in S, and examples that

passed through the noise filter in previous iterations). The quarantine list Q presumably

contains both positive (valid NEs) and negative (noise) examples, but their actual classes are

unknown. The quarantine list Q is therefore a pool of unlabelled data.

10 There is one feature for each of the following punctuations: apostrophe, slash, backslash, open and close

bracket and parenthesis, open and end quote, colon, semi-colon, comma, period, question and exclamation

mark, “at,” copyright and currency symbols, hyphen, and underscore.

 60

Positive examples are usually learned from using standard machine learning techniques,

while negative examples are selected from the unlabelled data, either directly or through a

gradual, iterative process (Liu 2003).

In Schölkopf et al. (2001), a Support Vector Machines (SVM) is used to learn from positive

and unlabelled examples (also called “one-class SVM”). The technique is implemented in

LibSVM11. In our experiments, we had no success with this technique. The classifier was

overly conservative—classifying the vast majority of instances as noise—and the resulting

filter performed below our baseline (Figure 6).

In Schwab and Pohl (1999), a kind of instance-based learning is used to learn from positive

examples exclusively. First, a threshold distance (α) is selected in the n -dimension space,

where n is the number of features (e.g., from Table 12). Examples within this distance of

any positive example are classified as positive, while examples that are too distant are

classified as noise. A variant of the idea involves using the centroid of positive examples as

the singular reference point. Schwab and Pohl calculate the Hamming distance between two

points, though the Euclidian distance can also be used in the n -dimensional space. They also

assign variable weights to features according to their relative importance. We tested many

configurations of this classifier and we obtained the best results using the centroid of positive

examples as a reference point, calculating Euclidian distances between points, setting α as

the positives’ mean distance from the centroid, and setting equal weight to every feature. The

performance of the resulting classifier, called IB (instance-based), is presented in Figure 3.

We tested many techniques in addition to those mentioned above. One technique, inspired by

the SMOTE algorithm (Chawla et al. 2002), gave a superior performance. We coined the

technique “SMOTE One-Class Learner” to note our original application of the SMOTE

algorithm to the problem of learning from positive and unlabelled examples (also called one-

class learning). SMOTE’s main novelty is the dual use of data under-sampling and data over-

11 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

 61

sampling.

4.2.2 SMOTE One-Class Learner

The prerequisite for this learning algorithm is for positive examples to be in a minority class

with respect to unlabelled data. When this condition is not met, we simply choose a random

subset of positive examples so that there are fewer in our data set than unlabelled examples.

A SMOTE One-Class Learner can be created by combining any standard supervised learning

classifier (e.g., Naïve Bayes, Decision Trees, etc.) with a pre-processor that under-samples

the unlabelled examples, and over-samples the positive examples to balance the data set prior

to applying the learning algorithm.

The original SMOTE algorithm was effective in forcing focused learning and introducing a

bias towards the minority class (Chawla et al. 2002). Our SMOTE One-Class Learner forces

focused learning on the positive examples that we deliberately assign to the minority class.

The original SMOTE algorithm performs a “wise” minority class over-sampling and a

random majority class under-sampling (Chawla et al. 2002). In the one-class scenario, we

perform an “even” over-sampling of positive examples and a “wise” under-sampling of

unlabelled data. The key to focused learning is the synergy of both types of sampling. We

explain the various data-sampling techniques in the following paragraphs.

Preliminary sampling (if necessary): First, sample a few positive examples and all the

unlabelled examples from the data set. Positive examples are chosen randomly, if necessary,

so that the data set has at least an imbalance ratio of 1:2 positive to unlabelled ratio. Usually,

the data is already highly imbalanced, as with the case of the list generation algorithm’s

initial iteration, wherein we have four positive examples (the initial seed) and thousands of

unlabelled examples (the candidates in quarantine).

Majority class undersampling: The problem with the majority class (unlabelled data) is

that it contains both positive and negative NE examples. The under-sampling strategy

 62

consists of trying to remove positive examples from this pool of examples. We excluded

unlabelled examples corresponding to class noise, which are examples with a feature vector

exactly equal to that of a positive example. We also exclude unlabelled examples with a

Hamming distance of 1 from any positive examples (in other words, they are one feature

away from being class noise).

Minority class over-sampling: Usually, the previous sampling results in an imbalanced data

set. We therefore duplicate the positive examples evenly up to a positive to unlabelled 1:1

ratio.

Reclassify: A standard classification model can be learned using the resulting set of positive

examples and the resulting set of unlabelled examples, acting as negative examples for

classification purpose. In our experiments, we use the RIPPER algorithm (Cohen 1995) that

performs well in the original SMOTE algorithm. The classification model is used to

reclassify the unlabelled examples (the NE candidates). Examples with a positive outcome

are promoted to the list A, while examples with negative outcome are kept in Q.

4.2.3 Evaluation of Lexical Filter

We evaluated the list generation algorithm’s precision and recall with and without the noise

filter. This evaluation is performed on the final list of NEs obtained after 10 iterations.

To evaluate precision and recall automatically, we built NE reference lists by merging lists

from existing NER systems and resources: Gate (Cunningham et al. 2002), MinorThird

(Cohen 2004), Oak (Sekine and Nabota 2004), and MUC-7 reference data12. However, we

only used NE list subsets that were available in a minimum of three systems out of four. We

believe it removes system bias and guarantees more complete references. Indeed, a single

resource is very often biased or incomplete. For instance, only Oak’s list of provinces

contains Japanese province names; only Gate’s list of countries contains the French names of

12 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2001T02

 63

countries; and MUC-7’s list of cities contains 150,000 city names, while other resources

contains less than 5,000 city names. In using lists from three resources, we aim to minimize

bias and maximize completeness in our references. Table 13 presents our reference lists.

Table 13: Reference lists for noise filter evaluation

Type Sources Mean size

First name Gate, Minorthird, Oak ~6,800

City Gate, MUC-7, Oak ~50,000

State/Prov. Gate, MUC-7, Oak ~2,600

Country Gate, MUC-7, Oak ~400

We generated NE lists for the types listed in Table 13, and we calculated standard precision

and recall by looking for exact NE matches between generated lists and reference lists. The

final metric quality is f-measure, which is the harmonic mean between precision and recall.

0

10

20

30

40

50

60

70

F-
m

ea
su

re
 (

%
)

Generated NE list quality for string feature-based filters

Baseline 2.35 17 9.32 18.32

IB 12.03 23.57 21.26 35.51

SMOTE 23.77 36.14 44.84 61.69

first_name city state_province country

Figure 6: Comparing lexical filters

In Figure 6, we report the mean f-measure on the three reference lists. Results are given for

 64

the following classification strategies: Baseline (no noise filter), IB (instance-based, Schwab

and Pohl 1999), SMOTE (SMOTE one-class classifier, Section 4.2.2). An SVM strategy

(Schölkopf et al. 2001) returns very poor results, omitted here. In most cases of our

experiments, an SVM-based filter allows a tiny 0.1% of NE to be promoted from Q to A,

resulting in poor recall.

This experiment shows that the SMOTE One-Class Learner outperforms other techniques for

learning to filter noise based on positive and unlabelled NE examples.

4.3 Information Redundancy Filter

When a noise filter is based on information redundancy (Downey et al. 2005), the intuition is

such that an extraction obtained from multiple, distinct documents is likely more valid than

that obtained from only one.

The information redundancy filter is based on the “balls-and-urns” model from

combinatorics, in which extracting an NE candidate from the Web corresponds to a draw

from an “urn.” Given background knowledge about the content of the “urn,” it assigns the

candidate the probability of being valid given that it has a frequency of k (the number of

times this particular extraction was drawn from the “urn”) and a sample of size n (the

overall number of draws from the “urn”). Candidates with a high probability (e.g., higher

than 90%) are promoted to the NE list.

An urn is characterized by C , the set of valid NEs (C is the number of single NEs in the

urn) and E , the set of errors (E is the number of single errors in the urn). Background

knowledge required to use the model is the size of the NE population C , the size of error

population E , and the accuracy of the p extraction process. As in Downey et al. (2005), the

number of errors E is approximated to 1x106, and the extraction process is said to be

accurate at p = 90%. The high accuracy of the extraction process means that the valid

information in the urn is far more redundant than the noise (even if noise is more frequent).

 65

We approximate the size of an NE population C using the size of its mean in Table 13. For

instance, the number of valid first names is around 6,800. Under some simplifying

assumptions to approximate the distribution of C and E , Equation 1 estimates the

probability of an NE candidate’s validity, given it is seen k times in n draws.

P(x ∈ C | x was seen k times in n draws) ≈

()EC ppn
k

C

E e
p

p

C

E −








+1

1
 (1)

CP , the probability that a particular element of C will appear in a draw, is
C

p
, and EP is

E

p)1(−
. Figure 7 reports the quality of information redundancy compared to the best lexical

filter of Section 4.2. The filters perform at similar

levels.

0

10

20

30

40

50

60

70

F-
m

ea
su

re
 (

%
)

Generated NE list quality for SMOTE and IR

SMOTE 23.77 36.14 44.84 61.69

IR 31.76 25.89 44.44 64

first_name city state_province country

Figure 7: Comparison of lexical filter and information redundancy filter

 66

In preliminary experiments, we verified that the information redundancy model was superior

to using an absolute frequency threshold. One strategy was to use a very simple noise filter

that promotes every candidate with a higher frequency than 2 or 3. However, this strategy

gives poor results, often under the baseline of Figure 6. This is explained by the fact that the

frequency threshold is dependent on the number of valid entities C and the current number

of n draws. For instance, knowing that there are only 200 valid country names, if the

extraction process returns 100,000 candidates, then the frequency threshold must be very

high to filter that amount of noise. Even with highly precise information extraction

techniques (e.g., p = 90%), there would be 10,000 noisy entries and 90,000 repetitions of the

200 valid countries. A candidate repeated four or five time would likely be noise, since we

expect a valid country to be repeated 450 times. In this scenario, the information redundancy

model seems perfectly suited to filter noise.

4.4 Noise Filter Combination

Both the lexical filter and the information redundancy filter can output a probability estimate.

Moreover, they use different sources of information: one is based on the internal properties

of NEs, considered character strings; and the other is based on the external properties of NEs,

derived from their statistical distributions in lists on the Web. We can combine the

probability estimates of the two filters by taking their average. Figure 8 compares the

independent components and their combination.

The combined noise filter probability function (SMOTE+IR) is the weighted sum of the

SMOTE and IR components’ probability functions. Since both components give comparable

performances, we give them equal weight. The combination of both noise filters brings

interesting improvements. For instance, the “country” type performance increases by almost

10%.

 67

0

10

20

30

40

50

60

70

80

F
-m

ea
su

re
 (

%
)

Generated NE list quality for SMOTE, IR and SMOTE+IR

SMOTE 23.77 36.14 44.84 61.69

IR 31.76 25.89 44.44 64

SMOTE+IR 38.48 36.14 47.19 73.2

first_name city state_province country

Figure 8: Comparison of individual filters and their combination

The impact of filtering noise from lists can be measured on the NER task. In Table 14, we

compare performance of BaLIE with unfiltered lists (taken from Table 9) and with filtered

lists (using the combination of noise filters).

Table 14: BaLIE performance on MUC-7 corpus with and without noise filtering

 Without noise filtering With noise filter ing

Type Precision Recall F- measure Precision Recall F- measure

Organization 75 71 73 75 78 76

Person 71 83 77 71 79 75

Location 77 80 78 76 81 78

Text 72 74 73 74 79 76

The immediate impact of noise filtering is not to improve precision on the NER task. Most

noise is well handled, when annotating NEs, by rules such as looking at word capitalization

(heuristic H1, Section 3.2.1). However, the noise filter enables the gazetteer generation

algorithm to run for more iterations and creates larger and cleaner lists. It raises the NER

recall, particularly for the 'organization' type, which has a very large set of possibilities. We

 68

believe that precision errors cannot be addressed by generating larger lists of named entities.

There is rather a need for better disambiguation rules, particularly for resolving entity-entity

ambiguity. This is the aim of experiments described in Chapter 5.

4.5 Statistical Semantics Filter

Statistical Semantics is the study of how the statistical patterns of word usage can be used to

solve problems requiring semantic information. One technique in this field is called “Latent

Relational Analysis” (LRA), and was designed for the classification of semantic relations

between word pairs (Turney 2005). LRA measures relational similarity between two pairs of

words. When two pairs have a high degree of relational similarity, they are analogous. For

example, the pair “cat:meow” is analogous to the pair “dog:bark.”

In this section, we show that LRA can be used as a noise filter for generating NE lists. We

use LRA to measure the relational similarity of pairs made up of an NE candidate NE and its

type (e.g., “London:city,” “John:first_name,” “Canada:country”). LRA lets us measure the

similarity between known valid pairs (e.g., “Boston:city”) and candidate pairs (e.g.,

“Kolkata:city,” “Click Here:city”). For instance, a high relational similarity means that

“Kolkata is to city as Boston is to city.” Conversely, a low relational similarity means that

“Click Here is not to city as Boston is to city.”

The previous filters were based on lexical features and on redundancy information, whereas

a statistical semantics filter uses information on the relation between an NE and its type by

looking at word usage patterns in a large collection of documents. The LRA algorithm we

used in this experiment is similar to that of Turney (2005), using a corpus of one terabyte of

textual data (Terra & Clarke, 2003).

LRA requires much more time to compute than SMOTE (Section 4.2.2) or IR (Section 4.3).

For a lexicon of one hundred entries, LRA usually takes up to five minutes to run. Our

lexicons will often exceed 100,000 NE candidates. For practical reasons, we apply LRA

outside the list generation process of Figure 1. Instead of integrating LRA into the iterative

 69

algorithm, we use it as a post-processing filter applied to the final NE list, obtained after all

iterations.

Our goal is to model the relations between known valid word pairs (the seed words), and to

measure the similarity of the modeled relation with that of the NE candidate. We use it in

two approaches: one for demoting NE that were added to the NE list; and one for promoting

NE that were kept in the quarantine. These approaches follow the steps described in the next

paragraphs.

First, a passage-retrieval search engine is used on a 1Tb textual data corpus (Terra & Clarke,

2003) to find passages where a word and its type (e.g., “Prague” and “city”) appear with a

maximum of three intervening words.

Generalizations of all passage are generated and listed. Passages (e.g., “Prague is a city”) and

generalizations of passages (e.g., “Prague * a city”) are called “patterns.” A pattern is

constructed by replacing any or all or none of the intervening words with wild cards (one

wild card can only replace one word).

Total pattern frequencies for all NEs under examination are smoothed using entropy and log

transformations (Landauer and Dumais 1997).

Singular value decomposition (SVD) is performed on a matrix made up of word pairs and

associated patterns. SVD compensates for the sparseness of the matrix.

Resulting matrix rows associated with word pairs are used as vectors to compute a similarity

value based on vector cosine. Given two word pairs, the similarity of their associated rows is

therefore computed using the cosine of the angle between the rows. Each candidate pair is

compared to the seed pairs. The relational similarity is the mean of similarity between a

candidate pair and each seed pair. The idea is to keep word pairs analogous to NE seeds by

setting a threshold on the relational similarity. In our experiment, the threshold we use is the

minimal similarity found by comparing each of the seeds against one another.

 70

During a first approach, all NEs from the list are compared to the seed, and those that are not

analogous are demoted and returned to the quarantine. In a second approach, all candidates

from the quarantine are compared to the seed and the analogous candidates are promoted to

the final NE list.

We applied the statistical semantics filter on the output of the list generation process that

uses the SMOTE+IR filter. The resulting list quality improves for two NE types out of four.

For the “state/province” and “city” types, there is no statistically significant change. The

improvement for “first name” and “country” types is mainly attributed to the second

approach (promotions) and brings a recall gain. The respective f-measures rise to 39.23%

and 73.51%. The improvement is slight yet statistically significant.

We believe the statistical semantics filter is able to capture very difficult cases of noise such

as concept drift (e.g., a continent name appearing in list of countries; a full name appearing

in a list of first names), as well as highly redundant noise (table headers such as “country,”

“population,” etc.). However, we require further investigation and experiments to better

understand LRA’s contribution to noise filtering.

4.6 Conclusion

Generating NE lists using a semi-supervised learning technique applied on large collections

like the Web is a noisy process. Filtering noise early on is essential since bootstrapping

algorithms use knowledge of a given iteration to extract new knowledge at the next iteration.

In this research, we look at three noise-filtering techniques. Our main contribution is the

development of a lexical filter that classifies NE candidates according to surface cues like

capitalization, punctuation, etc. We compare and combine this to a noise-filtering technique

based on information redundancy. We show that combining both filters performs better than

using any of them in isolation. In the final experiment, we demonstrate the use of a statistical

semantics filter making use of the LRA algorithm. This last experiment had a slightly

 71

positive outcome, and most of our future works will aim at better integrating and

understanding the use of statistical semantics in the NE list generation algorithm.

Successfully generating large NE lists is a key component in semi-supervised NER. Such

technology will enable autonomous deployment of NER systems, as well as automatic

maintenance of existing systems

 72

Chapter 5

Discovering Unambiguous NEs for Disambiguation Rule Generation

In this chapter, we put forth a second BaLIE improvement. In the baseline system (Chapter

3), ambiguity between two entity types (e.g., “France” is either a country or a person) is

resolved only if there is a very strong cue for one entity type in its alias network (e.g., the

unambiguous passage “Ms. France Beaudoin” appears in the text). This is rarely the case.

We improved the resolution of this ambiguity by learning disambiguation rules that are

applicable to any textual passage. This way, an entity-entity ambiguity can be resolved even

without an alias network (Section 3.2.3). If such a network exists, each instance of a

resolution can contribute to the final decision.

NE ambiguity resolution is not novel. Many techniques were proposed in supervised learning

settings using classifiers (e.g., Sekine 1998 decision tree) and sequence-labelling techniques

(e.g., Bikel et al. 1997 HMM). However, in a semi-supervised learning setting, this presents

more challenges. Cucerzan and Yarowsky (1999) proposed an algorithm, and highlight that

the general precondition for building a semi-supervised NE ambiguity resolution system is

the need for unambiguous NE examples. Manually listing unambiguous NEs is a bottleneck

in this kind of system. Our contribution is the following:

• The demonstration of a simple strategy based on set intersection, which helps

identify unambiguous NE examples.

This chapter presents an improvement for the “Rule learner” module of Figure 1 that serves

the purpose of the “Classify” step of McDonald’s (1993) paradigm. Figure 9 details the

process of training and evaluating disambiguation rules.

An NE is unambiguous if its label refers to only one object. Examples of ambiguous NEs are

common: “Apple” refers to a company as well as a fruit; “Chicago” refers to a city and a

musical, etc. Finding unambiguous NEs is a difficult task because examples that may seem

unambiguous at first (e.g., Nevada, Vancouver, etc.) often turn out to be ambiguous due to

 73

the broad range of certain entity types, such as brands (e.g., “Nevada” is a Sears Canada

clothing brand), and linguistic phenomena, such as metonymy (e.g., “Vancouver” also stands

for the “Vancouver Canucks” hockey team).

Figure 9: Details of training disambiguation rules in a semi-supervised manner

We present a technique that can identify the unambiguous NE in a list. The idea is that

Training the system

(semi-supervised learning)

Testing the system

(actual use and evaluation)

Rule learner (from Figure 1):

Input : generated lists

of named entities

Identification of

unambiguous examples

Intermediate: unambiguous

examples of named entities

Finding passages of these entities

on a Terabyte-sized corpus

Output : family of binary

classifiers

Learning disambiguation rules

for each possible pair of NE type

Classify: hard-coded rules

Input : annotated document

(ambiguity not resolved)

Output : annotated document

(ambiguity partially resolved)

Classify: apply binary classifiers

From training : family of

binary classifiers

 74

unambiguous NEs can be used to automatically generate training data for NE disambiguation

(Cucerzan & Yarowsky 1999).

This chapter is built on the hypothesis that the set differences of automatically generated

multiple gazetteers are a set of unambiguous NEs. That is, if an NE appears in exactly one

gazetteer, given a large set of gazetteers, then we assume that the NE is unambiguous. It may

sound simple, but testing this requires extensive linguistic resources.

In Section 5.1, we present related work in the NER field wherein unambiguous NEs are

collected and used for various tasks. In Section 5.2, we describe the result of a massive

gazetteer generation for 100 NE types. In Section 5.3, we measure and qualify the ambiguity

between NEs. In Section 5.4, we explain how to create disambiguation rules from

unambiguous NE examples. Then, in Section 5.5, we put forth a framework for evaluation

that supports our hypothesis, which states that the set differences of automatically generated

multiple gazetteers are a set of unambiguous NEs. Section 5.6 presents the conclusion.

5.1 Related Work

Unambiguous NEs are discovered and used to develop baseline NER systems for

benchmarking (Mikheev et al. 1999), as well as features in standard NER systems (Szarvas

2006). A baseline system can be created by tagging all NEs in a training data set, and by

removing the ambiguous NEs that appear under more than one type. The remainder is used

to search for an exact match in the unambiguous list, then to tag a test corpus. This

technique is known as “supervised learning,” since the NE list is derived from annotated

data. In our work, we do not use annotated data.

Unambiguous NEs are also used in related work by Cucerzan and Yarowsky (1999). It

begins with a small seed of unambiguous NE examples to bootstrap a larger set of NEs

paired with sense-disambiguation rules. This technique falls into the semi-supervised

systems category, but it requires manually feeding the system with unambiguous examples

listed by an expert linguist. Our technique identifies unambiguous NEs automatically.

 75

A popular technique to identity ambiguity in NE lists consists of applying the set intersection

operator between an NE list and a general dictionary (e.g., Mikheev 1999). It is mainly used

to disambiguate ambiguous common-noun NEs (e.g., “Apple”). In our work, we address

both entity-noun ambiguity and entity-entity ambiguity (e.g., “Chicago”).

Identifying unambiguous NE using set differences of automatically generated multiple

gazetteers is novel for three reasons:

1. Our technique is not based on analysis of annotated data;

2. We eliminate the constraint of manually finding unambiguous NE examples;

3. We address entity-entity ambiguity.

5.2 Massive Generation of NE Lists

We generated NE lists for the 100 types specified in the Appendix. Our choice of type is

influenced by Sekine’s hierarchy (Sekine and Nobata 2004) and the BBN corpus13. The

following table demonstrates statistics for all these types. We included the overlap

measurement between BaLIE and Oak lexicons (Sekine and Nabota 2004) calculated as the

number of named entities belonging to both lexicons. Oak is a handmade NE system of

lexicons and rules.

Table 15: BaLIE and Oak lexicon comparison

Type

BaLIE lexicon

size

Oak lexicon

size Overlap size

first_name 40,000 7,000 4,852

last_name 6,700 82,000 3,334

person_title 15 7 6

celebrity 6,600 1,400 226

title 915 121 25

character 1,600 3 2

company 27,200 13,900 3,125

13 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2005T33

 76

military 32 502 1

association 1,700 568 65

government 1,300 1,700 406

political_party 430 987 23

nationality 285 161 99

market 243 56 43

sports_team 163 288 123

city 15,500 1,300 1,144

state_province 1,600 393 188

country 1,000 777 610

county 867 1,700 867

region 548 1034 44

landform 74 2,500 0

river 1,100 2,800 506

sea 138 8 6

planet 17 10 10

star 310 84 35

cathedral 25 2 1

school 3,600 4,800 2,375

museum 2,800 4,300 1,153

airport 580 7,500 256

port 155 2 2

library 159 14 2

road 313 2 1

bridge 78 2 1

station 64 5 2

railroad 404 2 0

amusement_park 300 3 2

monument 67 2 1

car 961 33 6

ship 1,300 736 72

train 20 5 1

aircraft 53 731 2

spaceship 179 47 24

opera_musical 238 259 78

song 5,900 1 1

sculpture 57 1 1

broadcast 2,400 10 4

movie 327 654 42

book 2,000 52 12

newspaper 1,300 1,700 419

magazine 125 107 35

 77

weapon 259 9 2

drug 5,300 14,800 437

food 130 3 2

game 243 42 2

war 145 57 21

crime 351 5 1

conference 41 23 4

mammal 99 4 4

mineral 139 30 23

disease 1,400 1,200 547

religion 166 3 3

colour 25 4 4

language 127 2 1

award 226 317 12

sport 189 3 1

academic 80 3 3

rule 213 869 10

theory 121 161 2

total 141,000 157,000 21,312

Overlap in Table 15 should not be interpreted as an evaluation of the BaLIE lists’ quality.

Rather, it gives an idea of the intersection between the BaLIE and Oak lexicons. In addition,

BaLIE handles 29 NE types that are not implemented in Oak. Table 16 reports these types

and the size of each list.

Table 16: Additional BaLIE lexicons

Type Lexicon size

vocation 1,700

political_line 19

religious_group 300

lake 600

ocean_bay 20

continent 8

amphitheatre 271

castle 16

skyscraper 142

sport_place 251

hotel 13

hospital 25

 78

park 55

painting 73

food_brand 663

clothing_brand 799

holiday 41

hurricane 138

insect 73

sea_animal 170

fish 45

reptile 15

bird 202

vegetal 20

measure 67

currency 83

month 22

weekday 14

god 15

Total 5860

5.3 NE Ambiguity

Here, we observe automatically generated NE lists. In Section 5.3.1, we manually qualify

ambiguity by finding its source in four important entity types. In Section 5.3.2, we quantify

ambiguity levels in generated lists to highlight the proportion of ambiguous entities, as well

as the most and least ambiguous entity type.

5.3.1 Qualifying Ambiguity

We looked at ambiguity in four important NE types: first name, city, clothing brand, and

song. We chose these entity types because they have high cardinality, and also because they

intuitively exhibit different kinds of ambiguity. We randomly sampled 100 elements from

these lists and queried a passage-retrieval search engine, which leveraged 1Tb of data (Terra

& Clarke 2003). For each entity, we retrieved up to 50 textual passages, for a total of up to

5,000 passages per entity type. When 50 passages of an entity refer to the correct type

(manually verified), the entity is considered unambiguous. If one or more passages refer to

the wrong type or to something else, the entity considered ambiguous. This criterion is more

 79

rigorous than that of Szarvas et al. (2006), which consider an entity unambiguous if it has the

same sense 90% of the time in a training corpus. In the following table, we qualify the

ambiguity between entity types.

Table 17: Source of ambiguity between entity types

Source of ambiguity First name City Clo thing

brand

Song

No ambiguity 38% 48% 23% 39%

Common noun/phrase 3% 4% 11% 47%

First name N/A 6% 2% 1%

Last name 34% 13% 16% 1%

Full name 5% 1% 38% 3%

City 6% N/A 1% 1%

State - 3% - -

County 2% 4% - -

Country - 6$ - -

Company 4% 2% 2% 2%

Street 5% 2% - -

Prayer 1% - - -

Product 1% 1% - -

Tree - 2% - -

Car - 1% - -

Sports team - 3% - -

Nationality - 1% - -

Scientific journal - - 1% -

Lake - - 1% -

Dance - - 1% -

National Park - - 1% 1%

Award - - 1% -

Hotel - - - 2%

Book - - - 1%

Movie - - - 1%

The surveyed entity types show high levels of ambiguity: 52% (city) to 77% (clothing brand)

of all NE instances were ambiguous. First names are predominantly ambiguous with last

names (e.g., Frank, Isabel, Matthews, Robert), full names (e.g., Robert William, Sarah Jane,

etc.), cities (e.g., Carlton, Clarinda, Orlando, etc.), companies (e.g., Nielsen, Sierra), and

 80

street names. Streets are often named after people, and while they often contain street

markers such as “Drive” or “Avenue,” metonymic references render them completely

ambiguous (e.g., “…go to the Carol Sue intersection (third stoplight). Turn left…”).

Approximately half of cities are non-ambiguous. Therefore, in NER, one city out of two can

be recognized in a simple lexicon look-up. Ambiguity is mainly identified in last names (e.g.,

Branson, Laval, Nurnberg), common nouns (e.g., cork, little rock), and countries (e.g., Texan

city “Italy,” Mexico’s capital “Mexico city”).

Clothing brands are highly ambiguous because of the tendency to name brands after the

designer’s full name (e.g., Christian Dior, Tommy Hilfiger, Ralph Lauren) or last name (e.g.,

Armani, Puma, Gant). Clothing brands also often use common nouns (e.g., Fossil, Iceberg,

Polo). There are also some interesting ambiguities such as “Joop” (clothes and perfumes) and

“JOOP” (Journal of Object-Oriented Programming).

Finally, songs are unique due to their broad intersection with common nouns and phrases

(e.g., “Black velvet,” “Crazy,” “Don’t be cruel,” “On the road again,” “Satisfaction,” “You

really got me”). Songs can also be named after people (e.g., “Billie Jean,” “Gloria”) and,

interestingly, we identified ambiguity with hotel names (“Heartbreak Hotel,” an Elvis

Presley song that is also the name of numerous hotels worldwide, in Graceland, Florida, and

more). However, we found no ambiguity with the song “Hotel California” in our sample.

An interesting conclusion can be drawn from these observations: most ambiguities can be

identified by intersecting NE lists. In the Table 17, only 3 entities out of 400 are ambiguous

with an NE type outside of BaLIE: a first name that also describes a kind of prayer (Marian:

“…of the most popular Marian prayers of the Western…”); a clothing brand that is also the

name of a scientific journal (JOOP: “…Dr. Dobb's Journal, JOOP…”); and a clothing brand

that also describes a kind of dance (Samba: “…just heed a Samba rhythm, carried north

on…”).

 81

5.3.2 Quantifying Entity-Entity Ambiguity

In this section, we demonstrate the proportion of entity-entity ambiguity per type. Table 18

presents the entity types sorted from the most to the least ambiguous.

Table 18: Percentage of entity-entity ambiguity per type

Type

Ambiguity

(%) Type

Ambiguity

(%) Type

Ambiguity

(%)

language 93.60 ship 22.32 celebrity 8.21

nationality 74.81 religion 21.85 railroad 8.10

country 70.16 food_brand 21.68 song 8.03

last_name 61.58 city 21.20 drug 7.44

state_province 60.09 first_name 19.76 sports_team 6.45

god 60.00 monument 19.70 road 6.42

planet 58.82 food 18.60 bridge 6.15

mammal 56.57 mineral 17.99 spaceship 5.75

region 54.28 political_line 17.65 crime 5.42

religious_group 51.28 broadcast 16.43 train 5.00

weekday 50.00 bird 16.34 award 4.95

colour 50.00 star 16.12 association 4.54

fish 48.33 aircraft 15.69 cathedral 4.00

currency 47.06 ocean_bay 15.38 rule 3.57

month 45.71 government 15.37 military 3.33

sea_animal 44.31 game 15.00 disease 2.97

measure 42.42 war 14.50 market 2.88

reptile 42.11 station 14.29 theory 2.67

magazine 41.53 book 14.11 car 2.09

movie 38.54 castle 12.50 park 1.75

clothes 37.89 title 12.28 museum 1.68

opera_musical 36.91 sculpture 12.28 sports_place 1.65

vegetable 35.00 lake 11.53 skyscraper 1.49

person_title 33.33 weapon 11.22 port 0.67

sea 32.56 river 10.97 school 0.22

character 30.78 painting 9.59 county 0.00

academic 28.85 library 9.47 continent 0.00

amphitheatre 27.71 company 9.31 airport 0.00

holiday 27.50 newspaper 8.73 hotel 0.00

insect 24.66 landform 8.70 hospital 0.00

sport 24.54 amusement_park 8.70 hurricane 0.00

vocation 23.35 political_party 8.29 conference 0.00

 82

Ambiguity is measured by the intersection of a type with all other types. Intersecting names

must exactly match so that the airport “Toronto Lester B Pearson International Airport” is

not ambiguous with the city “Toronto” or the person “Lester B Pearson”. An ambiguity of

93.6% means that 93.6% of the type’s instances intersect with an instance of another type.

Two problems arise from analyzing this table. First, some types intersect heavily. This is the

case for the “language” and “nationality” types, as well as “planet” and “god,” which share

lot of elements naturally (there’s a fuzzy line between languages and nationality; planets are

named after Roman deities). This is also the case where slight concept drifts bring lot of

ambiguity. For instance, the “region” and “country” types can share lot of island names.

The second problem is the inconsistency between the level of ambiguity in Table 18 and that

which is calculated in Table 17 of the previous section. For instance, the manual ambiguity

analysis revealed that 59% of first names, 48% of cities, 66% of clothing brands, and 14% of

songs are ambiguous with elements of another entity type (excluding ambiguity with

common nouns and phrases). The intersection of lists allows us to identify, respectively,

19.76%, 21.2%, 37.89%, and 8% of ambiguity. This is approximately half of the manually

assessed ambiguity. We believe the main reason for this discrepancy is the recall of BaLIE

lists versus the true extension of entity lists.

5.4 From Unambiguous NE to Disambiguation Rules

Cucerzan and Yarowsky (1999) demonstrate that disambiguation rules can be learned from a

set of unambiguous NEs. Their semi-supervised learning technique illustrates the problem of

learning from positive examples. In this section, we show that we can greatly disentangle the

problem by using heuristics and classical binary classification exclusively. On the one hand,

we can resolve a great deal of noun-entity ambiguity with simple capitalization constraints as

outlined by the Mikheev (1999) technique (see Section 3.2.1). On the other hand, given an

ambiguity between two or more types, we can create one or many Boolean classifiers made

of positive examples of one type against those of another type. In the following sections, we

 83

present the experimental set-up for entity-entity disambiguation.

5.4.1 Entity-Entity Disambiguation Rules

Disambiguation is required when an entity is described by two or more NE types. Let’s

examine a case with two ambiguous types. A scenario with more than two types is covered in

the next section.

A Boolean classifier is built using positive examples of two entity types under examination.

Positive examples of a given type are found by querying a passage-retrieval search engine

(Terra & Clarke, 2003) with unambiguous NE instances. These unambiguous NEs are found

by removing entities that intersect with any other type. According to our hypothesis, the

retrieved passages are therefore positive examples of a correct NE type in its context.

We chose to build classifier similar to the baseline system aimed at word sense

disambiguation (WSD) called “Duluth 6” (Pedersen 2002). Duluth 6 is an ensemble of naive

Bayes classifiers trained on different sets of features. A first classifier uses word unigrams in

the context of the ambiguous word. A second classifier uses word bigrams in the context of

the ambiguous word. A third classifier uses word unigrams adjacent to the ambiguous word.

The context of an ambiguous word is made of ten words on its left and ten words on its right.

Above and beyond Duluth 6, we added a fourth classifier that uses features of the present

NEs in the context of the ambiguous words. For example, “Dell” is ambiguous between a

person and a company name. In the phrase “Michael Dell”, the fourth classifier would use

the information that “Dell” is preceded by a known first name. This additional classifier is

based on the common assumption (e.g., Carreras et al. 2003) that contextualized NEs can

predict other NEs (e.g., a last name usually follows a first name, city and state names are

commonly co-occurring; the enumeration of entities is a strong indicator of other entities,

etc.). Carreras et al. use predicted entities in “left context,” which are entities that the system

has already identified and classified. Conversely, we opted to use every entity type candidate

from both sides by searching the lexicon, and by not resolving potential ambiguity.

 84

Problem with prior probabilities

The training data that we develop from unambiguous NE is not representative of the real

distribution and importance of entities. For instance, we have very few examples for the

language type because the vast majority of it is considered ambiguous. In a naive Bayes

classifier, the impact on prior probabilities can be severe. To work around the problem, we

created perfectly balanced data sets in accordance with the entity under examination with the

fewest examples. For instance, since we only have 200 examples of sentences with an

unambiguous language, we create classifiers for ambiguous languages (e.g., language-

nationality, language-country) by sampling 200 examples from the other NE type.

There are some semi-supervised strategies that could be used to approximate the real prior of

each class, but we report on this in the section of Chapter 7 on future work.

5.4.2 Entity Ambiguity for More Than Two Types

When there are more than two possible types for a given entity (e.g., “Murray” can be a first

name, a last name, a city, and a river), we apply a round-robin technique (Fürnkranz 2002).

This consists of evaluating the outcome of all possible pairwise classifiers, summing up

victories, and guessing the class with the most victories. A random decision is used to break

ties.

5.4.3 Entity-Entity Classifier Cross-Validation

We proceed to the classifier evaluation using 10-fold cross-validation on the training data.

This is not equivalent to the classifier evaluation in the extrinsic NER task, a topic covered in

Section 5.5. In the following table, we demonstrate the accuracy of the classifiers compared

to random guesses. The result of random guessing always tends toward 50% accuracy

because of our balanced data set.

 85

Table 19: Accuracy of entity-entity classifiers

 Binary classifier Accuracy (%)

Worst classifier currency–measure 65.05

Median classifier state_province–amusement park 82.69

Best classifier drug–person title 93.38

The mean accuracy is 82.40% and the standard deviation is 4.79%. We can identify three

groups of classifiers: weak, medium, and strong. Weak classifiers give a range of 65 to 70%

accuracy. Examples include currency vs. measure, sculpture vs. painting, movie vs. book,

fish vs. sea animal, and movie vs. broadcast. The low accuracy is understandable and almost

pardonable because of the examples’ close conceptual proximity. Some weak classifiers also

occur when the training data is insufficient, particularly when the “language,” “god,”

“planet,” or “mammal” types are in paired. Being highly ambiguous (see Table 18), these

types have small lexicons (see Table 15 and Table 16), thus resulting in very small training

data.

The majority of classifiers perform at a level between 78 and 87%. There is no significant

property that distinguishes these classifiers, so we hypothesize that the size of the data set

and the difficulty of the task account for the variation in accuracy level.

Finally, there is the group of strong classifiers with accuracy ranging between 90 and 94%.

Examples include drug vs. person title, association vs. celebrity, clothes vs. spaceship, car vs.

city, railroad vs. government, and song vs. museum. Interestingly, most of these classifiers

involve types that are considered among the least ambiguous (see Table 18). We believe this

aptly supports the conclusion of Cucerzan and Yarowsky (1999), stating that unambiguous

NEs can create accurate classifiers.

5.5 Experiments on the NER Task

In this section, we proceed with the NER task’s extrinsic evaluation of disambiguation rules.

The BaLIE system design is unchanged with respect to Chapter 3, except for the addition of

the noise filter of Chapter 4. However, instead of four entity types, 100 are supported. We

 86

believe that one direct impact of this capability scaling is a performance drop for individual

entity types. More entity types mean more ambiguity and, therefore, more disambiguation

decisions. Where “Chicago” was unambiguously classified as a location, it must now be

checked against the “musical” type. Where “David” was unambiguously classified as a

person, it must now be checked against the “sculpture” type. Same for “Layla,” which could

be a song, or “Queen Elizabeth,” which could be a ship, and so forth.

In the following sections, we compare the system with and without disambiguation rules.

The version without disambiguation rules is equivalent to the system described in Chapter 3.

In case of ambiguity, the heuristics of Section 3.2.2 are applied. The version with

disambiguation rules is the same system plus the ambiguity classifiers.

We first evaluate the system on the MUC-7 corpus. This is directly comparable to results

obtained in Section 3.3. Then, we evaluate BaLIE on the CONLL-2003 English corpus. This

data set contains the classic MUC enamex (person, location, organization) as well as a

“miscellaneous” type used for most NE types outside enamex. In a third evaluation, we

evaluate the BBN data set, which is much more fine-grained than other corpora.

5.5.1 Evaluation on MUC-7 Corpus with the MUC Scorer

Let’s first report the results of Section 3.3. The MUC scorer has the particularity of allowing

partial matches (e.g., the organization “New York Times News Service” is considered

correctly identified even if the system tags “New York Times,” for instance). We present

results for the three enamex types as well as the special “text” row, reporting the proportions

of exact matches for all types. These results are extracted from Table 9 of Chapter 3.

 87

Table 20: Three-type BaLIE performance on MUC-7 corpus

Type Precision Recall F- measure

Organization 75 71 73

Person 71 83 77

Location 77 80 78

Text 72 74 73

Now, here are the results for 100-type BaLIE run with and without disambiguation rules. The

portion without disambiguation rules is extracted from Table 14 of Chapter 4.

Table 21: 100-type BaLIE performance on MUC-7 corpus with and without rules

 Without rules With rules

Type Precision Recall F- measure Precision Recall F- measure

Organization 75 78 76 75 80 77

Person 71 79 75 76 82 79

Location 76 81 78 80 84 82

Text 74 79 76 74 79 76

The left-hand side of the table shows results that are consistent with experiments in Chapter

3. There are two main performance variations: a rise in recall for the organization type and a

drop in recall for the person type. We believe the rise for the organization type is caused by

having many more organization subtypes than in Chapter 3 (e.g., associations, government,

military, sports team, political party, market, etc.). Conversely, the person type has fewer

new subtypes and may be prone to higher ambiguity potential, as discussed in the

introduction.

On the right-hand side, we report improvements when using disambiguation rules. All types

benefit from a better recall, which means ambiguous entities that were misclassified by

Chapter 3 heuristics are now recovered. Moreover, precision for the person and location

types is significantly improved, which means a lot of ambiguous entities that were classified

by default are now discarded.

 88

5.5.2 Evaluation on CONLL-2003 English Corpus with the CONLL Scorer

CONLL-2003 is a difficult data set in comparison to MUC-7. It particularly consists of much

sports news, where results and standings are given in batches, as in Figure 10. In the CONLL

corpus, city names in a sports context are annotated as organizations (e.g., “Hartford” stands

for the “Hartford Whalers” organization).

 League games on Thursday (home team in CAPS) :
 Hartford 4 BOSTON 2
 FLORIDA 4 Ny Islanders 2

Figure 10: CONLL corpus metonymic references

These metonymic references were all incorrectly annotated by our system. They account for

as many as 700 occurrences and roughly 20% of precision errors for the location type and

20% of recall errors for the organization type. Complete results are provided in

Table 22.

Table 22: BaLIE's performance on the CONLL corpus

Type Precision Recall F- measure

Person 49.50 52.10 50.77

Location 65.49 72.71 68.91

Organization 43.26 51.27 46.93

Miscellaneous 61.37 52.35 56.50

These are very consistent with MUC-7 results, since the CONLL scorer only considers exact

matches to be successful (see Section 2.6.2). Therefore, the absolute scores are pessimistic

compared to MUC-7.

The following table presents a comparison of BaLIE macro-averaged measures with the

CONLL baseline, and with the best supervised system. We report BaLIE results without

disambiguation rules in the first row. Even with the rules, our system performs slightly

below the baseline. This could be due to the very large proportion of metonymic references

in CONLL. A supervised system could easily learn this problem since we noted that all city

 89

names followed by a number are classified as organizations.

Table 23: System comparison on CONLL corpus

System Precision Recall F- measure

BaLIE (without rules) 51.23 54.25 52.70

BaLIE (with rules) 54.90 57.11 55.98

Baseline 71.91 50.90 59.60

Best supervised 88.99 88.54 88.76

The disambiguation rules improve both precision and recall, which compares to observed

rises on the MUC corpus. BaLIE performs slightly under the baseline, but would outperform

it if metonymic references were disregarded. The best supervised system (Florian et al. 2003)

is far better on the CONLL task, but may over-fit the corpus. For instance, in the online

demo of a system trained on CONLL, city names followed by a small digit are often

recognized as organizations.

5.5.3 Evaluation on the BBN Corpus with the CONLL Scorer

We evaluated BaLIE on the BBN corpus, which was designed for the task of question

answering, but annotated with NEs. However, we found no published NER experiment or

baseline for this corpus in the literature. As well, we decided not to create a baseline system

because no training and split-testing are defined.

The BBN corpus contains NE annotations for 64 types and subtypes. By design, we do not

handle numex and timex types, so we excluded them from evaluation. In this corpus, most

entity types are paired with a “description” type such as “ORGANIZATION: DESCRIPTION”

(e.g., the firm, the newspaper, a library, the hospital, etc.) In the passage, “The Citizen is a

newspaper”, “Citizen” is annotated as an “ORGANIZATION” while “newspaper” is a

“ORGANIZATION: DESCRIPTION”. We excluded “description” types that may be useful

for co-refence resolution, but that are not real named entities. Finally, we do not report

results for types with zero or very few instances in the corpus (e.g., ORGANIZATION: HOTEL,

WORK_OF_ART: PAINTING). In all, we report results for 30 types.

 90

Table 24: BaLIE's performance on BBN corpus

 Without rules With rules

Type Precision Recall F- measure Precision Recall F- measure

PERSON 50.81 60.71 55.32 55.50 63.20 59.10

LANGUAGE 23.46 22.62 23.03 26.98 20.24 23.13

NORP: NATIONALITY 76.75 69.64 73.02 76.43 70.60 73.40

NORP: RELIGION 46.07 46.59 46.33 69.31 48.89 57.33

NORP: POLITICAL 83.58 33.09 47.41 85.23 33.23 47.82

FAC: BUILDING 57.69 9.74 16.67 57.69 9.74 16.67

FAC: AIRPORT 84.21 47.06 60.38 84.21 47.06 60.38

FAC: HIGHWAY_STREET 2.89 4.31 3.46 3.51 5.17 4.18

ORGANIZATION: GOVERN 73.74 33.12 45.71 74.65 33.14 45.90

ORGANIZATION: CORPOR 55.71 49.47 52.41 57.73 51.59 54.49

ORGANIZATION: EDUCATI 77.06 35.79 48.88 77.46 36.61 49.72

ORGANIZATION: MUSEUM 6.98 42.86 12.00 7.06 42.86 12.12

ORGANIZATION: POLITIC 25.30 10.17 14.51 25.30 10.17 14.51

ORGANIZATION: HOSPITAL 50.00 4.35 8.00 50.00 4.35 8.00

ORGANIZATION: OTHER 17.31 6.06 8.97 18.18 6.22 9.26

GPE: COUNTRY 79.50 78.05 78.77 79.98 76.12 78.00

GPE: CITY 52.29 64.32 57.68 55.41 65.26 59.93

GPE: STATE_PROVINCE 59.37 56.46 57.88 59.55 59.50 59.52

LOCATION: RIVER 17.07 35.90 23.14 16.45 64.10 26.18

LOCATION: LAKE_SEA_OC 27.54 23.75 25.50 27.78 25.00 26.32

LOCATION: REGION 15.88 10.84 12.88 38.10 15.21 21.74

LOCATION: CONTINENT 56.46 83.59 67.40 56.46 83.59 67.40

LOCATION: OTHER 31.31 17.13 22.14 42.67 17.68 25.00

PRODUCT: WEAPON 13.33 9.52 11.11 11.11 9.52 10.26

PRODUCT: VEHICLE 19.35 9.42 12.68 26.06 9.69 14.12

EVENT: WAR 55.81 51.06 53.33 55.81 51.06 53.33

EVENT: HURRICANE 98.28 54.81 70.37 98.28 54.81 70.37

EVENT: OTHER 38.46 20.45 26.71 37.19 20.45 26.39

SUBSTANCE: DRUG 43.15 18.22 25.62 45.45 18.22 26.02

DISEASE 41.61 17.98 25.11 41.61 17.98 25.11

Most evaluated types provide a good performance estimate for the NER task. For some

types, however, the BBN corpus contains annotations for both NEs and entity descriptions.

This is the case with the “SUBSTANCE: DRUG” type, for which references to unnamed

drugs (e.g., drug, pill, medicine, narcotic, vaccine, hormone) are annotated. It accounts for

approximately 312 occurrences out of 439 (71%), and it clearly explains our system’s low

 91

recall in this case.

5.6 Conclusion

In this chapter, we demonstrated how to learn disambiguation rules in a semi-supervised

manner. The technique is based on identifying unambiguous NE examples using a textual

corpus to constitute a data set of unambiguous passages. Our hypothesis is that the set

differences of a very large number of NE types are sets of unambiguous examples. This is

interesting because it is not based on annotated data analysis, it eliminates the constraint of

manually finding unambiguous NE examples, and it addresses entity-entity ambiguity.

We demonstrated the validity of the hypothesis using two means. First, we manually verified

the source of ambiguity for four important NE types. We observed that most ambiguities can

be identified by intersecting NE lists. From the 400 examples we checked, only three fell

outside BaLIE’s 100 NE types. Second, we tested the system with and without

disambiguation rules on three standard NER data sets. We showed that using disambiguation

rules learned in a semi-supervised manner always significantly improves the system’s

performance. We claim that only rules learned from unambiguous examples can provide this

improvement.

The disambiguation rules we created take the form of pairwise classifiers for each possible

entity-entity ambiguity. We implemented well-known baseline strategies from the word-

sense disambiguation field. A classifier relies on contextual evidence, such as preceding and

following words, and the presence of other entities. We calculated that the majority of entity-

entity classifiers perform within a range of 78 to 87% accuracy.

A problem with our technique is the lack of prior probability for NE types. In artificially

creating a data set of textual passages, the distribution of examples is arbitrary. For instance,

most “languages” are ambiguous with most “nationalities.” For these two entity types, we

can retrieve a limited number of passages since unambiguous NEs are rare. We discuss this

issue in the thesis conclusion in greater detail.

 92

Chapter 6

Detecting Acronyms for Better Alias Resolution

In this chapter, we present the third improvement to BaLIE. This improvement falls into the

category of the “less common and very difficult problems,” a sign that the NER field is

maturing. Recently, much attention has been given to problems such as metonymy (e.g.,

when “New York” stands for the “New York Yankees” organization), which represents a

fraction of the errors committed by NER systems, but requires advanced algorithms to be

resolved. Another problem is acronym detection. Indeed, it is necessary to identify acronyms

and their expansions (e.g., “NY” and “New York”) in text to fully benefit from alias

resolution. Our contribution is the following:

• The development of an acronym-detection algorithm that outperforms previous

art.

This chapter presents an improvement for the “Alias network” module of Figure 1 that serves

the purpose of the “Record” step of McDonald’s (1993) paradigm. An acronym and its

expansion are indeed aliases of a given named entity. The use of acronyms within BaLIE is

illustrated in Figure 11. We present a supervised learning solution to acronym detection. It is

however trained once for every acronym, and the model is not dependant on a specific

named entity type or the named entity recognition task itself. The trained system can then be

added to the BaLIE alias-resolution algorithm, as explained in Section 6.6.

Acronym identification is the task of processing text to extract pairs consisting of a word (the

acronym) and an expansion (the definition), where the word is the short form of, or stands

for, the expansion. For instance, in the sentence, “The two nucleic acids, deoxyribonucleic

acid (DNA) and ribonucleic acid (RNA), are the informational molecules of all living

organisms,” there are two acronyms, “DNA” and “RNA,” along with their respective

definitions, “deoxyribonucleic acid” and “ribonucleic acid.” In this work, we do not

discriminate between acronyms (short forms of multi-word expressions) and abbreviations

(contractions of single words). We use the term “acronym” to signify both.

 93

Figure 11: Details of acronym identification as a component of the alias network

The task of identifying acronyms can be extended in many ways. It is possible to try to

resolve acronyms even when there are no explicit definitions in the text. For instance, the

familiar acronym “HIV” will often appear without being defined. Another extension is to try

to disambiguate polysemous acronyms (e.g., “CMU” means “Carnegie Mellon University”

and also “Central Michigan University”). The task requires to identify the intended sense of

the acronym, even when its definition is absent. Ambiguous acronyms are particularly

Training the system

(supervised learning)

Testing the system

(actual use and evaluation)

Alias Network (from Figure 1):

Record: hard-coded rules

Input : annotated document

(ambiguity partially

resolved)

Output : annotated document

Record: resolve acronyms

Input : corpus annotated

with acronym and expansion

pairs

Learning to identify acronym

and expansion pairs

(supervised learning)

Output : acronym

identification model

From training : acronym

identification model

 94

problematic for information retrieval.

In this section, we only tackle the core task. That is, given an input text, our algorithm will

attempt to extract all explicit acronym-definition pairs. Our goal is to create a dictionary of

acronym-definition pairs specific to a single text. For example, an algorithm that addresses

the core task can be used to enhance a list of key phrases by resolving acronyms. More

importantly, such an algorithm is a key component in systems that handle the various

extended tasks, like co-reference resolution for NER or automatic query expansion for

information retrieval. The literature on automatic acronym identification details many

attempts to solve the core task. Our contribution is to demonstrate a supervised learning

approach with fewer constraints on the forms of acronyms and definitions that can be

identified. Our results compare with what has been achieved on the same testing data by

human-engineered rule systems with more constraints.

The next section presents a detailed summary of related work. Section 6.2 presents our

supervised learning approach to identifying acronyms, and Section 6.3 discusses the training

and testing corpus we used. At least three other papers use the same corpus for evaluating

their systems (Pustejovsky et al. 2001; Chang et al. 2002; Schwartz and Hearst 2003). The

remaining sections discuss our experiments’ results, and conclude.

6.1 Related Work

In this section, we present previous work on the task of identifying acronyms. We focus on

the constraints that these systems use to extract valid acronym–definition pairs.

One of the earliest acronym identification systems (Taghva and Gilbreth, 1999) is the

Acronym Finding Program (AFP). The AFP system first identifies acronym candidate, which

the authors define as upper-case words of three to ten letters. It then tries to find a definition

for each acronym by scanning a 2n-word window, where n is the number of letters in the

acronym. The algorithm tries to match acronym letters to initial letters in the definition

words. Some types of words receive special treatment: stopwords can be skipped,

 95

hyphenated words can provide letters from each of their constituent words, and finally,

acronyms themselves can be part of a definition. Given these special cases, the longest

common sequence (LCS) between acronym letters and initial letters in definitions is

computed.

Yeates (1999) proposes the automatic extraction of acronym-definition pairs in a program

called Three-Letter Acronyms (TLA). Although the name suggests that acronyms must have

three letters, the system can find n-letter acronyms as well. The algorithm divides text into

chunks using commas, periods, and parentheses as delimiters. It then checks whether

adjacent chunks have acronym letters matching one or more of the three initial letters of the

definition words. Further heuristics are then applied to each candidate, ensuring that the

acronym is upper case, is shorter than the definition, contains the initial letters of most of the

definition words, and has a certain words to stopwords ratio.

Larkey et al. (2000) developed Acrophile. They compared various strategies and found their

“canonical/contextual” method to be the most accurate. First, they force acronym candidates

to be upper-cased, allowing only embedded lower case letters (internal or final), periods

(possibly followed by spaces), hyphens or slashes, and digits (at most one, non-final digit).

They allow a maximum of nine alphanumeric characters in acronyms. They search for

expansions in a 20-word window adjacent to the given acronym. Stopwords can contribute to

an inner letter, but only once for the entire acronym. Furthermore, an expansion is only valid

if it fits a given pattern, such as being surrounded by parentheses or preceded by a cue phrase

(e.g.,“also known as”).

Recently the fields of genetics and medicine have become especially interested in acronym

detection (Pustejovsky et al., 2001, Yu et al. 2002). Pustejovsky et al. present an approach

with few constraints, designed to capture a wide range of acronyms that are abundant in

medical literature. For example, “PMA” stands for “phorbol ester 12-myristate-13-acetate”

and “E2” stands for “estradiol-17 beta.” Pustejovsky et al.’s acronym detection technique

searches for acronym definitions within noun phrases. Acronym-definition pair candidates

must match a given set of regular expressions, designed to be very general. The final

 96

decision about whether a pair is valid relies on counting the number of acronym characters

and definition words that match.

Another strategy, also developed for the medical field, comes from Schwartz and Hearst

(2003)14. Their approach is similar to Pustejovsky et al.’s (2001) strategy, and the emphasis

is again on complicated acronym-definition patterns for cases in which only a few letters

match (e.g., “Gen-5 Related N-acetyltransferase” [GNAT]). First, they identify acronym-

definition pair candidates by looking for patterns, particularly “acronym (definition)” and

“definition (acronym).” The length of the definition must be at most 2)A5,Amin(⋅+ ,

where |A| is the number of letters in the acronym15. Then, they count the number of

overlapping letters in the acronym and its definition, and compare the sum to a given

threshold. They force the first letter of the acronym to match the first letter of a definition

word. They also handle various cases where an acronym is entirely contained in a single

definition word.

Park and Byrd (2001) combine mechanisms such as text-markers and linguistic cues with

pattern-based recognition. Larkey (2000) uses the same combination. This eliminates some

constraints on identifiable acronyms. The reason for these mechanisms is to cope with the

growing popularity of acronyms that deviate from the tradition of using only the first letter of

each word of the definition. They use cue expressions (e.g., “or,” “short,” “acronym,”

“stand”) to reinforce the confidence in acronym-definition pairs. They also allow acronyms

to include a digit at the beginning or the end. Thus, “5GL (Fifth Generation Language)”

would be a valid candidate.

Adar (2002) presents a technique that requires only four scoring rules for evaluating

acronym-definition pairs: add one to the score if an acronym letter begins a definition word;

subtract one for each extra word that does not match acronym letters; add one if the

definition is next to a parenthesis; and finally, as the number of definition words should be

14 The Java source code for their system is available at http://biotext.berkeley.edu/software.html.
15 This formula is borrowed from Y. Park and Byrd (2001).

 97

less than or equal to the number of acronym letters, subtract one for each extra word.

Chang et al. (2002) present a supervised learning approach to identifying acronyms. In order

to circumscribe the learning, they impose a strongly restrictive condition on acronym-

definition pair candidates by searching only for “definition (acronym)” patterns.

Interestingly, this pattern accounts for the majority of positive cases in their evaluation

corpus. Chang et al.’s learning algorithm uses eight features that describe the mapping

between acronym letters and definition letters (e.g., percentage of letters aligned with the

beginning of a word, number of definition words that are not aligned with the acronym, etc.).

The learning algorithm they use is logistic regression.

Zahariev (2004) dedicates a thesis on a complete review of acronym identification literature.

He also extends the task to the multilingual perspective and offers in-depth analysis of the

acronym phenomenon. However, the proposed system uses the same constraint patterns as

Larkey et al. (2000).

Table 25 summarizes related work on acronym identification. In this table and in the

forthcoming sections, “participation” means that an acronym letter is found in a definition

word. Generally, either there are many constraints on the acronym (e.g., “all acronym letters

must be capitals” or “the number of letters must exceed some minimum”) or the definition

pattern is fixed (e.g., “the definition must be in parentheses”). Such strong constraints ensure

reasonable precision but, generally (for heterogeneous text from unrestricted domains), they

necessarily limit recall. In our work, we try to use few constraints on both the acronym and

the definition.

Table 25: Summary of constraints on acronyms and definitions

Author (Year) Strongest constraints

on acronym candidates

Strongest constraints

on definition

candidates

Taghva and

Gilbreth (1999)

upper-case word of 3

to 10 characters

must be adjacent

only first letters of

definition words can

 98

participate

Yeates (1999) upper-case word must be adjacent

first 3 letters of

definition words can

participate

Larkey et al.

(2000)

need some upper-case

letters

pattern “acronym

(definition)” or

 maximum size of 9

characters

“definition (acronym)”

cue (e.g.: “also known

as”)

Pustejovsky et

al. (2001)

a word between

parentheses or

adjacent to

parentheses

pattern “acronym

(definition)” or

“definition (acronym)”

Schwartz and

Hearst (2003)

a word between

parentheses or

adjacent to

parentheses

pattern “acronym

(definition)” or

“definition (acronym)”

Park and Byrd

(2001)

at least 1 capital

from 2 to 10

characters

parentheses pattern or

linguistic cue (also

known as, short for,

etc.)

Adar (2002)

1 word between

parentheses

adjacent on the left

of parenthesis

Chang et al.

(2002)

1 word between

parentheses

adjacent on the left

of parenthesis

Zahariev (2004) 1 word between

parentheses or

adjacent to

parentheses

pattern “acronym

(definition)” or

“definition (acronym)”

 99

6.2 Supervised Learning Approach

The acronym identification task can be framed in terms of supervised learning. The concept

we want to learn is a pair DA, made of an acronym A (a single token) and a definition D

(a sequence of one or more consecutives tokens). Given a sequence T of n tokens,

nttT ,...,1= , from which we wish to extract a pair DA, , there are n possible choices for

itA = . Each possible acronym (itA =) can be defined (D) by any combination of one or

more consecutive tokens taken from the left context { }11,..., −itt or from the right context

{ }ni tt ,...,1+ . The number of possible pairs, in the worst case, is ()3nO (n choices for itA =

multiplied by n choices for the first token in D multiplied by n choices for the last token in

D). Therefore, before applying supervised learning, we reduce the space of possible DA,

pairs with some heuristics.

We describe our heuristics for reducing the search space for acronym candidates, and then

we discuss the constraints for definition candidates. Together, these sections explain how we

reduce the space of DA, pairs that the supervised learning algorithm must consider. After

the space has been reduced, the remaining pair candidates must be represented as feature

vectors to apply standard supervised learning algorithms (Witten and Frank, 2000).

The constraints that follow are relatively weak, compared to most past work on acronym

identification, but they still exclude some possible acronym-definition pairs from

consideration by the supervised learning algorithm. The resulting decrease in recall is

discussed in Section 6.5.3.

6.2.1 Space-Reduction Heuristics for Acronym Candidates

The acronym space (the set of choices for itA =) is reduced using syntactic constraints on

the tokens, nttT ,...,1= , expressed by the conjunction of the following statements:

• itA = , where ni ≤≤1 .

 100

• 2)Size(≥it , where)Size(it is the number of characters in the token it (including

numbers and internal punctuation).

• 1)NumLetter(≥it , where)NumLetter(it is the number of alphabetic letters in the

token it (excluding numbers and punctuation).

•)Cue())(UnknownPOS)((Cap iii ttt ∨∧ , where)(Cap it means that the token starts

with a capital letter,)(UnknownPOS it means that the token’s part-of-speech is

neither conjunction, determiner, particle, preposition, pronoun, nor verb, and

)Cue(it means that the token contains a digit, punctuation, or a capital letter.

The rationale behind 2)Size(≥it is that, in most cases, isolated letters like “H” will not be

acronyms (although “H” can stand for “Hydrogen”). Statement 4 says that the it token

should have some capitalization or special characters, but in the former case, the token

should not have a known part-of-speech. The calculation of)(UnknownPOS it requires

applying a part-of-speech tagger to the text. We used qTag (Tufis and Mason, 1998) as our

part-of-speech tagger.

The above heuristic constraints are less restrictive than previous approaches (compare with

Table 25).

6.2.2 Space-Reduction Heuristics for Definition Candidates

Once an acronym candidate itA = is found in the text, we search its definition D on both

sides of it . First, we require that both acronym and definition appear in the same sentence.

This considerably reduces the search space for DA, by reducing the n of T size, although

the space is still ()3nO . We then need stronger criteria to define a reasonable set of definition

candidates. We impose the following additional constraints:

• The first word of a definition must use the first letter of the acronym (Pustejovsky

et al. 2001).

 101

• A definition can skip one letter of the acronym, unless the acronym is only two

letters long.

• The definition can skip any number of digits and punctuation characters inside the

acronym.

• The maximum length for a definition is ()2,5min ×+ acronymlenacronymlen

(Park and Byrd 2001).

• A definition cannot contain a bracket, colon, semi-colon, question mark, or

exclamation mark. (We found counter-examples for other punctuation. For

instance, the acronym “MAM” expands to “meprin, A5, mu,” where the comma

is used.)

Usually, these constraints will dramatically reduce the number of definition candidates. thus

increasing precision, while including the vast majority of true positive cases, thus preserving

recall.

To illustrate the remaining search space, consider the following sentence:

“Microbial control of mosquitoes with special emphasis on bacterial control (Citation).”

The word “Citation” is not an acronym, but it fits our constraints since it is a capitalized

noun. Even with the above constraints, there are 92 definition candidates in this example.

Note that according to the second rule above, the definition can skip one letter of the

acronym, except the leading “C.” Here is one of the definition candidates (acronym letters

are marked with square brackets):

[c]ontrol of mosqu[i]toes wi[t]h speci[a]l emphas[i]s [o]n bacterial co[n]trol

6.2.3 Acronym-Definition Features for Supervised Learning

The above heuristics reduce the search space significantly, so that the number of ways to

extract a pair DA, from a token sequence nttT ,...,1= is now much less than ()3nO . The

 102

next step is to apply supervised learning to select the best DA, pairs from the remaining

candidates. Standard supervised learning algorithms require input in the form of feature

vectors. We defined seventeen features to describe an instance of an acronym-definition

candidate. The handcrafted rules described in previous work inspired the design of many of

the following features. Our features mainly describe the mapping of acronym letters to

definition letters, and syntactic properties of the definition.

1. The number of participating letters matching the first letter of a definition word;

2. (1) normalized by the acronym length;

3. the number of participating definition letters that are capitalized;

4. (3) normalized by the acronym length;

5. the length (in words) of the definition;

6. the distance (in words) between the acronym and the definition;

7. the number of definition words that do not participate;

8. (7) normalized by the definition length;

9. the mean size of the words in the definition that do not participate;

10. whether the first definition word is a preposition, a conjunction, or a determiner

(inspired by Park and Byrd, 2001);

11. whether the last definition word is a preposition, a conjunction, or a determiner

(inspired by Park and Byrd, 2001);

12. the number of prepositions, conjunctions, and determiners in the definition;

13. the maximum number of letters that participate in a single definition word;

14. the number of acronym letters that do not participate;

15. the number of acronym digits and punctuations that do not participate;

16. whether the acronym or the definition is between parentheses;

17. the number of verbs in the definition.

If the heuristics propose an acronym-definition pair candidate 11,DA , then there are three

possibilities:

(1) In the manual annotation of the corpus, there is an officially correct acronym-definition

 103

pair 22,DA such that A1 = A2 and D1 = D2. In this case, 11,DA is labelled as positive for

both training and testing the algorithm.

(2) In the manual annotation of the corpus, there is an officially correct acronym-definition

pair 22,DA such that A1 = A2 but D1 ≠ D2. In this case, 11,DA is ignored during training

(see Section 6.3 for details).

(3) In the manual annotation of the corpus, there is no officially correct acronym-definition

pair 22,DA such that A1 = A2. In this case, 11,DA is labelled as negative for both training

and testing.

6.3 Evaluation Corpus

We use the Medstract Gold Standard Evaluation Corpus16 (Pustejovsky et al., 2001) to train

and test our algorithm. The corpus is made of Medline abstracts in which each acronym-

definition pair is annotated. The training set is composed of 126 pairs and the testing set is

composed of 168 pairs. What is most interesting about this corpus is that it was annotated by

a biologist using an informal definition of a valid pair. Therefore the corpus reflects human

interpretation of acronym-definition pairs, and acronym identification is rendered

challenging for an automated process.

Past results with this corpus are reported in Table 26. All of the results are based on modified

versions of the Medstract Gold Standard Evaluation Corpus, and, unfortunately, they all use

different modifications. Here are some remarks on each of the modifications:

1. Chang et al. (2002) do not describe their modifications.

2. Pustejovsky et al. (2001) note that they removed eleven elements, which they judged

as non-acronyms.

16 http://medstract.org/gold-standards.html

 104

3. Schwartz and Hearst (2003) mention that they made modifications, but do not

describe what modifications they made.

4. We attempted to replicate the results of Schwartz and Hearst (2003), while making

only minimal modifications to the original corpus. Our modifications were aimed at

creating a valid XML file and a consistent set of tags. We had to remove embedded

acronyms and remove or correct obvious errors.

Since Schwartz and Hearst’s system is available online, we were able to repeat their

experiment on our modified version of the corpus. This is the version of the corpus that we

use in the following experiments, detailed in Section 6.4.

Table 26: Acronym detection performance reported various teams

Team Pr Re F1 Corpus

Modification

Chang et al. (2002) 80% 83% 81.5% See (1)

Pustejovsky et al. (2001) 98% 72% 83.0% See (2)

Schwartz and Hearst (2003) 96% 82% 88.4% See (3)

Schwartz and Hearst

(our replication)

89% 88% 88.4% See (4)

6.4 Experiment Results

We use the Weka Machine Learning tool kit to test various supervised learning algorithms.

The results are reported in Table 27. We found that performance varies greatly depending on

the chosen algorithm. Good classifiers were PART rules (rules obtained from a partially

pruned decision tree), with somewhat low recall but high precision. The Support Vector

Machine (Weka’s SMO) reaches F1 = 88.3%, a performance that rivals that of handcrafted

systems. The Bayesian net also performs well. The OneR (one rule) classifier is shown as a

baseline. Table 27 includes our replication of Schwartz and Hearst (2003) for comparison.

Note that all results in this table are based on the same corpus.

 105

Table 27: Performance of various classifiers on the Medstract corpus

Learning Algorithm Pr Re F1

OneR 69.0% 33.1% 44.7%

Bayesian Net 89.6% 81.7% 85.5%

PART rules 95.3% 79.6% 86.7%

SVM (SMO kernel degree = 2) 92.5% 84.4% 88.3%

Schwartz and Hearst

(our replication)

88.7% 88.1% 88.4%

We claim that our system has weaker hand-coded constraints than competing approaches. To

support this claim, it is worth mentioning that 1,134 acronym-definition pair candidates

fulfilled the constraints in Section 6.2.1 and Section 6.2.2, but the supervised learning

algorithms only classified 141 candidates (12%) as positive. Therefore, the hand-coded part

of our system allowed more candidates than did Schwartz and Hearst’s system. In

comparison, the latter system considered 220 patterns that involve parentheses, and 148

(67%) are accepted by the rule-based system. In our system, the decrease from 1,134

candidates to 141 is done by the supervised learning component rather than by hand-coded

constraints. The advantage of this approach is that the supervised learning component can

easily be retrained for a new corpus. The hand-coded constraints are designed to be weak

enough to not require modifications for a new corpus.

6.5 Discussion

In this section, we interpret the results of our experiments.

6.5.1 The Parenthesis Feature

In our examination of previous work (Section 6.1), we criticized many authors using overly

constrained patterns. One of the problems is the use of parentheses. Many authors only

accept acronym-definition pairs when one of the expressions is between parentheses. To

avoid this kind of limitation, we did not impose this constraint on our model. However, the

only way we were able to perform as well as hand-built systems was to use the feature

“whether the acronym or the definition is between parentheses” (feature 16 in Section 6.2.3).

 106

The learner uses this feature since it works well on the Medstract corpus. Our relatively few

constraints (Section 6.2.1 and Section 6.2.2) allow 889 acronym-definition pair candidates

for which the parenthesis feature is false (neither the acronym candidate nor the definition

candidate is between parentheses). In the Medstract corpus, these 889 candidates are

negative instances (none are true acronym-definition pairs). Thus, this feature dramatically

increases precision with no loss of recall. It is a very informative feature, but we do not wish

to hard-code it into our constraints, since we believe it may not adapt well to other corpora.

With a new corpus, our system can learn to use the feature if it is helpful, or ignore it if it

does not apply. This robustness is an advantage of using few constraints combined with

supervised learning.

6.5.2 The Best Features

When evaluating the contribution of the individual features (using the Chi Square Test), we

found that three features significantly outperform others. Those features are, in order of

predictive power: the distance between the definition and the acronym (feature 6); the

number of acronym letters that match the first letters of definition words (feature 1); and the

parentheses feature (feature 16).

6.5.3 Effects of the Space-Reduction Heuristics

In Section 6.2, we presented heuristics for reducing the space of possible acronym-definition

candidates. A particular case can be misleading for the supervised learning algorithm.

Consider a case in which our heuristics identify <PKA, protein kinase A> but the corpus

annotation is <PKA, cAMP-dependent protein kinase A>. It is tempting to say that <PKA,

protein kinase A> must count as a negative example for the supervised learner, but this could

confuse the learner since the PKA and protein kinase A match is actually very credible and

reasonable. Instead of counting <PKA, protein kinase A> as a negative example, we found

that it is better to ignore this case during training. It would be incorrect to count this case as a

positive example, but it would be misleading to count it as a negative example, so it is best to

ignore it. During testing, however, such instances are added to the false negatives, thus

 107

reducing recall, because this is an error and the system must be penalized for it.

6.5.4 External Evaluation

In her master’s thesis, Dannélls (2006) evaluated four acronym detection systems, including

ours, on the Swedish language. She provided us with Swedish training data and testing data.

Our system performs at significantly higher levels than other systems that were tested.

Dannélls’s results are presented in Table 28.

Table 28: Acronym detection on Swedish texts

Learning Algorithm Pr Re F1

Acrophile (Larkey et al. 2000) 97% 20% 33%

Stanford (Chang et al. 2002) 77% 66% 71%

Simple (Schwartz & Hearst 2003) 100% 6% 11.3%

Our approach (Nadeau & Turney 2005) 96% 91% 93%

6.6 Improving Alias Resolution in NER Systems

The acronym detection module described in this chapter can be integrated with BaLIE’s alias

resolution algorithm (Section 3.2.3, Figure 3). When a definition is added to a set of aliases

“ ia ,” the corresponding acronym is also added. Moreover, a side-effect of identifying an

acronym definition is identifying the exact boundary of the potential entity. For instance,

let’s look at this sentence containing one “organization” type entity:

“The court convicted the head of the South <ENAMEX TYPE="ORG"> Lebanon

Army</ENAMEX> (SLA) of collaborating with Israel.”

In this sentence, the acronym detection module recognizes the acronym SLA:

 SLA, [S]outh [L]ebanon [A]rmy

On the one hand, it corrects the organization boundary, and on the other hand, it associates

“SLA” to the “South Lebanon Army” alias set. Eventually, the annotations are corrected

 108

accordingly:

“The court convicted the head of the <ENAMEX TYPE="ORG"> South Lebanon

Army</ENAMEX> (<ENAMEX TYPE="ORG">SLA</ENAMEX>) of collaborating with

Israel.”

In our experiments, we measured no significant improvements on the MUC-7 and the BBN

corpora. In fact, only four acronyms are identified in MUC-7, and no acronyms are found in

BBN. However, the CONLL corpus is rich in acronyms, and the improvement in

organization recall is important, as shown in Table 29. We identified 19 acronyms in the

CONLL corpus, and one was a false positive (<New, [N]orm H[e][w]itt>).

Table 29: BaLIE's performance on the CONLL corpus with acronym detection

 Without acronym With acronym

Type Precision Recall F- measure Precision Recall F- measure

Person 49.5 52.10 50.77 49.69 52.16 50.90

Location 65.49 72.71 68.91 65.52 72.71 68.92

Organization 43.26 51.27 46.93 44.60 52.43 48.20

Miscellaneous 61.37 52.35 56.50 61.59 52.35 56.60

6.7 Conclusion

In this chapter, we described a supervised learning approach to the task of identifying

acronyms. The approach consists in using few hand-coded constraints to reduce the search

space, and then using supervised learning to impose more constraints. The advantage of this

approach is that the system can easily be retrained for a new corpus when the previously

learned constraints no longer apply. The hand-coded constraints reduce the set of acronym-

definition pair candidates that must be classified by the supervised learning system, yet they

are weak enough to be transferable to a new corpus with little or no change.

In our experiments, we tested various learning algorithms and found that an SVM is

comparable in performance to rigorously designed handcrafted systems, as presented in the

literature. We reproduced experiments by Schwartz and Hearst (2003) and showed that our

 109

testing framework was comparable to their work.

We integrated the acronym detection module with BaLIE’s alias resolution. We demonstrate

that it brings an interesting improvement, particularly at the level of organization recall in an

acronym-rich corpus.

Our future work will consist of applying the supervised learning approach to different

corpora, especially corpora in which acronyms or definitions are not always indicated by

parentheses.

 110

Chapter 7

Discussion and Conclusion

This thesis is about creating a semi-supervised NER system. It has the desirable property of

requiring, as input, that an expert linguist lists a dozen examples of each supported entity

type. It contrasts with the annotation of thousands of documents with hundreds of entity

types, which is required for supervised learning. It also contrasts with manually harvesting

NE lists and designing a complex rule system, which are usually required for handmade

systems. The NER system we present in this thesis therefore requires very little supervision

and we’ve included this human input in the Appendix.

The system presented in this thesis falls in the new category of semi-supervised and

unsupervised systems. Work in this category is relatively rare and recent, and we believe

ours to be the first that is devoted exclusively to the autonomous creation of an NER system.

Our overall goal is to create proof-of-concept software. In completing this system, we claim

four major contributions that impact the NER field, and also have the potential to be used in

other domains. First, we designed the first semi-supervised NER system that performs at a

comparable level to that of a simple supervised learning-based NER system (Chapter 3).

Second, we present a noise filter for generating NE lists based on computational linguistics

and statistical semantic techniques (Chapter 4). This noise filter outperforms previous

systems devoted to the same task. Then, we demonstrate a simple technique based on set

intersections that can identify unambiguous examples for a given NE type (Chapter 5).

Unambiguous NEs are a requirement for creating semi-supervised disambiguation rules.

Finally, our fourth contribution is an acronym detection algorithm—part of an alias

resolution system—that outperforms previous system and allows improvement in NER for a

“less common and very difficult problem” (Chapter 6).

These contributions are crucial components to a successful semi-supervised NER system,

and they are explained in the context of the whole system, for which the architecture is

detailed in Figure 1. In the course of completing this system, however, we met many

 111

limitations and difficulties, which we discuss in Section 7.1. We conclude this thesis by

presenting our future work and some general long-term research ideas.

We believe the resulting system requiring little supervision has two important advantages

over past systems put forth in the literature, and this is generally in favour of a shift towards

semi-supervised and unsupervised techniques in the machine learning community. Our

system is first extensible to new entity types. The design we adopted is free of linguistic

knowledge or type-dependant heuristics. Therefore, we can modify the hierarchy or add new

types, and let the system generate lists and rules. The system is also easily maintained over

time. While supervised learning-based systems get most of their knowledge from large static

training corpora, the system we present gets most of its knowledge from the Web.

Recrawling the Web and periodically verifying the Web pages from which lists were

extracted is a straightforward approach to maintenance.

7.1 Limitations

7.1.1 NE Hierarchy Design

The choice of NE types supported in this thesis is not completely free of constraints. Instead

of choosing to recognize “cities,” we may want to divide this type into “North American

cities,” “European cities,” etc. However, our technique depends on the “natural order of

things” or, more precisely, the way the majority of people decided to list entities on the Web.

Noteworthy examples include the “cathedral,” “hospital” and “hotel” types, which we

decided to recognize in order to fit Sekine’s hierarchy and/or BBN corpus. However, these

entities rarely occur in exhaustive Web lists. We may have had more success in defining

finer types by dividing according to country (there are a lot of regional and national hospital

lists, for instance).

7.1.2 Controlling the Uncontrollable

When a bootstrapping algorithm is started, it is well-known that noise can impact and bias

the result. If we have relative success in handling noise, we are still exposed to problems of

 112

concept drift. For instance, cities, states, and countries are often mixed up in a single Web

page, and the drift potential is very high. The worst case we met was with the “nationality”

type. Not only it is highly ambiguous with the “language” type, but it also tends to drift

toward “cuisine” type (an unsupported entity type). In our final nationality list, we find

entries such as “sandwiches,” “buffet,” “seafood,” etc.).

7.1.3 Extending to Other Languages

One natural extension for our system is applying it to many languages. However, it is limited

in at least two ways. First, there is a need for a critical mass of structured information on the

Web. In English, the “airport” list relies on 311 Web pages, the “drug” list was created from

1,323 Web pages, and common types such as “city” or “first_name” are usually aggregated

from tens of thousands of Web pages. The Web seems to have reached this critical point for

many entity types, in English. In some preliminary French-language experiments, we noticed

that the task is much more difficult since many entity types may not meet the pages’ critical

mass. A second limitation is the very large corpus used for creating rule disambiguation. In

this thesis, we use a Terabyte-sized corpus mainly composed of English texts. We would

need comparable corpora for other languages.

7.1.4 Inaccurate Prior Probabilities

The rule disambiguation creation technique presented in Chapter 5 has an important problem

with prior probabilities. For example, suppose we want to classify the word “April” between

the “month” and “first_name” classes. A Bayesian classifier will evaluate each class

probability by using the entity’s prior probability and the conditional probabilities of the

words in context. In this case, the prior probability that April is a month is much higher than

its prior probability of being a first_name. However, our technique has absolutely no

information on real priors. Instead of learning on a corpus representing the distribution of

entities in the world, we create a data set of passages using unambiguous examples of

entities. Because it is not representative of the reality, we choose to balance our data set so

that priors are 50% for both classes. Correcting this prior is discussed in the section on future

work.

 113

7.1.5 Out-of-Vocabulary Entities

We presented a technique based primarily on lexicon look-up. When an entity is not part of

our lexicon, it cannot be recognized. This is a limitation compared to a supervised learning-

based system that usually classifies unknown words NEs if their contexts are sufficiently

similar to the context of an entity class. On the one hand, we may use the disambiguation

rules to recognize out-of-vocabulary entities. On the other hand, we may combine our system

with an existing supervised learning-based system.

7.1.6 Lower-Case Entities

Some entity types in our hierarchy occur naturally in lower case. This is particularly true

with species (e.g., bird, mammal) and substances (e.g., food, mineral). In this case, the

heuristics aimed at resolving noun-entity ambiguity (Section 3.2.1) basically filter out every

entity. In our experiments, we noticed very low recall for these types.

7.2 Future Work

The limitations presented in the previous section are all topics to broach in our future work.

We believe none of them are completely beyond resolution. However, we identified three

interesting research avenues that may impact the NER field or semi-supervised learning

methods at large.

7.2.1 Statistical Semantics Technique as a Noise Filter

Our preliminary experiments using latent relational analysis (LRA; see Section 4.5) was only

scratching the surface of the problem. We believe this kind of technique is the key to

controlling concept drifts and other forms of difficult and subtle noise. One improvement we

will explore is applying LRA on specific entities with high probability of being noise, such

as ambiguous entities (entities belonging to two or more lists).

 114

7.2.3 Prior Probabilities Correction

We will also address the correction of naive Bayes classifiers’ prior probabilities in creating

disambiguation rules. One way to do it is to calculate mutual information between an entity

and each possible type to which it can belong. For instance, to disambiguate between the city

of “Martin” and the first name “Martin,” we may calculate Pointwise mutual information and

information retrieval (PMI-IR) scores between this word and some unambiguous words of

the class. In this case, preliminary experiments suggest that Martin is more likely to be a first

name, and therefore, the prior probability that Martin is a first name should be higher.

7.2.4 Hybrid System

In this thesis, we present a standalone NER system. However, it could easily be used to

maintain existing handmade or supervised systems. We are particularly interested in creating

a hybrid system for which the core engine would be the Oak system (Sekine and Nabota

2004), and on top of which we would add our generated lists and disambiguation rules.

Another way to create a hybrid system would be to use one or many other NER systems to

create an ensemble that would vote on each decision, and fall back in case of out-of-

vocabulary entities.

7.3 Long-Term Research Ideas

The long-term objective of this research is to recognize and classify all the possible entity

types with high precision. Then, it will be necessary to proceed to disambiguation within

objects that have the same name and are within the same class. This problem is known as

“personal name disambiguation” (e.g., Is “Jim Clark” the race driver, the film editor, or the

Netscape founder?), but the idea extends to other types (e.g., Is “NRC” the National

Research Council in Canada or in the United States?). To close the loop, it would be

necessary to connect entities worldwide by resolving entity references across languages, a

problem already garnering much interest from the machine translation community.

 115

Bibliography

Adar, E. (2002) S-RAD A Simple and Robust Abbreviation Dictionary, HP Laboratories Technical

Report.

Agbago, Akakpo; Kuhn, R. and Foster, G. (2006) Truecasing for the Portage System. Proc. of

International Conference on Recent Advances in Natural Language Processing.

Alfonseca, Enrique and Manandhar, S. (2002) An Unsupervised Method for General Named Entity

Recognition and Automated Concept Discovery. Proc. International Conference on General

WordNet.

Asahara, Masayuki and Matsumoto, Y. (2003) Japanese Named Entity Extraction with Redundant

Morphological Analysis. Proc. Human Language Technology conference - North American

chapter of the Association for Computational Linguistics.

Basili, Roberto; Cammisa, M. and Donati, E. (2005) RitroveRAI: A Web Application for Semantic

Indexing and Hyperlinking of Multimedia News. International Semantic Web Conference.

Bick, Eckhard (2004) A Named Entity Recognizer for Danish. Proc. Conference on Language

Resources and Evaluation.

Bikel, Daniel M.; Miller, S.; Schwartz, R. and Weischedel, R. (1997) Nymble: a High-Performance

Learning Name-finder. Proc. Conference on Applied Natural Language Processing.

Black, William J., Rinaldi, F. and Mowatt, D. (1998) Facile: Description of The NE System Used For

Muc-7. Proc. Message Understanding Conference.

Bodenreider, Olivier and Zweigenbaum, P. (2000) Identifying Proper Names in Parallel Medical

Terminologies. Stud Health Technol Inform. 77. pp. 443-447.

Boutsis, S., Demiros, I. , Giouli, V. , Liakata, M. , Papageorgiou, H. and Piperidis, S. (2000) A

system for recognition of named entities in Greek. Proc. International Conference on Natural

Language Processing.

Borthwick, Andrew; Sterling, J.; Agichtein, E. and Grishman, R. (1998) NYU: Description of the

MENE Named Entity System as used in MUC-7. Proc. Seventh Message Understanding

Conference.

Brin, Sergey (1998) Extracting Patterns and Relations from the World Wide Web. Proc. Conference

of Extending Database Technology. Workshop on the Web and Databases (workshop).

Carreras, Xavier; Márques, L. and Padró, L. (2003) Named Entity Recognition for Catalan Using

Spanish Resources. Proc. Conference of the European Chapter of Association for

Computational Linguistic.

Chang, J. T.; Schütze, H. and Altman R.B., (2002), Creating an Online Dictionary of Abbreviations

 116

from MEDLINE. Journal of American Medical Informatics Association (JAMIA), 9(6), p.612-

620.

Charniak, Eugene. (2001) Unsupervised Learning of Name Structure from Coreference Data. Proc.

Meeting of the North American Chapter of the Association for Computational Linguistics.

Chawla, Nitesh V., Bowyer, K. W., Hall, L. O. and Kegelmeyer, W. P. (2002) SMOTE: Synthetic

Minority Over-sampling Technique. Journal of Artificial Intelligence Research. 16. pp. 321-

357.

Chen, H. H. and Lee, J. C. (1996) Identification and Classification of Proper Nouns in Chinese Texts.

Proc. International Conference on Computational Linguistics.

Chinchor, Nancy (1999) Overview of MUC-7/MET-2. Proc. Message Understanding Conference

MUC-7.

Chinchor, Nancy; Robinson, P. and Brown, E. (1998) Hub-4 Named Entity Task Definition. Proc.

DARPA Broadcast News Workshop.

Cimiano, Philipp and Völker, J. (2005) Towards Large-Scale, Open-Domain and Ontology-Based

Named Entity Classification. Proc. Conference on Recent Advances in Natural Language

Processing.

Coates-Stephens, Sam (1992) The Analysis and Acquisition of Proper Names for the Understanding

of Free Text. Computers and the Humanities. 26. pp. 441-456.

Cohen, William W. (1995) Fast Effective Rule Induction. Proc International Conference on Machine

learning.

Cohen, William W. and Fan, W. (1999) Learning Page-Independent Heuristics for Extracting Data

from Web Page. Proc. of the International World Wide Web Conference.

Cohen, William and Richman, J. (2001) Learning to Match and Cluster Entity Names. Proc.

International ACM SIGIR Conference on Research and Development in Information Retrieval.

Mathematical/Formal Methods in IR (workshop).

Cohen, William W. (2004) Minorthird: Methods for Identifying Names and Ontological Relations in

Text using Heuristics for Inducing Regularities from Data, http://minorthird.sourceforge.net.

Cohen, William W. and Sarawagi, S. (2004) Exploiting Dictionaries in Named Entity Extraction:

Combining Semi-Markov Extraction Processes and Data Integration Methods. Proc.

Conference on Knowledge Discovery in Data.

Collins, Michael (2002) Ranking Algorithms for Named–Entity Extraction: Boosting and the Voted

Perceptron. Proc. Association for Computational Linguistics.

Collins Michael and Singer, Y. (1999) Unsupervised Models for Named Entity Classification. Proc.

of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and

 117

Very Large Corpora.

Cucchiarelli, Alessandro and Velardi, P. (2001) Unsupervised Named Entity Recognition Using

Syntactic and Semantic Contextual Evidence. Computational Linguistics. 27(1). pp. 123-131.

Cucerzan, Silviu and Yarowsky, D. (1999) Language Independent Named Entity Recognition

Combining Morphological and Contextual Evidence. Proc. Joint Sigdat Conference on

Empirical Methods in Natural Language Processing and Very Large Corpora.

Cunningham, Hamish, Maynard, D., Bontcheva, K., Tablan, V. (2002) GATE: A Framework and

Graphical Development Environment for Robust NLP Tools and Applications. Proc. of the

40th Anniversary Meeting of the Association for Computational Linguistics.

Dannélls, Dana (2006) Acronym Recognition: Recognizing Acronyms in Swedish Texts. Master

Thesis. Göteborg University.

Da Silva, Joaquim Ferreira; Kozareva, Z. and Lopes, G. P. (2004) Cluster Analysis and Classification

of Named Entities. Proc. Conference on Language Resources and Evaluation.

Dimitrov, Marin; Bontcheva, K.; Cunningham H and Maynard, D. (2002) A Light-weight Approach

to Coreference Resolution for Named Entities in Text. Proc. Discourse Anaphora and Anaphor

Resolution Colloquium.

Doddington, George, Mitchell, A., Przybocki, M., Ramshaw, L., Strassel, S and Weischedel, R.

(2004) The Automatic Content Extraction (ACE) Program – Tasks, Data, and Evaluation.

Proc. Conference on Language Resources and Evaluation.

Downey, Doug, Etzioni, O, and Soderland, S. (2005) A Probabilistic Model of Redundancy in

Information Extraction. In Proc. International Joint Conference on Artificial Intelligence.

Etzioni, Oren, Cafarella, M., Downey, D., Popescu, A.-M., Shaked, T., Soderland, S., Weld, D. S.

and Yates, A. (2005) Unsupervised Named-Entity Extraction from the Web: An Experimental

Study. Artificial Intelligence, 165, pp. 91-134.

Evans, Richard (2003) A Framework for Named Entity Recognition in the Open Domain. Proc.

Recent Advances in Natural Language Processing.

Ferro, Lisa; Gerber, L.; Mani, I.; Sundheim, B. and Wilson G. (2005) TIDES 2005 Standard for the

Annotation of Temporal Expressions. The MITRE Corporation.

Fleischman, Michael (2001) Automated Subcategorization of Named Entities. Proc. Conference of

the European Chapter of Association for Computational Linguistic.

Fleischman, Michael and Hovy. E. (2002) Fine Grained Classification of Named Entities. Proc.

Conference on Computational Linguistics.

Florian, Radu; Ittycheriah, A.; Jing H. and Zhang, T. (2003) Named Entity Recognition through

Classifier Combination. Proc. Conference on Computational Natural Language Learning.

 118

Frunza, Oana; Inkpen, D. and Nadeau, D. (2005) A Text Processing Tool for the Romanian

Language. Proc. of the EuroLAN 2005 Workshop on Cross-Language Knowledge Induction.

Fung, Pascale (1995) A Pattern Matching Method for Finding Noun and Proper Noun Translations

from Noisy Parallel Corpora. Proc. Association for Computational Linguistics.

Fürnkranz, Johannes (2002) Round Robin Classification. Journal of Machine Learning Research. 2.

pp. 721-747.

Gaizauskas, Robert., Wakao, T., Humphreys, K., Cunningham, H. and Wilks, Y. (1995) University of

Sheffield: Description of the LaSIE System as Used for MUC-6. Proc. Message

Understanding Conference.

Grishman, Ralph and Sundheim, B. (1996) Message understanding conference - 6: A brief history.

Proc. International Conference on Computational Linguistics.

Hearst, Marti (1992) Automatic Acquisition of Hyponyms from Large Text Corpora. Proc.

International Conference on Computational Linguistics.

Heng, Ji and Grishman, R. (2006) Data Selection in Semi-supervised Learning for Name Tagging.

Proc. joint conference of the International Committee on Computational Linguistics and the

Association for Computational Linguistics. Information Extraction beyond the Document

(Workshop)

Huang, Fei (2005) Multilingual Named Entity Extraction and Translation from Text and Speech.

Ph.D. Thesis. Carnegie Mellon University.

Jansche, Martin (2002) Named Entity Extraction with Conditional Markov Models and Classifiers.

Proc. Conference on Computational Natural Language Learning.

Kokkinakis, Dimitri (1998), AVENTINUS, GATE and Swedish Lingware. Proc. of Nordic

Computational Linguistics Conference.

Kripke, Saul (1982) Naming and Necessity. Harvard University Press.

Landauer, Thomas K. and Dumais, S. T. (1997) A Solution to Plato’s Problem: The Latent Semantic

Analysis Theory of the Acquisition, Induction, and Representation of Knowledge.

Psychological Review. 104(2). pp. 211-240.

Larkey, L., Ogilvie, P., Price, A. and Tamilio, B. (2000) Acrophile: An Automated Acronym

Extractor and Server, In Proceedings of the ACM Digital Libraries conference.

Lee, Seungwoo and Geunbae Lee, G. (2005) Heuristic Methods for Reducing Errors of Geographic

Named Entities Learned by Bootstrapping. Proc. International Joint Conference on Natural

Language Processing.

Li, Xin., Morie, P. and Roth, D. (2004) Identification and Tracing of Ambiguous Names:

Discriminative and Generative Approaches. Proc. National Conference on Artificial

 119

Intelligence.

Lin, Dekang (1998). Automatic retrieval and clustering of similar words. Proc. International

Conference on Computational Linguistics and the Annual Meeting of the Association for

Computational Linguistics.

Lin, Dekang and Pantel, P. (2001) Induction of Semantic Classes from Natural Language Text. Proc.

of ACM SIGKDD Conference on Knowledge Discovery and Data Mining.

Ling, Charles X., and Li, C. (1998). Data Mining for Direct Marketing: Problems and Solutions.

Proc. International Conference on Knowledge Discovery and Data Mining.

Liu, Bing, Dai, Y., Li, X., Lee W. S. and Yu, P. (2003) Building Text Classifiers Using Positive and

Unlabelled Examples. Proc. of the Third IEEE International Conference on Data Mining.

Mann, Gideon S. and Yarowsky, D. (2003) Unsupervised Personal Name Disambiguation. Proc.

Conference on Computational Natural Language Learning.

McDonald, David D. (1993) Internal and External Evidence in the Identification and Semantic

Categorization of Proper Names. Proc. Corpus Processing for Lexical Acquisition.

May, Jonathan; Brunstein, A.; Natarajan, P. and Weischedel, R. M. (2003) Surprise! What’s in a

Cebuano or Hindi Name? ACM Transactions on Asian Language Information Processing.

2(3). pp. 169-180.

Maynard, Diana; Tablan, V.; Ursu, C.; Cunningham, H. and Wilks, Y. (2001) Named Entity

Recognition from Diverse Text Types. Proc. Recent Advances in Natural Language

Processing.

McCallum, Andrew and Li, W. (2003) Early Results for Named Entity Recognition with Conditional

Random Fields, Features Induction and Web-Enhanced Lexicons. Proc. Conference on

Computational Natural Language Learning.

Mikheev, Andrei (1999) A Knowledge-free Method for Capitalized Word Disambiguation. Proc.

Conference of Association for Computational Linguistics.

Mikheev, A.; Moens, M. and Grover, C. (1999) Named Entity Recognition without Gazetteers. Proc.

Conference of European Chapter of the Association for Computational Linguistics.

Minkov, Einat; Wang, R. and Cohen, W. (2005) Extracting Personal Names from Email: Applying

Named Entity Recognition to Informal Text. Proc. Human Language Technology and

Conference Conference on Empirical Methods in Natural Language Processing.

Nadeau, David (2005a) Balie – Baseline Information Extraction : Multilingual Information

Extraction from Text with Machine Learning and Natural Language Techniques. Technical

Report. University of Ottawa. http://balie.sourceforge.net/dnadeau05balie.pdf

Nadeau, David (2005b) Création de surcouche de documents hypertextes et traitement du langage

 120

naturel. Proc. Computational Linguistics in the North-East.

Nadeau, David and Turney, P. (2005) A Supervised Learning Approach to Acronym Identification.

Proc. Canadian Conference on Artificial Intelligence.

Nadeau, David; Turney, P. and Matwin, S. (2006) Unsupervised Named Entity Recognition:

Generating Gazetteers and Resolving Ambiguity. Proc. Canadian Conference on Artificial

Intelligence.

Nadeau, David and Sekine, S. (2007) A Survey of Named Entity Recognition and Classification. In:

Sekine, S. and Ranchhod, E. Named Entities: Recognition, classification and use. Special issue

of Lingvisticæ Investigationes. 30(1) pp. 3-26.

Narayanaswamy, Meenakshi; Ravikumar K. E. and Vijay-Shanker K. (2003) A Biological Named

Entity Recognizer. Proc. Pacific Symposium on Biocomputing.

Ohta, Tomoko; Tateisi, Y.; Kim, J.; Mima, H. and Tsujii, J. (2002) The GENIA Corpus: An

Annotated Research Abstract Corpus in Molecular Biology Domain. Proc. Human Language

Technology Conference.

Palmer, David D. and Day, D. S. (1997) A Statistical Profile of the Named Entity Task. Proc. ACL

Conference for Applied Natural Language Processing.

Park, Y. and Byrd, R. J. (2001) Hybrid Text Mining for Finding Abbreviations and Their Definitions,

Proc. of the 2001 Conference on Empirical Methods in Natural Language Processing.

Palmer, David D. and Day, D. S. (1997) A Statistical Profile of the Named Entity Task. Proc. ACL

Conference for Applied Natural Language Processing.

Pasca, Marius (2004) Acquisition of Categorized Named Entities for Web Search. In Proc.

Conference on Information and Knowledge Management.

Pasca, Marius; Lin, D.; Bigham, J.; Lifchits, A. and Jain, A. (2006) Organizing and Searching the

World Wide Web of Facts—Step One: The One-Million Fact Extraction Challenge. Proc.

National Conference on Artificial Intelligence.

Patrick, Jon; Whitelaw, C. and Munro, R. (2002) SLINERC: The Sydney Language-Independent

Named Entity Recogniser and Classifier. Proc. Conference on Natural Language Learning.

Pedersen, Ted (2002) A Baseline Methodology for Word Sense Disambiguation. Proc. Third

International Conference on Intelligent Text Processing and Computational Linguistics.

Petasis, Georgios, Vichot, F., Wolinski, F., Paliouras, G., Karkaletsis, V. and Spyropoulos, C. D.

(2001) Using Machine Learning to Maintain Rule-based Named-Entity Recognition and

Classification Systems. Proc. Conference of Association for Computational Linguistics.

Piskorski, Jakub (2004) Extraction of Polish Named-Entities. Proc. Conference on Language

Resources an Evaluation.

 121

Poibeau, Thierry (2003) The Multilingual Named Entity Recognition Framework. Proc. Conference

on European chapter of the Association for Computational Linguistics.

Poibeau, Thierry (2006) Dealing with Metonymic Readings of Named Entities. Proc. Annual

Conference of the Cognitive Science Society.

Poibeau, Thierry and Kosseim, L. (2001) Proper Name Extraction from Non-Journalistic Texts. Proc.

Computational Linguistics in the Netherlands.

Popov, Borislav; Kirilov, A.; Maynard, D. and Manov, D. (2004) Creation of reusable components

and language resources for Named Entity Recognition in Russian. Proc. Conference on

Language Resources and Evaluation.

Pustejovsky, J.; Castao, J.; Cochran, B.; Kotecki, M.; Morrell, M. and Rumshisky, A. (2001)

Extraction and Disambiguation of Acronym-Meaning Pairs in Medline, unpublished

manuscript.

Radev, Dragomir (1998) Learning Correlations between Linguistic Indicators and Semantic

Constraints: Reuse of Context-Dependent Descriptions of Entities. Proc. joint Conference of

the International Committee on Computational Linguistics and the Association for

Computational Linguistics.

Raghavan, Hema and Allan, J. (2004) Using Soundex Codes for Indexing Names in ASR documents.

Proc. Human Language Technology conference - North American chapter of the Association

for Computational Linguistics. Interdisciplinary Approaches to Speech Indexing and Retrieval

(workshop).

Rau, Lisa F. (1991) Extracting Company Names from Text. Proc. Conference on Artificial

Intelligence Applications of IEEE.

Ravin, Yael and Wacholder, N. (1996) Extracting Names from Natural-Language Text. IBM

Research Report RC 2033.

Riloff, Ellen and Jones, R (1999) Learning Dictionaries for Information Extraction using Multi-level

Bootstrapping. Proc. National Conference on Artificial Intelligence.

Rindfleisch, Thomas C.; Tanabe, L. and Weinstein, J. N. (2000) EDGAR: Extraction of Drugs, Genes

and Relations from the Biomedical Literature. Proc. Pacific Symposium on Biocomputing.

Sánchez, David and Moreno, A. (2005) Web Mining Techniques for Automatic Discovery of

Medical Knowledge. Proc. Conference on Artificial Intelligence in Medicine.

Santos, Diana; Seco, N.; Cardoso, N. and Vilela, R. (2006) HAREM: An Advanced NER Evaluation

Contest for Portuguese. Proc. International Conference on Language Resources and

Evaluation.

Schölkopf, Bernhard, Platt, J., Shawe-Taylor, J., Smola, A. J. and Williamson, R. C. (2001)

 122

Estimating the support of a High-Dimensional Distribution. Neural Computation, 13, pp. 1443-

1471.

Schwab, Ingo and Pohl, W. (1999) Learning User Profiles from Positive Examples. In Proc. of the

International Conference on Machine Learning & Applications.

Schwartz, A. and Hearst, M. (2003), A simple algorithm for identifying abbreviation definitions in

biomedical texts, In Proceedings of the Pacific Symposium on Biocomputing.

Sekine, Satoshi (1998) Nyu: Description of The Japanese NE System Used For Met-2. Proc. Message

Understanding Conference.

Sekine, Satoshi and Isahara, H. (2000) IREX: IR and IE Evaluation project in Japanese. Proc.

Conference on Language Resources and Evaluation.

Sekine, Satoshi and Nobata, C. (2004) Definition, dictionaries and tagger for Extended Named Entity

Hierarchy. Proc. Conference on Language Resources and Evaluation.

Settles, Burr (2004) Biomedical Named Entity Recognition Using Conditional Random Fields and

Rich Feature Sets. Proc. Conference on Computational Linguistics. Joint Workshop on Natural

Language Processing in Biomedicine and its Applications (workshop).

Shen D., Zhang, J., Zhou, G., Su, J. and Tan, C. L. (2003) Effective Adaptation of a Hidden Markov

Model-based Named Entity Recognizer for Biomedical Domain. Proc. Conference of

Association for Computational Linguistics. Natural Language Processing in Biomedicine

(workshop).

Shinyama, Yusuke and Sekine, S. (2004) Named Entity Discovery Using Comparable News Articles.

Proc. International Conference on Computational Linguistics.

Smith, David A. (2002) Detecting and Browsing Events in Unstructured Text. Proc. ACM SIGIR

Conference on Research and Development in Information Retrieval.

Srihari, Rohini and Li, W. (1999) Information Extraction Supported Question Answering. Proc. Text

Retrieval Conference.

Steinberger, Ralf and Pouliquen, B. (2007) Cross-lingual Named Entity Recognition. In: Sekine, S.

and Ranchhod, E. Named Entities: Recognition, classification and use. Special issue of

Lingvisticæ Investigationes. 30(1) pp.135-162.

Swan, Russell and Allan, J. (1999) Extracting Significant Time Varying Features from Text. Proc.

International Conference on Information Knowledge Management.

Szarvas, György; Farkas, R and Kocsor, A. (2006) A Multilingual Named Entity Recognition System

Using Boosting and C4.5 Decision Tree Learning Algorithms. Discovery Science 2006.

Taghva, K. and Gilbreth, J. (1999), Recognizing acronyms and their definitions, International journal

on Document Analysis and Recognition, pp. 191-198.

 123

Terra, Egidio and Clarke, C. (2003) Frequency Estimates for Statistical Word Similarity Measures.

Proc. Human Language Technology and North American Chapter of Association of

Computational Linguistics Conference.

Thielen, Christine (1995) An Approach to Proper Name Tagging for German. Proc. Conference of

European Chapter of the Association for Computational Linguistics. SIGDAT (workshop).

Tjong Kim Sang, Erik. F. (2002) Introduction to the CoNLL-2002 Shared Task: Language-

Independent Named Entity Recognition. Proc. Conference on Natural Language Learning.

Tjong Kim Sang, Erik. F. and De Meulder, F. (2003) Introduction to the CoNLL-2003 Shared Task:

Language-Independent Named Entity Recognition. Proc. Conference on Natural Language

Learning.

Tsuruoka, Yoshimasa and Tsujii, J. (2003) Boosting Precision and Recall of Dictionary-Based

Protein Name Recognition. Proc. Conference of Association for Computational Linguistics.

Natural Language Processing in Biomedicine (workshop).

Tufis, D. and Mason, O. (1998). Tagging Romanian Texts: a Case Study for QTAG, a Language

Independent Probabilistic Tagger, Proceedings of the First International Conference on

Language Resources and Evaluation.

Turney, Peter (2001) Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. Proc.

European Conference on Machine Learning.

Turney, Peter D. (2005) Measuring Semantic Similarity by Latent Relational Analysis. In Proc. Inter-

national Joint Conference on Artificial Intelligence.

Tzong-Han Tsai, Richard; Wu S.-H.; Chou, W.-C.; Lin, Y.-C.; He, D.; Hsiang, J.; Sung, T.-Y. and

Hsu, W.-L. (2006) Various Criteria in the Evaluation of Biomedical Named Entity

Recognition. BMC Bioinformatics. 7(92).

Vilar, David; Xu, J.; D’Haro, L. F. and Ney, H. (2006) Error Analysis of Statistical Machine

Translation Output. Proc. Language Resources and Evaluation conference

Wang, Liang-Jyh; Li, W.-C. and Chang, C.-H. (1992) Recognizing Unregistered Names for Mandarin

Word Identification. Proc. International Conference on Computational Linguistics.

Wang, Lee, Wang, C., Xie, X., Forman, J., Lu, Y., Ma, W.-Y. and Li, Y. (2005) Detecting Dominant

Locations from Search Queries. Proc. International ACM SIGIR Conference.

Whitelaw, Casey and Patrick, J. (2003) Evaluating Corpora for Named Entity Recognition Using

Character-Level Features. Proc. Australian Conference on Artificial Intelligence.

Witten, Ian. H.; Bray, Z.; Mahoui, M. and Teahan W. J. (1999) Using Language Models for Generic

Entity Extraction. Proc. International Conference on Machine Learning. Text Mining

(workshop).

 124

Witten, Ian H. and Frank, E. (2000) Data Mining: Practical machine learning tools with Java

implementations, Morgan Kaufmann, San Francisco.

Wolinski, Francis; Vichot, F. and Dillet, B. (1995) Automatic Processing Proper Names in Texts.

Proc. Conference on European Chapter of the Association for Computational Linguistics.

Yarowsky, David and Florian, R. (2002) Evaluating Sense Disambiguation across Diverse Parameter

Spaces. Journal of Natural Language Engineering. 8(2). pp. 293-310.

Yangarber, Roman; Lin, W. and Grishman, R. (2002) Unsupervised Learning of Generalized Names.

Proc. of International Conference on Computational Linguistics.

Yeates, S. (1999), Automatic Extraction of Acronyms from Text. In Third New Zealand Computer

Science Research Students' Conference.

Yu, H.; Hripcsak G. and Friedman C. (2002) Mapping abbreviations to full forms in biomedical

articles, Journal of the American Medical Informatics Association (9) pp. 262-272.

Yu, Shihong; Bai S. and Wu, P. (1998) Description of the Kent Ridge Digital Labs System Used for

MUC-7. Proc. Message Understanding Conference.

Zahariev, M. (2004). A (Acronyms), Ph.D. thesis, School of Computing Science, Simon Fraser

University.

Zhu, Jianhan; Uren, V. and Motta, E. (2005) ESpotter: Adaptive Named Entity Recognition for Web

Browsing. Proc. Conference Professional Knowledge Management. Intelligent IT Tools for

Knowledge Management Systems (workshop).

Zhu, Xingquan, Wu, X. and Chen Q. (2003) Eliminating Class Noise in Large Data-Sets, Proc. of the

International Conference on Machine Learning.

 125

Appendix: Seed words (system input)

<?xml version="1.0" ?>
<entityHierarchy InspiredBy="Satoshi Sekine, Ada Brunstein" Modification="December 12th 2006">
<entity type="name"><entity type="person">
<entity type="first_name" classwords="first name;given name" estimatedpopulation="10E3">
 <seed>Mary</seed> <seed>Elizabeth</seed>
 <seed>Rose</seed> <seed>Britney</seed>
 <seed>David</seed> <seed>Veronica</seed>
 <seed>Susan</seed> <seed>Thomas</seed>
 <seed>Robert</seed> <seed>Louise</seed>
 <seed>Aaron</seed> <seed>Napoleon</seed>
 <seed>James</seed> <seed>Catherine</seed>
 <seed>Michael</seed>
</entity>
<entity type="person_title" classwords="title" estimatedpopulation="10E0">
 <seed>Mr</seed> <seed>Msr</seed>
 <seed>Sir</seed> <seed>Madam</seed>
 <seed>Ms</seed> <seed>Mister</seed>
 <seed>Dr</seed> <seed>Jr</seed>
 <seed>Prof</seed> <seed>Doctor</seed>
 <seed>Lt</seed> <seed>Col</seed>
 <seed>Sgt</seed> <seed>Phd</seed>
 <seed>Miss</seed>
</entity>
<entity type="last_name" classwords="last name;familly name" estimatedpopulation="10E3">
 <seed>Smith</seed> <seed>Johnson</seed>
 <seed>O'Connor</seed> <seed>Tremblay</seed>
 <seed>Clinton</seed> <seed>Williams</seed>
 <seed>Miller</seed> <seed>Fletcher</seed>
 <seed>Woods</seed> <seed>Anderson</seed>
 <seed>Clark</seed> <seed>Robinson</seed>
 <seed>Peterson</seed> <seed>Foster</seed>
 <seed>Perkins</seed>
</entity>
<entity type="celebrity" classwords="celebrity;name" estimatedpopulation="10E3">
 <seed>Robert De Niro</seed> <seed>Edgar Allan Poe</seed>
 <seed>Albert Einstein</seed> <seed>Marie Curie</seed>
 <seed>Isaac Newton</seed> <seed>George Washington</seed>
 <seed>Galileo Galilei</seed> <seed>Charles Darwin</seed>
 <seed>William Shakespeare</seed> <seed>Abraham Lincoln</seed>
 <seed>Mark Twain</seed> <seed>Sigmund Freud</seed>
 <seed>Pablo Picasso</seed> <seed>Ernest Hemingway</seed>
 <seed>John F. Kennedy</seed>
</entity>
<entity type="vocation" classwords="vocation;profession" estimatedpopulation="10E2">
 <seed>firefighter</seed> <seed>journalist</seed>
 <seed>bodyguard</seed> <seed>nurse</seed>
 <seed>teacher</seed> <seed>Banker</seed>
 <seed>Athlete</seed> <seed>Entertainer</seed>
 <seed>Electrician</seed> <seed>Carpenter</seed>
 <seed>Union leader</seed> <seed>salesperson</seed>
 <seed>Civil Engineer</seed> <seed>Police Officer</seed>
 <seed>Dental Hygienist</seed>

 126

</entity>
<entity type="title" classwords="title" estimatedpopulation="10E2">
 <seed>Executive Director</seed> <seed>Chief administrative officer</seed>
 <seed>Chief Executive Officer</seed> <seed>manager</seed>
 <seed>Foreman</seed> <seed>secretary general</seed>
 <seed>vice president</seed> <seed>Treasurer</seed>
 <seed>Vice President</seed> <seed>chairman</seed>
 <seed>Vice Chairman</seed> <seed>representative</seed>
 <seed>Secretary</seed> <seed>Press Secretary</seed>
 <seed>President</seed>
</entity>
<entity type="character" classwords="character;fictional" estimatedpopulation="10E2">
 <seed>Mickey Mouse</seed> <seed>Pink Panther</seed>
 <seed>Peter Rabbit</seed> <seed>Pinocchio</seed>
 <seed>Yoda</seed> <seed>Tarzan</seed>
 <seed>Spider-Man</seed> <seed>Batman</seed>
 <seed>Captain America</seed> <seed>Superman</seed>
 <seed>Flash Gordon</seed> <seed>Peanuts</seed>
 <seed>Donald Duck</seed> <seed>Bambi</seed>
 <seed>Woody Woodpecker</seed>
</entity></entity>
<entity type="organization">
<entity type="company" classwords="company" estimatedpopulation="10E3">
 <seed>Citigroup Inc.</seed> <seed>Coca-Cola Company</seed>
 <seed>Groupe Danone</seed> <seed>Toyota Motor Corp.</seed>
 <seed>Verizon</seed> <seed>Continental Airlines</seed>
 <seed>General Electric</seed> <seed>Kellogg Company</seed>
 <seed>New York Times</seed> <seed>Panasonic</seed>
 <seed>US Airways</seed> <seed>Radio Shack</seed>
 <seed>Nokia</seed> <seed>Walgreens</seed>
 <seed>Office Depot</seed>
</entity>
<entity type="company_designator" classwords="company" estimatedpopulation="30">
 <seed>Co</seed> <seed>corp</seed>
 <seed>inc</seed> <seed>Ltd</seed>
 <seed>PLC</seed> <seed>AENP</seed>
 <seed>CPORA</seed> <seed>LLC</seed>
 <seed>L.L.C</seed> <seed>LP</seed>
 <seed>L.P</seed>
</entity>
<entity type="military" classwords="military" estimatedpopulation="10E2">
 <seed>Canadian Forces</seed> <seed>Israeli Defense Forces</seed>
 <seed>Marine Troops</seed> <seed>Italian Navy</seed>
 <seed>United States Marine Corps</seed> <seed>West India Regiment</seed>
 <seed>Serenissima Regiment</seed> <seed>Marina Militare</seed>
 <seed>Royal Marines</seed> <seed>Continental Marines</seed>
 <seed>Korps Mariniers</seed> <seed>Spanish Marine Infantry</seed>
 <seed>Italian Army</seed> <seed>Russian Naval Infantry</seed>
 <seed>Portuguese Navy</seed>
</entity>
<entity type="association" classwords="association" estimatedpopulation="10E2">
 <seed>Amnesty International</seed> <seed>Council of Europe</seed>
 <seed>World Bank</seed> <seed>United Nations</seed>
 <seed>Friends of the Earth</seed> <seed>International Monetary Fund</seed>
 <seed>Human Rights Watch</seed> <seed>World Health Organization</seed>
 <seed>League of Nations</seed> <seed>UNICEF</seed>

 127

 <seed>African Union</seed> <seed>Foreign Policy Association</seed>
 <seed>Commonwealth</seed> <seed>Asian Development Bank</seed>
 <seed>UNESCO</seed>
</entity>
<entity type="government" classwords="government" estimatedpopulation="10E2">
 <seed>Department of Justice</seed> <seed>DARPA</seed>
 <seed>NASA</seed> <seed>Department of Transportation</seed>
 <seed>Food and Drug Administration</seed> <seed>Department of Defense</seed>
 <seed>Department of Agriculture</seed> <seed>Department of Energy</seed>
 <seed>Securities and Exchange Commission</seed> <seed>National Science Foundation</seed>
 <seed>Social Security Administration</seed> <seed>Central Intelligence Agency</seed>
 <seed>Federal Communications Commission</seed> <seed>Department of Commerce</seed>
 <seed>Department of Labor</seed>
</entity>
<entity type="political_party" classwords="political party;political" estimatedpopulation="10E1">
 <seed>Democratic Party</seed> <seed>Republican Party</seed>
 <seed>Liberal Party of Canada</seed> <seed>Conservative Party of Canada</seed>
 <seed>New Democratic Party</seed> <seed>Libertarian Party</seed>
 <seed>Constitution Party</seed> <seed>Green Party</seed>
 <seed>Socialist Party</seed> <seed>Bloc Quebecois</seed>
 <seed>Labour Party</seed> <seed>Conservative Party</seed>
 <seed>Liberal Democrats</seed> <seed>Democratic Unionist Party</seed>
 <seed>The Greens</seed>
</entity>
<entity type="political_line" classwords="political movement;political" estimatedpopulation="50E0">
 <seed>democrat</seed> <seed>Communist</seed>
 <seed>socialist</seed> <seed>Fascist</seed>
 <seed>republican</seed> <seed>Republican</seed>
 <seed>Libertarian</seed> <seed>Independent</seed>
 <seed>anarchist</seed> <seed>Leninism</seed>
 <seed>Marxism</seed> <seed>Trotskyism</seed>
 <seed>nationalism</seed> <seed>liberalism</seed>
 <seed>totalitarianism</seed>
</entity>
<entity type="nationality" classwords="nationality;nation" estimatedpopulation="20E1">
 <seed>American</seed> <seed>japanese</seed>
 <seed>Israeli</seed> <seed>korean</seed>
 <seed>chinese</seed> <seed>Dutch</seed>
 <seed>Arabic</seed> <seed>Portuguese</seed>
 <seed>Turkish</seed> <seed>Czech</seed>
 <seed>Algerian</seed> <seed>Canadian</seed>
 <seed>Taiwanese</seed> <seed>Haitian</seed>
 <seed>Mexican</seed>
</entity>
<entity type="market" classwords="market" estimatedpopulation="10E1">
 <seed>Amsterdam Stock Exchange</seed> <seed>NASDAQ</seed>
 <seed>Toronto Stock Exchange</seed> <seed>Tokyo Stock Exchange</seed>
 <seed>NYSE</seed> <seed>Korea Stock Exchange</seed>
 <seed>Philadelphia Stock Exchange</seed> <seed>London Stock Exchange</seed>
 <seed>Australian Stock Exchange</seed> <seed>London Metal Exchange</seed>
 <seed>Helsinki Stock Exchange</seed> <seed>Taiwan Stock Exchange</seed>
 <seed>Winnipeg Commodity Exchange</seed> <seed>Singapore Exchange</seed>
 <seed>NYMEX</seed>
</entity>
<entity type="religious_group" classwords="religious group;religious" estimatedpopulation="10E1">
 <seed>Jewish</seed> <seed>catholic</seed>

 128

 <seed>Hindu</seed> <seed>Muslim</seed>
 <seed>protestant</seed> <seed>Buddhist</seed>
 <seed>Protestant</seed> <seed>Taoist</seed>
 <seed>Anglican</seed> <seed>Christian</seed>
 <seed>Sindhi</seed> <seed>Hindi</seed>
 <seed>Gujarati</seed> <seed>Telugu</seed>
 <seed>Tamil</seed>
</entity>
<entity type="sports_team" classwords="team;sports" estimatedpopulation="10E2">
 <seed>Los Angeles Raiders</seed> <seed>New York Mets</seed>
 <seed>Calgary Flames</seed> <seed>Montreal Canadiens</seed>
 <seed>Dallas Stars</seed> <seed>Edmonton Oilers</seed>
 <seed>Los Angeles Kings</seed> <seed>Houston Astros</seed>
 <seed>San Diego Padres</seed> <seed>Pittsburgh Pirates</seed>
 <seed>Cincinnati Reds</seed> <seed>New York Knicks</seed>
 <seed>Detroit Pistons</seed> <seed>Indiana Pacers</seed>
 <seed>Boston Celtics</seed>
</entity></entity>
<entity type="location"><entity type="geo_political">
<entity type="city" classwords="city;town" estimatedpopulation="10E3">
 <seed>Ottawa</seed> <seed>Toronto</seed>
 <seed>Paris</seed> <seed>Dallas</seed>
 <seed>Sydney</seed> <seed>Boston</seed>
 <seed>New York</seed> <seed>Amsterdam</seed>
 <seed>Nashville</seed> <seed>Rome</seed>
 <seed>Barcelona</seed> <seed>Montreal</seed>
 <seed>Dublin</seed> <seed>Washington DC</seed>
 <seed>Prague</seed>
</entity>
<entity type="state_province" classwords="state;province" estimatedpopulation="10E1">
 <seed>Quebec</seed> <seed>Ontario</seed>
 <seed>Texas</seed> <seed>Alaska</seed>
 <seed>California</seed> <seed>Rhode Island</seed>
 <seed>British Columbia</seed> <seed>Virginia</seed>
 <seed>Louisiana</seed> <seed>North Carolina</seed>
 <seed>Manitoba</seed> <seed>Michigan</seed>
 <seed>Hawaii</seed> <seed>Delaware</seed>
 <seed>Florida</seed>
</entity>
<entity type="county" classwords="state;province" estimatedpopulation="10E1">
 <seed>Autauga County</seed> <seed>Albany County</seed>
 <seed>Washington County</seed> <seed>York County</seed>
 <seed>Pacific County</seed> <seed>Tuscaloosa County</seed>
 <seed>Montgomery County</seed> <seed>Taylor County</seed>
 <seed>Williamson County</seed> <seed>Tallapoosa County</seed>
 <seed>Sevier County</seed> <seed>Summit County</seed>
 <seed>Rockingham County</seed> <seed>Wayne County</seed>
 <seed>Winneshiek County</seed>
</entity>
<entity type="country" classwords="country" estimatedpopulation="20E1">
 <seed>Canada</seed> <seed>United States</seed>
 <seed>France</seed> <seed>Egypt</seed>
 <seed>Morocco</seed> <seed>New Zealand</seed>
 <seed>South Africa</seed> <seed>Indonesia</seed>
 <seed>Iraq</seed> <seed>Togo</seed>
 <seed>Germany</seed> <seed>Brasil</seed>

 129

 <seed>Netherlands</seed> <seed>Austria</seed>
 <seed>Mexico</seed>
</entity></entity>
<entity type="region" classwords="region;subregion" estimatedpopulation="10E1">
 <seed>Latin America</seed> <seed>Caribbean</seed>
 <seed>Middle East</seed> <seed>Scandinavia</seed>
 <seed>Australasia</seed> <seed>Asia Pacific</seed>
 <seed>North America</seed> <seed>Mediterranean</seed>
 <seed>Eastern Europe</seed> <seed>Western Europe</seed>
 <seed>North Africa</seed> <seed>South Asia</seed>
 <seed>East Africa</seed> <seed>Central America</seed>
 <seed>South America</seed>
</entity>
<entity type="geological">
<entity type="landform" classwords="landform;mountain" estimatedpopulation="10E1">
 <seed>Mount Everest</seed> <seed>K2</seed>
 <seed>Kangchenjunga</seed> <seed>Lhotse</seed>
 <seed>Makalu</seed> <seed>Manaslu</seed>
 <seed>Dhaulagiri</seed> <seed>Annapurna</seed>
 <seed>Cho Oyu</seed> <seed>Broad Peak</seed>
 <seed>Nanga Parbat</seed> <seed>Gasherbrum II</seed>
 <seed>Gasherbrum I</seed> <seed>Shishapangma</seed>
 <seed>Shisha Pangma</seed>
</entity>
<entity type="waterform">
<entity type="river" classwords="river;waterway" estimatedpopulation="10E2">
 <seed>Tennessee River</seed> <seed>Mississippi river</seed>
 <seed>Buller river</seed> <seed>Amazon river</seed>
 <seed>Orange River</seed> <seed>Susquehanna River</seed>
 <seed>Savannah River</seed> <seed>Missouri River</seed>
 <seed>Mackenzie River</seed> <seed>Murray River</seed>
 <seed>Arkansas River</seed> <seed>Niagara River</seed>
 <seed>Hudson River</seed> <seed>Colorado River</seed>
 <seed>Columbia River</seed>
</entity>
<entity type="lake" classwords="lake" estimatedpopulation="10E2">
 <seed>Lake Michigan</seed> <seed>Lake Superior</seed>
 <seed>Lake Ontario</seed> <seed>Lake Huron</seed>
 <seed>Lake Erie</seed> <seed>Lake Baikal</seed>
 <seed>Lhagba Pool</seed> <seed>Nettilling Lake</seed>
 <seed>Lake Toba</seed> <seed>Lake Wanapitei</seed>
 <seed>Lake Enriquillo</seed> <seed>Lake Victoria</seed>
 <seed>Lake Vostok</seed> <seed>Lake Eyre</seed>
 <seed>Lake Titicaca</seed>
</entity>
<entity type="sea" classwords="sea" estimatedpopulation="10E1">
 <seed>Dead sea</seed> <seed>Mediterranean Sea</seed>
 <seed>Red sea</seed> <seed>Caspian Sea</seed>
 <seed>Irish Sea</seed> <seed>Gulf of St. Lawrence</seed>
 <seed>Gulf of Mexico</seed> <seed>Philippine Sea</seed>
 <seed>Bohai Sea</seed> <seed>Timor Sea</seed>
 <seed>North Sea</seed> <seed>Baltic Sea</seed>
 <seed>Beaufort Sea</seed> <seed>Norwegian Sea</seed>
 <seed>Gulf of Oman</seed>
</entity>
<entity type="ocean_bay" classwords="ocean;bay" estimatedpopulation="10E0">

 130

 <seed>Hudson bay</seed> <seed>Atlantic ocean</seed>
 <seed>Pacific ocean</seed> <seed>Indian ocean</seed>
 <seed>Artic ocean</seed> <seed>Antartic ocean</seed>
 <seed>Baffin Bay</seed> <seed>Bay of Fundy</seed>
 <seed>Bay of Biscay</seed> <seed>James Bay</seed>
 <seed>Khanty Ocean</seed> <seed>Paleo-Tethys Ocean</seed>
 <seed>Proto-Tethys Ocean</seed> <seed>Pan-African Ocean</seed>
 <seed>Southern Ocean</seed>
</entity></entity>
<entity type="continent" classwords="continent" estimatedpopulation="10E0">
 <seed>North America</seed> <seed>South America</seed>
 <seed>Europe</seed> <seed>Asia</seed>
 <seed>Africa</seed> <seed>Antarctica</seed>
 <seed>Antarctic</seed> <seed>Australia</seed>
</entity></entity>
<entity type="astral_body">
<entity type="planet" classwords="planet" estimatedpopulation="10E0">
 <seed>Pluto</seed> <seed>Mercury</seed>
 <seed>earth</seed> <seed>Mars</seed>
 <seed>Venus</seed> <seed>Saturn</seed>
 <seed>Ceres</seed> <seed>Jupiter</seed>
 <seed>Eris</seed> <seed>Uranus</seed>
 <seed>Neptun</seed> <seed>Moon</seed>
 <seed>Titan</seed> <seed>Miranda</seed>
 <seed>Phobos</seed>
</entity>
<entity type="star" classwords="star" estimatedpopulation="10E1">
 <seed>Solar system</seed> <seed>Orion</seed>
 <seed>Great Bear</seed> <seed>Zeta Ophiuchi</seed>
 <seed>Rigel</seed> <seed>Altair</seed>
 <seed>Procyon A</seed> <seed>Sun</seed>
 <seed>Epsilon Indi</seed> <seed>Proxima Centauri</seed>
 <seed>BPM 37093</seed> <seed>Nemesis</seed>
 <seed>P Cygni</seed> <seed>Zeta Bootis</seed>
 <seed>Cygnus X-1</seed>
</entity></entity></entity>
<entity type="facility"><entity type="property">
<entity type="amphitheatre" classwords="amphitheatre" estimatedpopulation="10E1">
 <seed>Molson amphitheatre</seed> <seed>Universal amphitheatre</seed>
 <seed>Hollywood Bowl</seed> <seed>Colosseum</seed>
 <seed>Ford amphitheatre</seed> <seed>Arles Amphitheatre</seed>
 <seed>Mediolanum Santonum</seed> <seed>Perigueux</seed>
 <seed>Amphitheatrum Castrense</seed> <seed>Ludus Magnus</seed>
 <seed>Porolissum</seed> <seed>Verona Arena</seed>
 <seed>Augusta Raurica</seed> <seed>Caerleon</seed>
 <seed>Venta Silurum</seed>
</entity>
<entity type="cathedral" classwords="cathedral" estimatedpopulation="10E1">
 <seed>St Patrick's Cathedral</seed> <seed>Saint Louis Cathedral</seed>
 <seed>Peterborough Cathedral</seed> <seed>Saint Raphael's Cathedral</seed>
 <seed>Bristol cathedral</seed> <seed>Canterberry Cathedral</seed>
 <seed>Cathedral of Sao Paulo</seed> <seed>Wells Cathedral</seed>
 <seed>Wawel Cathedral</seed> <seed>Cathedral of Parma</seed>
 <seed>Saint Louis Cathedral</seed> <seed>Lutheran Helsinki Cathedral</seed>
 <seed>Mexico City Metropolitan Cathedral</seed> <seed>Ulm Munster</seed>
 <seed>Saint Isaac's Cathedral</seed>

 131

</entity>
<entity type="castle" classwords="castle" estimatedpopulation="50E0">
 <seed>Prague Castle</seed> <seed>Uppsala Castle</seed>
 <seed>Bran Castle</seed> <seed>St. Olaf's Castle</seed>
 <seed>Trakai Island Castle</seed> <seed>Medina del Campo</seed>
 <seed>Wawel Castle</seed> <seed>Craigievar Castle</seed>
 <seed>Cahir Castle</seed> <seed>Moscow Kremlin</seed>
 <seed>Harlech Castle</seed> <seed>Aberdeenshire</seed>
 <seed>Hunyad Castle</seed> <seed>Turku Castle</seed>
 <seed>Castrum Danorum</seed>
</entity>
<entity type="skyscraper" classwords="skyscraper;building" estimatedpopulation="10E1">
 <seed>Taipei 101</seed> <seed>Sears tower</seed>
 <seed>Empire State Building</seed> <seed>Bank of China Tower</seed>
 <seed>Chrysler Building</seed> <seed>Central Plaza</seed>
 <seed>John Hancock Center</seed> <seed>CITIC Plaza</seed>
 <seed>Petronas Towers</seed> <seed>Shun Hing Square</seed>
 <seed>AT&T Corporate Center</seed> <seed>Jin Mao Building</seed>
 <seed>Emirates Office Tower</seed> <seed>Baiyoke Tower II</seed>
 <seed>First Canadian Place</seed>
</entity>
<entity type="sport_place" classwords="stadium;arena" estimatedpopulation="10E1">
 <seed>Wrigley Field</seed> <seed>Busch Stadium</seed>
 <seed>Yankee stadium</seed> <seed>Allianz Arena</seed>
 <seed>Cameron Indoor Stadium</seed> <seed>Tiger Stadium</seed>
 <seed>Minute Maid Park</seed> <seed>Bank One Ballpark</seed>
 <seed>Comiskey Park</seed> <seed>Crosley Field</seed>
 <seed>Candlestick Park</seed> <seed>Rogers Centre</seed>
 <seed>Fenway Park</seed> <seed>Qualcomm Stadium</seed>
 <seed>Griffith Stadium</seed>
</entity>
<entity type="school" classwords="school;college;university" estimatedpopulation="10E1">
 <seed>University of California</seed> <seed>University of Ottawa</seed>
 <seed>Harvard university</seed> <seed>Acadia University</seed>
 <seed>University of Otago</seed> <seed>University of Michigan</seed>
 <seed>University of Canterbury</seed> <seed>Northwestern University</seed>
 <seed>University of Toronto</seed> <seed>University of Minnesota</seed>
 <seed>La Trobe University</seed> <seed>University of Utah</seed>
 <seed>University of Cambridge</seed> <seed>University of Connecticut</seed>
 <seed>Johns Hopkins University</seed>
</entity>
<entity type="museum" classwords="museum" estimatedpopulation="10E1">
 <seed>Metropolitan Museum of Art</seed> <seed>Museum of Natural History</seed>
 <seed>Louvre</seed> <seed>Guggenheim museum</seed>
 <seed>British Museum</seed> <seed>National Gallery of Art</seed>
 <seed>Art Institute of Chicago</seed> <seed>Museum of Modern Art</seed>
 <seed>Whitney Museum of American Art</seed> <seed>National Gallery</seed>
 <seed>Tate Gallery</seed> <seed>Philadelphia Museum of Art</seed>
 <seed>National Palace Museum</seed> <seed>Museo del Prado</seed>
 <seed>High Museum of Art</seed>
</entity>
<entity type="airport" classwords="airport" estimatedpopulation="10E1">
 <seed>Croydon Airport</seed> <seed>Heathrow airport</seed>
 <seed>Linate Airport</seed> <seed>Zurich International Airport</seed>
 <seed>Auckland International Airport</seed> <seed>Frankfurt International Airport</seed>
 <seed>Taliedo Airport</seed> <seed>Philadelphia International Airport</seed>

 132

 <seed>Indira Gandhi International Airport</seed> <seed>O'Hare International Airport</seed>
 <seed>Los Angeles International Airport</seed> <seed>Liverpool John Lennon Airport</seed>
 <seed>John F. Kennedy International Airport</seed> <seed>Gardermoen Airport</seed>
 <seed>Stewart International Airport</seed>
</entity>
<entity type="port" classwords="port" estimatedpopulation="10E1">
 <seed>Port of New York</seed> <seed>Sydney Harbour</seed>
 <seed>Port of Antwerp</seed> <seed>Port of Duluth</seed>
 <seed>Port of Hong Kong</seed> <seed>Nhava Sheva</seed>
 <seed>Port of Montreal</seed> <seed>Chennai Port</seed>
 <seed>Port of Oakland</seed> <seed>Port of Vancouver</seed>
 <seed>Port of Shanghai</seed> <seed>Port of Rotterdam</seed>
 <seed>Port Klang</seed> <seed>Port of Los Angeles</seed>
 <seed>Port Miou</seed>
</entity>
<entity type="library" classwords="library" estimatedpopulation="10E1">
 <seed>Library of Congress</seed> <seed>National Library of Education</seed>
 <seed>Malmo City Library</seed> <seed>Geisel Library</seed>
 <seed>British Library</seed> <seed>Bodleian Library</seed>
 <seed>Library of Alexandria</seed> <seed>Library of Gundishapur</seed>
 <seed>Francis Trigge Chained Library</seed> <seed>Library and Archives Canada</seed>
 <seed>Library of Alencon</seed> <seed>Bibliotheque Nationale de France</seed>
 <seed>Vatican Library</seed> <seed>Mitchell Library</seed>
 <seed>Harold B. Lee Library</seed>
</entity>
<entity type="hotel" classwords="hotel" estimatedpopulation="10E1">
 <seed>Waldorf Astoria</seed> <seed>hotel Sacher</seed>
 <seed>Grand Hotel Europe</seed> <seed>Ritz Hotel</seed>
 <seed>Beverly Hills Hotel</seed> <seed>Cecilienhof</seed>
 <seed>Raffles Hotel</seed> <seed>Hotel Chelsea</seed>
 <seed>Chateau Marmont</seed> <seed>Hotel Hermitage</seed>
 <seed>Palazzo Versace</seed> <seed>Hotel George V</seed>
 <seed>Hotel Bel-Air</seed> <seed>Grand Hotel Europe</seed>
</entity>
<entity type="hospital" classwords="hospital" estimatedpopulation="10E1">
 <seed>Charite</seed> <seed>Guy's Hospital</seed>
 <seed>Allgemeines Krankenhaus</seed> <seed>hotel-Dieu</seed>
 <seed>Hospicio Cabanas</seed> <seed>Pennsylvania General Hospital</seed>
 <seed>Gillette Children's Specialty Healthcare</seed><seed>Turriff Cottage Hospital</seed>
 <seed>Holy Cross Hospital</seed> <seed>Shriners Hospital-Canada</seed>
 <seed>Fairview Hospital</seed> <seed>Bethlem Hospital</seed>
 <seed>Easton Hospital</seed> <seed>Victoria General Hospital</seed>
 <seed>Christ Hospital</seed>
</entity></entity>
<entity type="line">
<entity type="road" classwords="road" estimatedpopulation="10E2">
 <seed>Garden State Parkway</seed> <seed>Queen Elizabeth way</seed>
 <seed>European route</seed> <seed>Alaska highway</seed>
 <seed>Trans-Canada highway</seed> <seed>Jefferson Highway</seed>
 <seed>Lincoln Highway</seed> <seed>New Jersey Turnpike</seed>
 <seed>Great River Road</seed> <seed>Coquihalla Highway</seed>
 <seed>400-Series Highways</seed> <seed>Boston Post Road</seed>
 <seed>Yellowhead Highway</seed> <seed>Trans-Canada Highway</seed>
 <seed>Pan-American Highway</seed>
</entity>
<entity type="bridge" classwords="bridge" estimatedpopulation="10E1">

 133

 <seed>Brooklyn bridge</seed> <seed>Golden Gate bridge</seed>
 <seed>Tower Bridge</seed> <seed>Confederation bridge</seed>
 <seed>Millau viaduct</seed> <seed>Sydney Harbour Bridge</seed>
 <seed>Mackinac Bridge</seed> <seed>Tacoma Narrows Bridge</seed>
 <seed>Lake Pontchartrain Causeway</seed> <seed>Trajan's bridge</seed>
 <seed>Vasco da Gama Bridge</seed> <seed>Tsing Ma Bridge</seed>
 <seed>Sundial Bridge</seed> <seed>Akashi-Kaikyo Bridge</seed>
 <seed>Victoria Falls Bridge</seed>
</entity>
<entity type="station" classwords="station" estimatedpopulation="10E1">
 <seed>London Victoria Station</seed> <seed>Sydney Bus Depot</seed>
 <seed>Jerusalem Central Bus Station</seed> <seed>South Station</seed>
 <seed>The Union Station GO Bus Terminal</seed> <seed>Kyoto Station</seed>
 <seed>Shinjuku Station</seed> <seed>Ikebukuro Station</seed>
 <seed>Nagoya Station</seed> <seed>Grand Central Terminal</seed>
 <seed>Toronto Bus Terminal</seed> <seed>Leningradsky Rail Terminal</seed>
 <seed>Lewes railway station</seed> <seed>Central Station</seed>
 <seed>Union Station</seed>
</entity>
<entity type="railroad" classwords="railroad" estimatedpopulation="10E1">
 <seed>Amtrak</seed> <seed>Canadian National</seed>
 <seed>Canadian Pacific Railway</seed> <seed>Metro-North Railroad</seed>
 <seed>Ferromex</seed> <seed>Great Western Railway</seed>
 <seed>London and North Eastern Railway</seed> <seed>Southern Railway</seed>
 <seed>London, Midland and Scottish Railway</seed><seed>SNCF</seed>
 <seed>Okinawa Monorail</seed> <seed>Tsukuba Express</seed>
 <seed>Toden Arakawa Line</seed> <seed>Kowloon-Canton Railway</seed>
 <seed>Qinghai-Tibet Railway</seed>
</entity></entity>
<entity type="park" classwords="park" estimatedpopulation="10E1">
 <seed>Elk island National Park</seed> <seed>Glacier National Park</seed>
 <seed>Jasper national park</seed> <seed>Banff national park</seed>
 <seed>Forillon national park</seed> <seed>Wood Buffalo National Park</seed>
 <seed>Yoho National Park</seed> <seed>Waterton Lakes National Park</seed>
 <seed>Mount Revelstoke National Park</seed> <seed>Kootenay National Park</seed>
 <seed>Cape Breton Highlands National Park</seed> <seed>Kouchibouguac National Park</seed>
 <seed>Pukaskwa National Park</seed> <seed>Fundy National Park</seed>

<seed>Prince Edward Island National Park</seed>
</entity>
<entity type="amusement_park" classwords="amusement park" estimatedpopulation="10E1">
 <seed>Adventure Island</seed> <seed>Busch gardens</seed>
 <seed>Canada's Wonderland</seed> <seed>Marineland</seed>
 <seed>La Ronde</seed> <seed>Luna Park</seed>
 <seed>Disneyland</seed> <seed>Epcot Center</seed>
 <seed>The Magic Kingdom</seed> <seed>Bakken</seed>
 <seed>Prater</seed> <seed>Magic Mountain</seed>
 <seed>Legoland</seed> <seed>Alton Towers</seed>
 <seed>Blackpool Pleasure Beach</seed> <seed>Sea World</seed>
 <seed>Playland</seed> <seed>Dreamworld</seed>
 <seed>Phantasialand</seed> <seed>Pleasure Island</seed>
</entity>
<entity type="monument" classwords="monument" estimatedpopulation="10E1">
 <seed>Statue of Liberty</seed> <seed>Eiffel tower</seed>
 <seed>Great Sphinx of Giza</seed> <seed>Taj Mahal</seed>
 <seed>Great Wall</seed> <seed>The Great Wall</seed>
 <seed>Colosseum</seed> <seed>Big Ben</seed>

 134

 <seed>Dome of the Rock</seed> <seed>Mount Rushmore</seed>
 <seed>Tower of Pisa</seed> <seed>Wailing Wall</seed>
 <seed>Parthenon</seed> <seed>Ming Tombs</seed>
 <seed>Stonehedge</seed>
</entity></entity>
<entity type="product"><entity type="vehicules">
<entity type="car" classwords="car" estimatedpopulation="10E2">
 <seed>Volkswagen Golf</seed> <seed>Honda Civic</seed>
 <seed>GMC Yukon</seed> <seed>Toyota Prius</seed>
 <seed>Ford Focus</seed> <seed>Volkswagen Jetta</seed>
 <seed>Toyota Corolla</seed> <seed>Subaru Impreza</seed>
 <seed>Hyundai Elantra</seed> <seed>Nissan Sentra</seed>
 <seed>Honda Accord</seed> <seed>Hyundai Accent</seed>
 <seed>Fiat Stilo</seed> <seed>Chrysler PT Cruiser</seed>
 <seed>Toyota Camry</seed>
</entity>
<entity type="ship" classwords="ship" estimatedpopulation="10E1">
 <seed>Queen Mary 2</seed> <seed>Titanic</seed>
 <seed>Wilhelm Gustloff</seed> <seed>Great Eastern</seed>
 <seed>Calypso</seed> <seed>Queen Mary</seed>
 <seed>Lusitania</seed> <seed>Olympic</seed>
 <seed>Exxon Valdez</seed> <seed>Bismarck</seed>
 <seed>Lancastria</seed> <seed>Queen Elizabeth</seed>
 <seed>Empress of Ireland</seed> <seed>Kon-Tiki</seed>
 <seed>Freedom of the Seas</seed>
</entity>
<entity type="train" classwords="train" estimatedpopulation="10E1">
 <seed>Orient Express</seed> <seed>Royal Canadian Pacific</seed>
 <seed>Rovos Rail</seed> <seed>Palace on Wheels</seed>
 <seed>Trans-Siberian Express</seed> <seed>Bullet Train</seed>
 <seed>Eurostar</seed> <seed>Bulgaria Express</seed>
 <seed>Glacier Express</seed> <seed>Golden Arrow</seed>
 <seed>Bluenose</seed> <seed>Atlantic Express</seed>
 <seed>20th Century Limited</seed> <seed>Auto Train</seed>
 <seed>Bluebonnet</seed>
</entity>
<entity type="aircraft" classwords="aircraft" estimatedpopulation="10E1">
 <seed>Constellation</seed> <seed>Bell X1</seed>
 <seed>Northrop x15</seed> <seed>U2 spy plane</seed>
 <seed>Boeing 747</seed> <seed>Lancair</seed>
 <seed>Eurofighter</seed> <seed>Voyager</seed>
 <seed>Nemesis</seed> <seed>Grippen</seed>
 <seed>Starduster too</seed> <seed>Pushy Galore</seed>
 <seed>Piagio Avanti</seed> <seed>X15</seed>
 <seed>Boomerang</seed>
</entity>
<entity type="spaceship" classwords="spaceship;spacecraft" estimatedpopulation="10E1">
 <seed>Columbia</seed> <seed>Discovery</seed>
 <seed>Endeavour</seed> <seed>Apollo 11</seed>
 <seed>International Space Station</seed> <seed>Atlantis</seed>
 <seed>Challenger</seed> <seed>Spacelab</seed>
 <seed>Enterprise</seed> <seed>Cassini-Huygens</seed>
 <seed>Skylab</seed> <seed>SpaceShipOne</seed>
 <seed>Soyuz</seed> <seed>Mir</seed>
 <seed>Shenzhou Spacecraft</seed>
</entity>

 135

</entity>
<entity type="art">
<entity type="opera_musical" classwords="opera;musical" estimatedpopulation="10E1">
 <seed>The Fantasticks</seed> <seed>Les Miserables</seed>
 <seed>Miss Saigon</seed> <seed>Chicago</seed>
 <seed>The Lion King</seed> <seed>Cabaret</seed>
 <seed>My Fair Lady</seed> <seed>Cats</seed>
 <seed>Evita</seed> <seed>Annie</seed>
 <seed>Guys and Dolls</seed> <seed>Beauty and the Beast</seed>
 <seed>Jesus Christ Superstar</seed> <seed>Godspell</seed>
 <seed>Rent</seed>
</entity>
<entity type="song" classwords="song;composition" estimatedpopulation="10E2">
 <seed>Aqualung</seed> <seed>Bohemian Rhapsody</seed>
 <seed>Hey Jude</seed> <seed>Hotel California</seed>
 <seed>Johnny B. Goode</seed> <seed>Good Vibrations</seed>
 <seed>Imagine</seed> <seed>Heartbreak Hotel</seed>
 <seed>Jailhouse Rock</seed> <seed>Every Breath You Take</seed>
 <seed>Brown Eyed Girl</seed> <seed>Yesterday</seed>
 <seed>Bridge Over Troubled Water</seed> <seed>Light My Fire</seed>
 <seed>California Girls</seed>
</entity>
<entity type="painting" classwords="painting" estimatedpopulation="10E1">
 <seed>Mona Lisa</seed> <seed>Les Demoiselles</seed>
 <seed>Still Life</seed> <seed>Scream</seed>
 <seed>The Kiss</seed> <seed>Birds On A Beach</seed>
 <seed>Garden Still Life</seed> <seed>Hommage a Brohmann</seed>
 <seed>Garden of Earthly Delights</seed> <seed>Pear</seed>
 <seed>Vase of Flowers</seed> <seed>Self-Portrait</seed>

<seed>Still Life: Vase with Twelve Sunflowers</seed><seed>The Matador</seed>
<seed>La Joie de Vivre</seed>

</entity>
<entity type="sculpture" classwords="sculpture" estimatedpopulation="10E1">
 <seed>Charging Bull</seed> <seed>Fountain of Neptune</seed>
 <seed>The Thinker</seed> <seed>David</seed>
 <seed>La Joute</seed> <seed>Venus of Melos</seed>
 <seed>Colossus of Rhodes</seed> <seed>Venus of Lespugue</seed>
 <seed>Angel of the North</seed> <seed>Lady of Auxerre</seed>
 <seed>The Great Bear</seed> <seed>Kleobis and Biton</seed>
 <seed>Spiral Jetty</seed> <seed>Goddess of Democracy</seed>
 <seed>Falling Autumn Leaves</seed>
</entity></entity>
<entity type="media">
<entity type="broadcast" classwords="broadcast;tv" estimatedpopulation="10E2">
 <seed>60 Minutes</seed> <seed>Jeopardy</seed>
 <seed>Seinfeld</seed> <seed>Pokemon</seed>
 <seed>Access Hollywood</seed> <seed>Good Morning, America</seed>
 <seed>Today</seed> <seed>The Outer Limits</seed>
 <seed>The Practice</seed> <seed>The Ed Sullivan Show</seed>
 <seed>Oprah</seed> <seed>Tonight Show</seed>
 <seed>C.S.I.</seed> <seed>Wheel of Fortune</seed>
 <seed>The Early Show</seed>
</entity>
<entity type="movie" classwords="movie" estimatedpopulation="10E2">
 <seed>The Godfather</seed> <seed>The Shawshank Redemption</seed>
 <seed>Star Wars</seed> <seed>Citizen Kane</seed>

 136

 <seed>Monty Python and the Holy Grail</seed> <seed>Casablanca</seed>
 <seed>Schindler's List</seed> <seed>Pulp Fiction</seed>
 <seed>2001: A Space Odyssey</seed> <seed>The Wizard of Oz</seed>
 <seed>Blade Runner</seed> <seed>Raiders of the Lost Ark</seed>
 <seed>Goodfellas</seed> <seed>Chinatown</seed>

<seed>One Flew Over the Cuckoo's Nest</seed>
</entity>
<entity type="book" classwords="book;novel" estimatedpopulation="10E2">
 <seed>Harry Potter and the Half-blood Prince</seed><seed>The Da Vinci Code</seed>
 <seed>The Historian</seed> <seed>Fast food nation</seed>
 <seed>The world is flat</seed> <seed>Master of the Game</seed>
 <seed>The Age of Reason</seed> <seed>Animal Farm</seed>
 <seed>Bible</seed> <seed>The Blue Lotus</seed>
 <seed>Mein Kampf</seed> <seed>1984</seed>
 <seed>Ulysses</seed> <seed>Brave New World</seed>
 <seed>The Satanic Verses</seed>
</entity>
<entity type="newspaper" classwords="newspaper" estimatedpopulation="10E1">
 <seed>New York Times</seed> <seed>Chicago Tribune</seed>
 <seed>Le Monde</seed> <seed>Washington Post</seed>
 <seed>The Globe and Mail</seed> <seed>Jerusalem Post</seed>
 <seed>China Daily</seed> <seed>The Nation</seed>
 <seed>National Post</seed> <seed>USA Today</seed>
 <seed>The Guardian</seed> <seed>The Boston Globe</seed>
 <seed>San Jose Mercury News</seed> <seed>International Herald Tribune</seed>
 <seed>Philadelphia Inquirer</seed>
</entity>
<entity type="magazine" classwords="magazine" estimatedpopulation="10E1">
 <seed>Times Magazine</seed> <seed>Forbes</seed>
 <seed>Vogue</seed> <seed>Metropolitan</seed>
 <seed>Wired</seed> <seed>Current History</seed>
 <seed>Newsweek</seed> <seed>Outside</seed>
 <seed>Guitar Player</seed> <seed>PC Magazine</seed>
 <seed>Popular Science</seed> <seed>Popular Mechanics</seed>
 <seed>American Heritage</seed> <seed>Scientific American</seed>
 <seed>Rolling Stone</seed>
</entity></entity>
<entity type="weapon" classwords="weapon" estimatedpopulation="10E2">
 <seed>knife</seed> <seed>bayonet</seed>
 <seed>handgun</seed> <seed>sniper rifle</seed>
 <seed>Shotgun</seed> <seed>Patriot missile</seed>
 <seed>44 Magnums</seed> <seed>spear</seed>
 <seed>cannon</seed> <seed>Maxim gun</seed>
 <seed>MP5K</seed> <seed>Colt .45 Automatic</seed>
 <seed>Thompson submachine gun</seed> <seed>Uzi</seed>
 <seed>Molotov cocktail</seed>
</entity>
<entity type="food_brand" classwords="food" estimatedpopulation="10E2">
 <seed>Gatorade</seed> <seed>dr. Pepper</seed>
 <seed>Cheese Whiz</seed> <seed>Oreo</seed>
 <seed>Rice Krispies</seed> <seed>Dannon</seed>
 <seed>Equal</seed> <seed>Yoplait</seed>
 <seed>Uncle Ben's</seed> <seed>Butterball</seed>
 <seed>Cheerios</seed> <seed>Crisco</seed>
 <seed>Pringles</seed> <seed>McCormick</seed>
 <seed>Carnation Milk</seed>

 137

</entity>
<entity type="food" classwords="food" estimatedpopulation="10E1">
 <seed>cereal</seed> <seed>milk</seed>
 <seed>vegetable</seed> <seed>meat</seed>
 <seed>rice</seed> <seed>donut</seed>
 <seed>tofu</seed> <seed>cheese</seed>
 <seed>mushrooms</seed> <seed>couscous</seed>
 <seed>pasta</seed> <seed>olive</seed>
 <seed>muffin</seed> <seed>soy milk</seed>
 <seed>bread</seed>
</entity>
<entity type="clothes" classwords="clothes" estimatedpopulation="10E2">
 <seed>Gucci</seed> <seed>Armani</seed>
 <seed>Ralph Lauren</seed> <seed>Tommy Hilfiger</seed>
 <seed>Fruit of the Loom</seed> <seed>Calvin Klein</seed>
 <seed>Prada</seed> <seed>Versace</seed>
 <seed>Dolce & Gabbana</seed> <seed>Hugo Boss</seed>
 <seed>Diesel</seed> <seed>Chanel</seed>
 <seed>Adidas</seed> <seed>Burberry</seed>
 <seed>Nike</seed>
</entity>
<entity type="drug" classwords="drug;medication" estimatedpopulation="10E2">
 <seed>Advil</seed> <seed>Tylenol</seed>
 <seed>Gaviscon</seed> <seed>Gravol</seed>
 <seed>Sudafed</seed> <seed>Benadryl</seed>
 <seed>Claritin</seed> <seed>Metamucil</seed>
 <seed>Pepcid</seed> <seed>Imodium</seed>
 <seed>Nicoderm</seed> <seed>aspirin</seed>
 <seed>motrin</seed> <seed>Maalox</seed>
 <seed>Triaminic</seed>
</entity></entity>
<entity type="event">
<entity type="game" classwords="game" estimatedpopulation="10E1">
 <seed>Olympic games</seed> <seed>Wimbledon</seed>
 <seed>tour de France</seed> <seed>US Masters</seed>
 <seed>Superbowl</seed> <seed>World Cup</seed>
 <seed>Commonwealth Games</seed> <seed>PGA Championship</seed>
 <seed>Rugby World Cup</seed> <seed>British Open</seed>
 <seed>Roland Garros</seed> <seed>Stanlet Cup Finals</seed>
 <seed>Evergreen Tournament</seed> <seed>FA Challenge Cup</seed>
 <seed>World Poker Tour</seed>
</entity>
<entity type="holiday" classwords="holiday" estimatedpopulation="20E0">
 <seed>christmas</seed> <seed>easter</seed>
 <seed>Halloween</seed> <seed>thanksgiving</seed>
 <seed>mother's day</seed> <seed>Valentine's Day</seed>
 <seed>St. Patrick's Day</seed> <seed>4th of July</seed>
 <seed>Father's Day</seed> <seed>New Year</seed>
 <seed>Labor Day</seed> <seed>Memorial Day</seed>
 <seed>Chinese New Year</seed> <seed>Ramadan</seed>
 <seed>Earth Day</seed>
</entity>
<entity type="war" classwords="war" estimatedpopulation="10E1">
 <seed>Vietnam war</seed> <seed>World War II</seed>
 <seed>World War I</seed> <seed>Cold war</seed>
 <seed>The Gulf War</seed> <seed>Korean War</seed>

 138

 <seed>Iraq War</seed> <seed>War of 1812</seed>
 <seed>American Civil War</seed> <seed>Russian Civil War</seed>
 <seed>Croatian War of Independence</seed> <seed>Battle of Carthage</seed>
 <seed>Second Congo War</seed> <seed>Romanian Revolution</seed>
 <seed>Iran-Iraq War</seed>
</entity>
<entity type="hurricane" classwords="hurricane" estimatedpopulation="10E1">
 <seed>Hurricane Katrina</seed> <seed>Hurricane Andrew</seed>
 <seed>Hurricane Wilma</seed> <seed>hurricane Charley</seed>
 <seed>hurricane Ivan</seed> <seed>Tropical Storm Arlene</seed>
 <seed>Tropical Storm Bonnie</seed> <seed>Tropical Storm Alberto</seed>
 <seed>Hurricane Rita</seed> <seed>Hurricane Frances</seed>
 <seed>Hurricane Jeanne</seed> <seed>Hurricane Hugo</seed>
 <seed>Hurricane Dennis</seed> <seed>Hurricane Isabel</seed>
 <seed>Hurricane Lili</seed>
</entity>
<entity type="crime" classwords="crime" estimatedpopulation="10E1">
 <seed>Oklahoma City Bombing</seed> <seed>September 11, 2001 attacks</seed>
 <seed>Moscow Theatre Siege</seed> <seed>Oklahoma City bombing</seed>
 <seed>Wall Street bombing</seed> <seed>Beslan School Siege</seed>
 <seed>King David Hotel bombing</seed> <seed>Circus arson</seed>
 <seed>Dupont Plaza Hotel arson</seed> <seed>Bath School Disaster</seed>
 <seed>Erfurt massacre</seed> <seed>Postal shooting</seed>
 <seed>Jack the Ripper</seed> <seed>Boston Strangler</seed>
 <seed>Scarborough Rapist</seed>
</entity>
<entity type="conference" classwords="conference" estimatedpopulation="10E1">
 <seed>Halifax Summit</seed> <seed>APEC</seed>
 <seed>Tokyo Summit</seed> <seed>Kyoto conference</seed>
 <seed>Rambouillet Summit</seed> <seed>Moscow Conference</seed>
 <seed>International Meridian Conference</seed> <seed>Quebec Conference</seed>
 <seed>Geneva Conference</seed> <seed>Congress of Berlin</seed>
 <seed>EVA Conferences</seed> <seed>World Food Conference</seed>
 <seed>World Summit for Children</seed> <seed>Pan-American Conference</seed>
 <seed>Conference of Lausanne</seed>
</entity></entity>
<entity type="natural_object"><entity type="living_thing"><entity type="animal"><entity
type="invertebrate">
<entity type="insect" classwords="insect" estimatedpopulation="10E1">
 <seed>Ant</seed> <seed>beetle</seed>
 <seed>fly</seed> <seed>walking stick</seed>
 <seed>cockroach</seed> <seed>bee</seed>
 <seed>mosquito</seed> <seed>dragonfly</seed>
 <seed>cricket</seed> <seed>butterfly</seed>
 <seed>firefly</seed> <seed>locust</seed>
 <seed>spider</seed> <seed>centipede</seed>
 <seed>termite</seed>
</entity>
<entity type="sea_animal" classwords="sea animal" estimatedpopulation="10E1">
 <seed>crab</seed> <seed>starfish</seed>
 <seed>coral</seed> <seed>anemones</seed>
 <seed>sea cucumber</seed> <seed>Basket Star</seed>
 <seed>Sponges</seed> <seed>Moon Jellyfish</seed>
 <seed>Mantis Shrimp</seed> <seed>Squid</seed>
 <seed>Hermit Crab</seed> <seed>Jellyfish</seed>
 <seed>Seastar</seed> <seed>Sea Urchin</seed>

 139

 <seed>Octopus</seed>
</entity></entity>
<entity type="vertebrate">
<entity type="fish" classwords="fish" estimatedpopulation="10E1">
 <seed>shark</seed> <seed>tuna</seed>
 <seed>whale</seed> <seed>trout</seed>
 <seed>salmon</seed> <seed>Swordfish</seed>
 <seed>Mako Shark</seed> <seed>Striped Bass</seed>
 <seed>bass</seed> <seed>perch</seed>
 <seed>Carp</seed> <seed>pike</seed>
 <seed>Perch</seed> <seed>Cod</seed>
 <seed>Sole</seed>
</entity>
<entity type="reptile" classwords="reptile" estimatedpopulation="10E1">
 <seed>Tortoise</seed> <seed>alligator</seed>
 <seed>Iguana</seed> <seed>python</seed>
 <seed>Chameleon</seed> <seed>Gecko</seed>
 <seed>Bearded Dragon</seed> <seed>Rattlesnake</seed>
 <seed>Anaconda</seed> <seed>Turtle</seed>
 <seed>Komodo Dragon</seed> <seed>Lizard</seed>
 <seed>Snake</seed> <seed>Frog</seed>
 <seed>Copperhead</seed>
</entity>
<entity type="bird" classwords="bird" estimatedpopulation="10E1">
 <seed>snow goose</seed> <seed>cormorant</seed>
 <seed>Heron</seed> <seed>Eagle</seed>
 <seed>Merlin</seed> <seed>Dove</seed>
 <seed>Owl</seed> <seed>Swan</seed>
 <seed>Albatross</seed> <seed>Blue Jay</seed>
 <seed>Falcon</seed> <seed>Peacock</seed>
 <seed>cukoo</seed> <seed>American Kestrel</seed>
 <seed>Mocking Bird</seed>
</entity>
<entity type="mammal" classwords="mammal" estimatedpopulation="10E1">
 <seed>bear</seed> <seed>cow</seed>
 <seed>horse</seed> <seed>human</seed>
 <seed>lynx</seed> <seed>cat</seed>
 <seed>whale</seed> <seed>lamb</seed>
 <seed>Mouse</seed> <seed>Dog</seed>
 <seed>Mule</seed> <seed>Deer</seed>
 <seed>Kodiak Bear</seed> <seed>Asian Elephant</seed>
 <seed>Orangutan</seed>
</entity></entity></entity>
<entity type="vegetal" classwords="vegetal;plant" estimatedpopulation="10E1">
 <seed>crop</seed> <seed>herb</seed>
 <seed>flower</seed> <seed>grapevine</seed>
 <seed>tree</seed> <seed>tree fern</seed>
 <seed>Green algae</seed> <seed>lichens</seed>
 <seed>Bee orchid</seed> <seed>oak tree</seed>
 <seed>Giant Sequoia</seed> <seed>white pine</seed>
 <seed>Cypress</seed> <seed>maple tree</seed>
 <seed>carnivorous plant</seed>
</entity></entity>
<entity type="mineral" classwords="mineral;chemical element" estimatedpopulation="50E0">
 <seed>hydrogen</seed> <seed>water</seed>
 <seed>iron</seed> <seed>mercury</seed>

 140

 <seed>copper</seed> <seed>Lead</seed>
 <seed>Silver</seed> <seed>Benzene</seed>
 <seed>uranium</seed> <seed>Calcium</seed>
 <seed>nickel</seed> <seed>Chlorine</seed>
 <seed>Ozone</seed> <seed>Carbon</seed>
 <seed>Oxygen</seed>
</entity></entity>
<entity type="unit">
<entity type="measure" classwords="measure" estimatedpopulation="10E1">
 <seed>liter</seed> <seed>kilogram</seed>
 <seed>ohm</seed> <seed>Decibel</seed>
 <seed>Carat</seed> <seed>gram</seed>
 <seed>rad</seed> <seed>hectare</seed>
 <seed>fathom</seed> <seed>inch</seed>
 <seed>acre</seed> <seed>ton</seed>
 <seed>Pascal</seed> <seed>Volt</seed>
 <seed>Newton</seed>
</entity>
<entity type="currency" classwords="currency" estimatedpopulation="10E1">
 <seed>Yen</seed> <seed>Euro</seed>
 <seed>dollar</seed> <seed>Pound</seed>
 <seed>franc</seed> <seed>Ruble</seed>
 <seed>yuan</seed> <seed>Krone</seed>
 <seed>Peso</seed> <seed>Ringgit</seed>
 <seed>Real</seed> <seed>Rupiah</seed>
 <seed>Rand</seed> <seed>Baht</seed>
 <seed>Krona</seed>
</entity>
<entity type="month" classwords="month" estimatedpopulation="24">
 <seed>January</seed> <seed>February</seed>
 <seed>March</seed> <seed>April</seed>
 <seed>May</seed> <seed>June</seed>
 <seed>July</seed> <seed>August</seed>
 <seed>September</seed> <seed>November</seed>
 <seed>December</seed> <seed>jan</seed>
 <seed>feb</seed> <seed>mar</seed>
 <seed>apr</seed>
</entity>
<entity type="weekday" classwords="weekday" estimatedpopulation="14">
 <seed>Monday</seed> <seed>Tuesday</seed>
 <seed>Wednesday</seed> <seed>Thursday</seed>
 <seed>Friday</seed> <seed>Saturday</seed>
 <seed>Sunday</seed> <seed>mon</seed>
 <seed>tue</seed> <seed>wed</seed>
 <seed>thu</seed> <seed>fri</seed>
 <seed>sat</seed> <seed>sun</seed>
</entity></entity>
<entity type="misc">
<entity type="disease" classwords="disease" estimatedpopulation="10E2">
 <seed>myocardial infarction</seed> <seed>stroke</seed>
 <seed>aphasia</seed> <seed>cold</seed>
 <seed>leukemia</seed> <seed>Abscess</seed>
 <seed>Alzheimer Disease</seed> <seed>Bipolar Disorder</seed>
 <seed>Bone Neoplasms</seed> <seed>Encephalitis</seed>
 <seed>Epilepsy</seed> <seed>Facial Paralysis</seed>
 <seed>Chronic Fatigue Syndrome</seed> <seed>Fever</seed>

 141

 <seed>Laryngitis</seed>
</entity>
<entity type="god" classwords="god;deity" estimatedpopulation="10E0">
 <seed>Allah</seed> <seed>Zeus</seed>
 <seed>Venus</seed> <seed>Jesus</seed>
 <seed>Ra</seed> <seed>Ares</seed>
 <seed>Aphrodite</seed> <seed>Odin</seed>
 <seed>Horus</seed> <seed>Nephthys</seed>
 <seed>Minos</seed> <seed>Mars</seed>
 <seed>Osiris</seed> <seed>Valkyries</seed>
 <seed>Diana</seed>
</entity>
<entity type="religion" classwords="religion" estimatedpopulation="10E1">
 <seed>buddhism</seed> <seed>Islam</seed>
 <seed>Catholic</seed> <seed>Atheism</seed>
 <seed>christianity</seed> <seed>Judaism</seed>
 <seed>Hinduism</seed> <seed>Sikhism</seed>
 <seed>Jainism</seed> <seed>Shinto</seed>
 <seed>Taoism</seed> <seed>Protestant</seed>
 <seed>Zoroastrianism</seed> <seed>Baha'i</seed>
 <seed>zen</seed>
</entity>
<entity type="color" classwords="color" estimatedpopulation="10E0">
 <seed>white</seed> <seed>red</seed>
 <seed>blue</seed> <seed>yellow</seed>
 <seed>purple</seed> <seed>Green</seed>
 <seed>Black</seed> <seed>Orange</seed>
 <seed>Pink</seed> <seed>Brown</seed>
 <seed>Gray</seed> <seed>orange</seed>
 <seed>peach</seed> <seed>Lavender</seed>
 <seed>cyan</seed>
</entity>
<entity type="language" classwords="language" estimatedpopulation="10E1">
 <seed>French</seed> <seed>English</seed>
 <seed>Dutch</seed> <seed>Spanish</seed>
 <seed>Japanese</seed> <seed>German</seed>
 <seed>Italian</seed> <seed>Russian</seed>
 <seed>Chinese</seed> <seed>Greek</seed>
 <seed>Korean</seed> <seed>Arabic</seed>
 <seed>Finnish</seed> <seed>Czech</seed>
 <seed>Turkish</seed>
</entity>
<entity type="award" classwords="award;prize" estimatedpopulation="10E1">
 <seed>Nobel prize</seed> <seed>Academy Award</seed>
 <seed>Pulitzer prize</seed> <seed>Genie award</seed>
 <seed>Razzie award</seed> <seed>Grammy Award</seed>
 <seed>Crystal Awards</seed> <seed>Army Commendation Medal</seed>
 <seed>Mtv Award</seed> <seed>Golden Gloves</seed>
 <seed>Library of Congress Living Legend</seed> <seed>Cross of Valour</seed>
 <seed>Cy Young Award</seed> <seed>Grey Cup</seed>
 <seed>Stanley Cup</seed>
</entity>
<entity type="sport" classwords="sport" estimatedpopulation="10E1">
 <seed>football</seed> <seed>hockey</seed>
 <seed>baseball</seed> <seed>racquetball</seed>
 <seed>tennis</seed> <seed>Giant Slalom</seed>

 142

 <seed>Soccer</seed> <seed>Basketball</seed>
 <seed>Golf</seed> <seed>Softball</seed>
 <seed>Wrestling</seed> <seed>Boxing</seed>
 <seed>Volleyball</seed> <seed>Swimming</seed>
 <seed>Cross Country</seed> <seed>Track and Field</seed>
</entity>
<entity type="academic" classwords="academic" estimatedpopulation="10E1">
 <seed>Sociology</seed> <seed>Physics</seed>
 <seed>Philosophy</seed> <seed>Medecine</seed>
 <seed>Computer Science</seed> <seed>Chemistry</seed>
 <seed>Psychology</seed> <seed>History</seed>
 <seed>Biology</seed> <seed>Mathematics</seed>
 <seed>Economics</seed> <seed>English</seed>
 <seed>Music</seed> <seed>Education</seed>
 <seed>Anthropology</seed>
</entity>
<entity type="rule" classwords="rule;law" estimatedpopulation="10E1">
 <seed>U.S. Constitution</seed> <seed>Amateur Sports Act</seed>
 <seed>World Trade Accord</seed> <seed>Americas Free Trade Agreement</seed>
 <seed>Anti-Monopoly Law</seed> <seed>Lindbergh Law</seed>
 <seed>Universal Declaration of Human Rights</seed><seed>Constitutional law</seed>
 <seed>Civil Code of Quebec</seed> <seed>Constitution Act</seed>
 <seed>California Penal Code</seed> <seed>Uniform Commercial Code</seed>
 <seed>Model Penal Code</seed> <seed>Napoleonic Code</seed>
 <seed>Black's Law Dictionary</seed>
</entity>
<entity type="theory" classwords="theory;law" estimatedpopulation="10E1">
 <seed>Zipf's law</seed> <seed>Newton's Law</seed>
 <seed>Cook's theorem</seed> <seed>Theory of relativity</seed>
 <seed>law of large numbers</seed> <seed>Big Bang Theory</seed>
 <seed>Cell theory</seed> <seed>Decision theory</seed>
 <seed>Theory of Global Climate Change</seed> <seed>Chaos theory</seed>
 <seed>De Morgan's law</seed> <seed>Euler's theorem</seed>
 <seed>Occam's Razor</seed> <seed>Pythagorean theorem</seed>
 <seed>Theory of Relativity</seed>
</entity></entity></entity>
</entityHierarchy>

