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Abstract 
 
This position paper speaks to the interrelationships 
between the three concepts of motivations, values, and 
emotion. Motivations prime actions, values serve to 
choose between motivations, emotions provide a 
common currency for values, and emotions implement 
motivations. While conceptually distinct, the three are 
so pragmatically intertwined as to differ primarily from 
our taking different points of view. To make these 
points more transparent, we briefly describe the three in 
the context a cognitive architecture, the LIDA model, 
for software agents and robots that models human 
cognition, including a developmental period. We also 
compare the LIDA model with other models of 
cognition, some involving learning and emotions. 
Finally, we conclude that artificial emotions will prove 
most valuable as implementers of motivations in 
situations requiring learning and development. 
 
1. Introduction 
 
Motivations, values and emotions have been studied by 
philosophers, psychologists and neuroscientists for 
decades (Busemeyer, Medin and Hastie 1995; 
Dalgleish and Power 1999; Reiss 2001; Bower 1974; 
Russell 2003; Aharon et al 2001; Silverta et al 2004; 
Rolls 1999; Izard 1993; Davidson et al 2004; McGaugh 
2003 and countless others). More recently, roboticists 
and artificial intelligence researchers have taken up 
these subjects (Sloman 1987; Wright, Sloman and 
Beaudoin. 1996; McCauley and Franklin 1998; 
Antunes and Coelho 1999; McCauley, Franklin, and 
Bogner 2000; Marsella and Gratch 2002; Langley et al 
2003; Franklin and McCauley 2004; Avila-García and 
Cañamero 2005; Shanahan 2005).  

 
Every autonomous agent (Franklin & Graesser 1997), 
be it a human, some other animal, a software agent or 
an autonomous robot, must come equipped with built-
in primitive motivations.  Otherwise, it wouldn’t know 
how to decide what to do next. Evolution sees to these 
primitive motivations in biological agents; their 
designers build them into artificial agents, including 
epigenetic robots.  Each such agent “lives its life” via a 
continual iteration of sense-process-act cycles during 
which it samples its environment, decides how best to 
respond to the current situation, and acts in response 

(Franklin 1995, the action selection paradigm). 
Motivations play a primary role in these action 
selection processes. Just as goals may have sub-goals in 
their service, primitive motivations may have sub-
motivations in theirs. Each motivation in any agent 
must be in the service of one or more primitive 
motivations. 

 
One primitive motivation for bacteria is to find 
nutrients. This motivation is implemented causally 
(mechanically) by chemo-taxis, the ability to follow a 
positive nutrient gradient (Alon et al 1999). Increasing 
concentrations of a particular nutrient molecule in 
sensory receptors causes the bacterium to tumble less 
and to swim forward more in the direction of the 
increasing gradient. This is an example of positive 
tropism, the involuntary response of an organism, 
orienting it toward an external stimulus. It can be 
viewed as a causal implementation of motivation. 

 
A second way of implementing motivation is by 
explicitly including primary motivations in the form of 
drives in the action selection mechanism itself (Maes 
1989). The computational IDA described below was 
designed in this manner (Negatu and Franklin 2002). 

 
Yet another way of implementing motivations is with 
values. A value reflects an agent’s general preference 
for a situation or an action, independent of its current 
beliefs or goals, that is, independent of the current 
environmental situation and of the agent’s current 
intentions (Antunes and Coelho 1999).  Values are 
often combined into an utility function that is used by 
the agent to evaluate options (Wahde 2003). Such 
evaluation of options, often referred to as reasoning or 
rational agency, can be effected by deliberation, a kind 
of internal virtual reality (Sloman 1999; Franklin 
2000a). Such deliberation must consider the current 
environmental situation and the agent’s current 
intentions, as well as its values. The object, of course, 
is to select an appropriate action. 

 
Feelings in humans include hunger, thirst, various sorts 
of pain, hot or cold, the urge to urinate, tiredness, 
depression, etc. Damasio views feelings as somatic 
markers (1999). One feels feelings in the body. 
Implemented biologically as somatic markers, feelings 
typically attach to response options and, so, bias the 
agent’s choice of action. We’ll see below how this 
occurs in the LIDA model. 



Panksepp posited that the foundation of emotional 
feelings is contained in the evolved emotional action 
system of mammalian brains (2005). In the LIDA 
model (see below), feelings affect the sensory motor 
automatisms (SMA) of autonomous agents.  When one 
is sad, it affects the actions chosen and how the actions 
are taken. Similar role of feelings can be observed with 
other feelings as well -- how one holds a cup when one 
is angry vs. when one is happy. Feelings affect our 
facial expressions and our spoken words as well. The 
feeling manifests in one's body affecting the SMAs. 
Further, we hypothesize that feelings modulate learning 
with an inverse U-curve. 
 
Emotions, such as fear, anger, joy, sadness, shame, 
embarrassment, resentment, regret, guilt, etc., are taken 
to be feelings with cognitive content (Johnston 1999). 
One cannot simply feel shame, but shame at having 
done something. The something done constitutes the 
cognitive content. Similarly, one must be angry at 
someone, that someone being the cognitive content. 
Feelings, including emotions, are nature’s means of 
implementing motivations for actions in humans and 
other animals. They have evolved so as to adapt us to 
regularities in our environments. 

 
These general preferences derived evolutionarily from 
regularities can be viewed as values. Thus feelings 
become implementations of values in biological agents, 
providing a common currency for quick and flexible 
action selection. 

 
Artificial feelings and emotions are beginning to play 
an increasingly important role as mechanisms for 
primary motivations in software agents and robots, as 
well as facilitators of learning in these systems 
(Marsella & Gratch 2002, Langley et al. 2003; Franklin 
and McCauley 2004, Avila-García and Cañamero 2005, 
Ahn and Picard 2006). Here we present a case study of 
such feelings and emotions playing both roles in an 
intelligent software agent capable of performing a 
practical, real world task. In this agent they are actively 
involved in every instance of action selection, and at 
least potentially involved in each learning event. The 
pervasive, central role that feelings and emotions play 
in the control structure of this software agent mimics 
the roles they play in human cognition, and gives rise 
to clarifying hypotheses about human decision making 
and several forms of human learning. 

 
2. The LIDA Model 
 
LIDA provides a conceptual (and potentially a 
computational) model of cognition (Franklin 2000, 
2001b) implemented as a software agent (Franklin & 
Graesser 1997) or as an epigenetic robot. The 
computational IDA “lives” on a computer system with 
connections to the Internet and various databases, and 

does personnel work for the U.S. Navy, performing all 
the specific personnel tasks of a human (Franklin 
2001a). In particular, IDA negotiates with sailors in 
natural language, deliberates, and makes voluntary  
action selections (Frankllin 2000a) in the process of 
finding new jobs for sailors at the end of their current 
tour of duty. IDA completely automates the work of 
certain Navy personnel agents (detailers) (McCauley 
and Franklin 2002). 

 
The LIDA (Learning IDA) model implements and 
fleshes out Global Workspace theory (Baars 1988, 
2002), which suggests that conscious events involve 
widespread distribution of focal information needed to 
recruit neuronal resources for problem solving. The 
LIDA implementation of GW theory yields a fine-
grained functional account of the steps involved in 
perception, several kinds of memory, consciousness, 
context setting, and action selection. Cognitive 
processing in LIDA consists of continually repeated 
traversals through the steps of a cognitive cycle (Baars 
& Franklin 2003, Franklin et al. 2005), as described 
below. 

 
The LIDA architecture (Figure 1) includes modules for 
perception (Zhang, et al. 1998), various types of 
memory (Anwar and Franklin. 2003, Franklin et al. 
2005, D'Mello, Ramamurthy, and Franklin. 2006 in 
press), “consciousness” (Bogner, Ramamurthy and 
Franklin. 2000), action selection (Negatu and Franklin. 
2002), constraint satisfaction (Kelemen, Liang, and 
Franklin. 2002), deliberation (Franklin 2000a), and 
volition (Franklin 2000a). The mechanisms of these 
modules are derived from several different “new AI” 
sources (Hofstadter and Mitchell. 1994, Jackson 1987, 
Kanerva 1988, Drescher 1991, Maes 1989). Figure 1 
provides the current implementation status of the LIDA 
model.  

 
The computational IDA senses strings of characters 
from email messages and databases, and negotiates 
with sailors via email. The computational IDA is a 
running software agent that has been tested and 
demonstrated to the satisfaction of the U.S. Navy. 
Detailers observing the testing commented, “IDA 
thinks like I do.” 

 
In addition to the computational model, we will also 
speak of the conceptual LIDA (Learning IDA) model, 
which includes additional capabilities that have been 
designed but not implemented, including mechanisms 
for feelings and emotions, and for various forms of 
learning. 

 
The LIDA conceptual model contains several different 
memory systems. Perceptual memory (often called 
perceptual organization) enables identification, 
recognition and categorization, including of feelings. 



 
Figure 1: LIDA Architecture 

 
 
Working memory provides preconscious buffers as a 
workspace for internal activities. Transient episodic 
memory is a content-addressable associative memory 
with a moderately fast decay rate. It is to be 
distinguished from declarative memory, that is, long-
term associative, episodic memory. Procedural memory 
is long-term memory for skills. (Franklin et al 2005) 

 
Much of the activity within LIDA is accomplished by 
codelets, small pieces of code that each performs one 
specialized, simple task. Codelets often play the role of 
daemons waiting for a particular type of situation to 
occur and then acting as per their specialization. 
Codelets in the LIDA model implement the processors 
postulated by global workspace theory. Neurally they 
can be thought of as cell assemblies or neuronal groups 
(Edelman1987, Edelman and Tononi 2000). Various 
sorts of codelets, including perceptual, attentional, 
behavioral, expectational, etc., will be described below. 
 
3. The Cognitive Cycle 
 
The LIDA model suggests a number of more 
specialized roles for feelings in cognition, all 
combining to produce motivations and to facilitate 
learning. Here we describe LIDA’s cognitive cycle 

(Figure 2) in nine steps, emphasizing the roles played 
by feelings and emotions by putting their descriptions 
in italics. To aid the reader’s understanding of the 
cognitive cycle, we will also carry along a running 
example of its operation distinguished by a different 
type font. Imagine that a teenage boy has just stepped 
through a classroom door into the hall and looked left. 
Another boy, a bully named Paul, is walking towards 
him down the hall. 
 

1. Perception. Sensory stimuli, external or 
internal, are received and interpreted by 
perception constructing the beginnings of 
meaning. Note that this stage is unconscious. 
a. Early perception:  Input arrives through 

senses. Specialized perception codelets 
descend on the input. Those that find 
features relevant to their specialty activate 
appropriate nodes in the slipnet (a semantic 
net with activation). 

b. Chunk perception: Activation passes from 
node to node in the slipnet. The slipnet 
stabilizes, bringing about the convergence 
(binding) of streams from different senses 
and chunking bits of meaning into larger 
chunks. These larger chunks, represented 
by meaning nodes in the slipnet, constitute 
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the percept. Pertinent feeling/emotions are 
identified (recognized) along with objects 
and their relations by the perceptual 
memory system. This could entail simple 
reactive feelings based on a single input or 
more complex feelings requiring the 
convergence of several different percepts. 

Mostly visual perception activates the Bully node, 
representing an individual in the slipnet, along with the 
Paul node and the Fear node, resulting in their 
becoming part of the percept. 

 
2. Percept to Preconscious Buffer. The percept, 

including some of the data plus the meaning, is 
stored in preconscious buffers of LIDA’s 
working memory.  These buffers may involve 
visuospatial, phonological, and other kinds of 
information. Again, note that this stage is 
unconscious. 
Feelings/emotions are part of the preconscious 
percept written during each cognitive cycle into 
the preconscious working memory buffers. 

The Bully node, the Paul node and the Fear node are 
each part of the percept. 

 
3. Local Associations. Using the incoming 

percept and the residual contents of the 
preconscious buffers as cues, including 
emotional content, local associations are 
automatically retrieved from transient episodic 
memory and from declarative memory.  The 
contents of the preconscious buffers together 
with the retrieved local associations from 
transient episodic memory and declarative 
memory, roughly correspond to Ericsson and 
Kintsch’s long-term working memory (LTWM) 
(1995) and Baddeley’s episodic buffer (2000). 
Again, note that this stage is unconscious. 
Feelings/emotions are part of the cue that 
results in local associations from transient 
episodic and declarative memory. These local 
associations contain records of the agent’s past 
feelings/emotions in associated situations. 

The Bully and Paul nodes cue local associations 
(episodic memory) of the last encounter with this Bully 
including Fear and Pain. 

 
4. Competition for Consciousness. Attention 

codelets, whose job it is to bring relevant, 
urgent, or insistent events to consciousness, 
view long-term working memory. Some of 
them gather information, form coalitions and 
actively compete for access to consciousness. 
The competition may also include attention 
codelets and their coalitions from a recent 
previous cycle. Again, note that this stage is 
unconscious. Present and past 
feelings/emotions influence the competition for 
consciousness in each cognitive cycle. Strong 

affective content strengthens a coalition’s 
chances of coming to consciousness. 

Some attention codelet notes the Bully, Paul, Fear and 
Pain nodes, among others in LTWM, gathers them, and 
others, into a coalition, and competes for 
consciousness. 

 
5. Conscious Broadcast. A coalition of 
codelets, typically an attention codelet and its 
covey of related information codelets carrying 
content, gains access to the global workspace 
and has its contents broadcast. This broadcast is 
hypothesized to correspond to phenomenal 
consciousness. The conscious broadcast 
contains the entire content of consciousness 
including the affective portions. The contents of 
perceptual memory are updated in light of the 
current contents of consciousness, including 
feelings/emotions, as well as objects, and 
relations. Affect modulate the encoding 
following an inverted U curve. 

The Paul, Bully, Fear and Pain nodes in perceptual 
memory receive additional base-level activations. 

Transient episodic memory is updated with the 
current contents of consciousness, including 
feelings/emotions, as events. Affect modulate 
the encoding following an inverted U curve.  

The event of stepping into the hall, seeing Paul, 
remembering pain and experiencing fear is recorded in 
transient episodic memory. 

(At recurring times not part of a cognitive 
cycle, the contents of transient episodic 
memory are consolidated into long-term 
declarative memory.) Procedural memory 
(recent actions) is updated (reinforced) with the 
strength of the reinforcement influenced by the 
strength of the affect. 

The action scheme for stepping into the hall has its 
base-level activation increases (reinforced). 
 

6. Recruitment of Resources. Relevant behavior 
codelets respond to the conscious broadcast. 
These are typically codelets whose variables 
can be bound from information in the conscious 
broadcast. If the successful attention codelet 
was an expectation codelet calling attention to 
an unexpected result from a previous action, the 
responding codelets may be those that can help 
to rectify the unexpected situation. Thus 
consciousness solves the relevancy problem in 
recruiting resources. The affective content 
(feelings/emotions) together with the cognitive 
content help to attract relevant resources 
(processors, neural assemblies) with which to 
deal with the current situation. 

Action schemes whose contexts contain “seeing a 
Bully” and “experiencing Fear” activate themselves. 
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Figure 2: LIDA's Cognitive Cycle 
 

7. Setting Goal Context Hierarchy. 
The recruited processors use the contents of 
consciousness, including feelings/emotions, to 
instantiate new goal context hierarchies, bind 
their variables, and increase their activation. It 
is here that feelings/emotions directly affect 
motivation. They determine which terminal 
goal contexts receive activation and how much. 
It is here that feelings and emotions most 
directly implement motivations by helping to 
instantiate and activate goal contexts. Other 
environmental conditions determine which of 
the earlier goal contexts receive additional 
activation. 

Schemes with sufficient activation instantiate copies of 
themselves in the behavior net with their variables 
bound. One of these is a scheme for stepping back into 
the classroom. 
 

8. Action Chosen. The behavior net chooses a 
single behavior (goal context), perhaps from a 
just instantiated behavior stream or possibly 
from a previously active stream. This selection 
is heavily influenced by activation passed to 
various behaviors influenced by the various 
feelings/emotions. The choice is also affected 
by the current situation, external and internal 

conditions, by the relationship between the 
behaviors, and by the residual activation values 
of various behaviors. 

The action scheme to step back into the classroom is 
selected.  

 
9. Action Taken. The execution of a behavior 

(goal context) results in the behavior codelets 
performing their specialized tasks, which may 
have external or internal consequences. This is 
LIDA taking an action.  

The student steps back into the classroom. 
The acting codelets also include an expectation 
codelet (see Step 6) whose task it is to monitor 
the action, and to try and bring to 
consciousness any failure in the expected 
results. 
 

We suspect that cognitive cycles occur five to ten times 
a second in humans, overlapping so that some of the 
steps in adjacent cycles occur in parallel (Baars and 
Franklin. 2003). Seriality is preserved in the conscious 
broadcasts. 
 
 
 



4. Related Work 
 
The LIDA architecture differs significantly from other 
cognitive architectures such as SOAR (Laird et al. 
1987) and ACT-R (Anderson & Lebiere 1998) in that it 
is not a unified theory of cognition in the sense of 
Newell (1990). Rather, its various modules are 
implemented by a variety of different mechanisms 
including the Copycat architecture, Sparse Distributed 
Memory, Pandemonium Theory and Behavior Nets 
(Franklin 2001b). Though the LIDA architecture 
contains no production rules and no neural networks, it 
does incorporate both symbolic and connectionist 
elements. The LIDA architecture allows feelings and 
emotions to play a central role in perception, memory, 
“consciousness” and action selection. LIDA’s 
“consciousness” mechanism, based on Global 
Workspace Theory, resembles a blackboard system 
(Nii 1986), but there is much more to the LIDA 
architecture having to do with the interaction of its 
various modules. Much of this interaction is described 
in the cognitive cycle detailed above. 
 
The LIDA architecture can be viewed as a specification 
of the more general CogAff architecture of Sloman 
(Wright et al. 1996). It has reactive and deliberative 
mechanisms but, as yet, no meta-management. There is 
a superficial resemblance between the computational 
IDA and the ACRES system (Moffat et al. 1993) in that 
both interact with users in natural language. LIDA and 
ACRES are also alike in using emotions to implement 
motivations. Rather than viewing emotions as 
implementing motivations for the selection of actions 
on the external environment, Marsella and Gratch study 
their role in internal coping behavior (2002). From our 
point of view this is a case of emotions implementing 
motivation for internal actions as also occurs in the 
LIDA conceptual model. The ICARUS system also 
resembles a portion of the LIDA conceptual model in 
that it uses affect in the process of reinforcement 
learning (Langley et al. 1991). 

 
5. Conclusions 
 
Being generated from order-of-magnitude one hundred 
thousand lines of code, IDA is an exceedingly complex 
software agent. Thus from the usefulness of artificial 
feelings and emotions in the LIDA architecture one 
would not jump to the conclusion that they would play 
useful roles in a more typical order-of-magnitude 
simpler software agent or robotic control structure. 
Besides, feelings and emotions are, as yet, only part of 
the LIDA conceptual model, and have not been 
implemented. Significant difficulties could conceivably 
occur during implementation. That artificial feelings 
and emotions seem to play significantly useful roles in 
the conceptual version of LIDA’s cognitive cycles is 

not a conclusive argument that they will do so in 
simpler, implemented artificial autonomous agents.  

 
Still the LIDA model suggests that software agents and 
robots can be designed to use feelings/emotions to 
implement motivations, offering a range of flexible, 
adaptive possibilities not available to the usual, more 
tightly structured motivational schemes such as causal 
implementation, or explicit drives and/or 
desires/intentions. 

 
So, what can we conclude? Note that the computational 
IDA performs quite well with explicitly implemented 
drives rather than with feelings and emotions. It is 
possible that a still more complex artificial autonomous 
agent with a task requiring more sophisticated decision 
making would require them, but we doubt it. Explicit 
drives seem likely to suffice for quite flexible action 
selection in artificial agents, but not in modeling 
biological agents. It appears that feelings and emotions 
come into their own in agent architectures requiring 
sophisticated learning. This case study of the LIDA 
architecture seems to suggest that artificial feelings and 
emotions can be expected to be of most use in software 
agents or robots in which online learning of objects, 
categories, relations, events, facts and/or skills is of 
prime importance. If this requirement were present, it 
would make sense to also implement primary 
motivations by artificial feelings and emotions. 
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