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ABSTRACT 

The time course of oxidative damage in different brain regions was investigated in the gerbil model of 

transient cerebral ischemia. Animals were subjected to both common carotid arteries  occlusion for 5 

min. After the end of ischemia and at different reperfusion times (2, 6, 12, 24, 48, 72, 96 hr and 7 days), 

markers of lipid peroxidation, reduced and oxidized glutathione levels, glutathione peroxidase, 

glutathione reductase, manganese-dependent superoxide dismutase (MnSOD) and copper/zinc 

containing SOD (Cu/ZnSOD) activities were measured in hippocampus, cortex and striatum. Oxidative 

damage in hippocampus was maximal at late stages after ischemia (48 to 96 h) coincident with a 

significant impairment in glutathione homeostasis. MnSOD increased in hippocampus at 24, 48 and 72 h 

after ischemia, coincident with the marked reduction in the activity of glutathione-related enzymes. The 

late disturbance in oxidant-antioxidant balance corresponds with the time course of delayed neuronal 

loss in the hippocampal CA1 sector. Cerebral cortex showed early changes in oxidative damage with no 

significant impairment in antioxidant capacity. Striatal lipid peroxidation significantly increased as early 

as 2 h after ischemia and persisted until 48 h with respect to the sham-operated group. These results 

contribute significant information on the timing and factors that influence free radical formation 

following ischemic brain injury, an essential step in determining effective antioxidant intervention.  
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1. INTRODUCTION 

Cerebral ischemia results in a cascade of events leading to a number of important cellular changes. 

These include rapid decreases in ATP, calcium release from intracellular stores, loss of ion homeostasis, 

excitotoxicity, activation of enzymes (phospholipases, proteases, protein kinases, nitric oxide synthases, 

endonucleases), arachidonic acid release and metabolism, mitochondrial dysfunction, acidosis and 

edema (Macdonald and Stoodley, 1998; Lee et al., 1999). Many of these changes are associated with 

increased reactive oxygen species (ROS) production that can occur both during ischemia and at 

reperfusion. The role of oxidative stress becomes much greater in the case where cerebral blood flow is 

restored, because reflow to previous ischemic brain results in an increase in oxygen level, and 

consequently causes severe oxidative injury to the tissue by massive production of ROS (Chan, 1996). 

However, reperfusion is necessary to salvage the compromised ischemic tissue.  

 

Oxidative stress is one of the most important factors that exacerbate brain damage by reperfusion. A 

large body of experimental research clearly shows that ischemia-reperfusion injury involves oxidatively 

damaging events (Cao et al., 1988; Kitagawa et al., 1990; Facchinetti et al., 1998). The brain is 

particularly vulnerable to oxidative injury because of its high rate of oxidative metabolic activity, 

intense production of reactive oxygen metabolites, high content of polyunsaturated fatty acids, relatively 

low antioxidant capacity, low repair mechanism activity and non-replicating nature of its neuronal cells 

(Evans, 1993). 

 

Forebrain ischemia-reperfusion in gerbil is a model for human cerebral ischemia resulting from transient 

cardiac arrest. Certain brain regions, such as the striatum, neocortex and particularly the hippocampus, 

are more susceptible to ischemic damage (Kindy et al., 1992). In the hippocampus, the cornu Ammonis 

1 (CA1) pyramidal neurons undergo selective delayed death several days after the injury (Kirino, 1982; 

Nitatori et al., 1995; Rao et al., 2000). Several lines of evidence indicate that oxidative stress contributes 

to delayed neuronal death after global cerebral ischemia (Kitagawa et al., 1990; Hall et al., 1993; 

Oostveen et al., 1998), suggesting that ROS formation may cooperate in a series of molecular events that 

link ischemic injury to neuronal cell death. 

 

Thus, elucidation of the extent and the role of oxidative stress in the brain after ischemia-reperfusion are 

of great importance. A better understanding of the timing and factors that influence ROS formation is 
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required for effective antioxidant intervention and for enlarging our knowledge of the 

pathophysiological mechanisms of cerebral ischemia. The temporal profile of histopathological changes 

in the gerbil brain following global ischemia has been extensively characterized, showing no neuronal 

loss up to 2-3 days of reperfusion but an extensive delayed neuronal loss at 5-7 days of reperfusion in 

the hippocampal CA1 region (Kirino, 1982; Rao et al., 2000; Martínez et al., 2001; Candelario-Jalil et 

al., unpublished data). Although ROS have been postulated to play an important role in the progression 

of reperfusion injury, the time course of oxidative damage following transient forebrain ischemia has 

been poorly characterized. In the present study, we have examined the time course of oxidative injury in 

different brain regions following transient global cerebral ischemia in gerbils. Further, the antioxidant 

capacity in each brain area was studied at different sampling times after the ischemic insult in view that 

oxidative stress may result not only from an increase in free radical production but also from a decrease 

in cellular antioxidant mechanisms. To our knowledge, the time course of the activity of glutathione-

related enzymes as well as the content of both GSH and GSSG following transient forebrain ischemia in 

gerbils had not been previously characterized. 

 

2. MATERIALS AND METHODS 

2.1. Transient forebrain ischemia 

Studies were performed in accordance with the Declaration of Helsinki and with the Guide for the Care 

and Use of Laboratory Animals as adopted and promulgated by National Institutes of Health (Bethesda, 

MD, USA). The experimental protocol was approved by our institutional animal care and use 

committee. Male Mongolian gerbils (Meriones unguiculatus; Hoe Gerk jirds strain) weighing 60-75 g at 

the time of surgery were used in this study. These animals were housed five per cage, exposed to a 12-h 

light/dark cycle, and had free access to food and water throughout the study period. The gerbils were 

anesthetized with chloral hydrate (300 mg/kg, i.p.). In the supine position, a midline ventral incision was 

made in the neck. Both common carotid arteries were exposed, separated carefully from the vagus nerve, 

and occluded for 5 minutes with microaneurysmal clips, which consistently resulted in delayed neuronal 

death in the CA1 region of the hippocampus (Kirino, 1982; Martínez et al., 2001). Blood flow during the 

occlusion and reperfusion after removal of the clips was visually confirmed and the incision was closed. 

The rectal temperature was monitored and maintained at 37 ± 0.5°C using an incandescent lamp and the 

animals were allowed to recover on an electrical heated blanket. In sham-operated group (n=5), the 

arteries were freed from connective tissue but were not occluded.  
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At the end of ischemia (no reflow; n=5) and at different reperfusion times (2, 6, 12, 24, 48, 72, 96 hr and 

7 days), animals (n=6 per each time point) were deeply anesthetized with diethyl ether and perfused 

intracardially with ice-cold saline to flush all blood components from the vasculature. Brains were 

quickly removed, kept in ice-cold saline and immediately dissected on a cold plate using the atlas of 

Paxinos and Watson (1998) as a reference, exactly as in our previous experiments (Candelario-Jalil et 

al., 2000; Martínez et al., 2001). Three different regions (hippocampus, cortex and striatum) were 

removed, weighed and homogenized in ice-cold 20 mM Tris-HCl buffer (pH 7.4) and centrifuged for 10 

min at 12,000 x g. The supernatant was collected, frozen at -20°C and employed for biochemical 

analyses. 

 

It is possible that isolation and processing of the brain tissue may result in production of free radicals 

and subsequent oxidative injury that is not specific to ischemic insult. However, the use of ice-cold 

homogenization buffer and the fact that all samples were handled and processed in an identical fashion 

reduces the potential for generating non-specific free radical species. In addition, all animals were 

perfused transcardially with ice-cold saline in order to eliminate the excess of iron (bound to 

hemoglobin) that may artificially increase free radical formation via Fenton reaction.  

 

2.2. Lipid peroxidation assays 

Lipid peroxidation (LP) was assessed by measuring the concentration of malondialdehyde (MDA) and 

4-hydroxyalkenals (4-HDA) and by determining the levels of lipid hydroperoxides in brain samples.  

Concentrations of MDA and 4-HDA were analyzed using the LPO-586 kit obtained from Calbiochem 

(La Jolla, CA). In the assay, the production of a stable chromophore after 40 min of incubation at 45°C 

was measured at a wavelength of 586 nm. For standards, freshly prepared solutions of malondialdehyde 

bis [dimethyl acetal] (Sigma) and 4-hydroxynonenal diethylacetal (Cayman Chemical) were employed 

and assayed under identical conditions. Concentrations of MDA and 4-HDA in brain samples were 

calculated using the corresponding standard curve and values were expressed as nmol MDA+4-HDA per 

mg protein. This procedure has been used widely for the measurement of products of LP in brain 

homogenates (Melchiorri et al., 1996; Chabrier et al., 1999; Candelario-Jalil et al., 2000). Lipid 

hydroperoxides were measured with ferrous oxidation-xylenol orange assay (Gay et al., 1999) as 



 
 
Candelario-Jalil et al., 2001                                                              Neurosci. Res 41(3): 233-241 (2001) 

 6                                                                                                                                                                         
 

reported for brain homogenates (Song et al., 1999). Hydrogen peroxide was used as reference standard 

(R=0.996). Lipid hydroperoxides levels were expressed as nmol hydroperoxides per mg protein. 

 

2.3. Glutathione determination 

Reduced and oxidized glutathione (GSH and GSSG, respectively) were measured enzymatically in 5-

sulphosalycilic acid-deproteinized samples by using a modification (Anderson, 1985) of the procedure 

of Tietze (1969) as described for brain samples (Floreani et al., 1997). The method is based on the 

determination of a chromophoric product, 2-nitro-5-thiobenzoic acid, resulting from the reaction of 5,5’-

dithiobis(2-nitrobenzoic acid) with GSH. In this reaction, GSH is oxidized to GSSG, which is then 

reconverted to GSH in the presence of glutathione reductase (type III, from Saccharomyces cerevisiae, 

Randox Laboratories, Antrim, UK) and NADPH. The rate of 2-nitro-5-thiobenzoic acid formation, 

which is proportional to the sum of GSH and GSSG present is followed at 412 nm. Samples were 

assayed rapidly to minimize GSH oxidation. Specificity of this method for glutathione quantification is 

ensured by highly specific glutathione reductase. GSH present in the samples was calculated as the 

difference between total glutathione and GSSG levels, taking into account the fact that one molecule of 

GSSG gives rise to two molecules of GSH upon reaction with glutathione reductase. A standard curve 

with known amounts of GSH was established and employed for estimating glutathione content. 

 

2.4. Antioxidant enzymes assays 

Glutathione peroxidase (GPx) activity was assayed using a commercial kit obtained from Randox 

Laboratories (Antrim, UK), which is based on the procedure described by Flohé and Gunzler (1984) 

using cumene hydroperoxide as substrate. The reaction was followed for 3 min at 340 nm in a 

Pharmacia LKB Ultraspec Plus spectrophotometer. The contribution of spontaneous NADPH oxidation 

was always subtracted from the overall reaction rate. GPx activity was expressed as nmol NADPH 

oxidized per minute per mg protein. 

Glutathione reductase (GR) activity was determined according to Carlberg and Mannervik (1985). The 

oxidation of NADPH was followed for 3 min at 340 nm and the activity of GR was calculated using a 

molar extinction coefficient of 6.3 mM-1cm-1. Non-enzymatic NADPH oxidation was subtracted from 

the overall rate. GR activity was expressed as nmol NADPH oxidized per minute on the basis of total 

protein content. 
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Superoxide dismutase (SOD) was measured using pyrogallol as substrate (Shukla et al., 1987). This 

method follows the superoxide-driven auto-oxidation of pyrogallol at pH 8.2 in the presence of EDTA. 

The assay mixture contained 1 mM EDTA in 50 mM Tris-HCl buffer (pH 8.2) with or without the 

sample. The reaction was started by the addition of pyrogallol (final concentration 0.124 mM) and the 

oxidation of pyrogallol was followed for 1 min at 420 nm. The percent inhibition of the auto-oxidation 

of pyrogallol by SOD present in the tissue sample was determined, and standard curves using known 

amounts of purified SOD (Sigma) under identical conditions were established. One unit (U) of SOD 

activity was defined as the amount that reduced the absorbance change by 50%, and results were 

normalized on the basis of total protein content (U/mg protein). Copper/zinc superoxide dismutase 

(Cu/ZnSOD) was differentiated from manganese superoxide dismutase (MnSOD) by addition of 2 mM 

sodium cyanide to inhibit the activity of Cu/ZnSOD from total SOD activity. Cu/Zn SOD activity was 

calculated as the difference between total SOD and MnSOD activity as in a previous report (McIntosh et 

al., 1998). 

 

2.5. Protein assay 

Total protein concentrations were determined using the method described by Bradford (1976) and 

analytical grade bovine serum albumin was used to establish a standard curve. Chemicals and reagents 

were purchased from Sigma Chemical Co. (Saint Louis, MO, USA). 

 

2.6. Statistical analysis 

Data are expressed as mean ± standard deviation. Statistical analysis was performed with one-way 

ANOVA followed by a Student-Newman-Keuls post-hoc test. The value of P less than 0.05 was 

considered to be statistically significant. 

 

3. RESULTS 

3.1. Effects of cerebral ischemia on lipid peroxidation markers 

In hippocampus, bilateral carotid occlusion for 5 min in gerbils resulted in marked increase in lipid 

peroxidation as shown in Figure 1. Malondialdehyde (MDA) and 4-hydroxyalkenals (4-HDA) levels 

significantly (p<0.05) increased at 6 h of reperfusion and remained high until 96 h when compared to 

sham-operated animals. In a similar way, lipid hydroperoxides increased as early as 2 h of recirculation, 
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remained increased until 12 h, trended downward by 24 h, but significantly increased at 48, 72 and 96 h 

of reflow. 

Cortical MDA and 4-HDA concentrations were significantly (p<0.05) elevated after 12 and 24 h of 

reperfusion as compared to non-ischemic control group. Lipid hydroperoxides levels increased with 

statistical significance (p<0.05) after 6 h of recirculation and remained high until 24 h, similarly to MDA 

and 4-HDA concentrations. In cerebral cortex, both lipid peroxidation markers subsided at 48 h and 

remained at basal levels until the last sampling time (7 d). In striatum, both lipid hydroperoxides and 

MDA + 4-HDA concentrations significantly increased at 2 and 6 h of reperfusion respectively, and were 

kept elevated until 48 h with respect to the sham group (Fig. 1).  

On the other hand, no significant increase in lipid peroxidation was found in any brain region at 7 days 

of reperfusion when compared to control animals. In a like manner, brief ischemia (5 min) without 

reperfusion failed to produce increases in lipid peroxidation indices (Fig. 1).  

 

3.2. Time course of ischemia-induced modifications of glutathione levels in the gerbil brain  

Hippocampal GSH content significantly decreased (p<0.05) in the early recirculation periods (2 and 6 h) 

after ischemia, returned to that of control group at 12 and 24 h of reflow and reached maximal 

reductions at 48 and 72 h with respect to sham-operated gerbils (Table 1). GSSG levels were elevated 

with respect to control values at 2, 6, 24, 48 and 72 h of reperfusion as shown in Table 1. Cortical GSH 

only showed a significant decrease at 6 h after 5 min of transient ischemia, but normalized to control 

levels thereafter. By contrast, GSSG content increased with statistical significance (p<0.05) after 2, 6, 12 

and 24 h of reflow with respect to the sham-operated group (Table 1). In corpus striatum, GSH levels 

remained constant at all times tested. However, striatal GSSG significantly increased between 2 and 48 

h of reflow in comparison with the control group (Table 1). There were no changes in GSH or GSSG in 

the ischemic only gerbils as compared to the sham-operated animals in any brain region.  

 

3.3. Effects of ischemia on antioxidant enzymes  

Figure 2 shows that hippocampal glutathione peroxidase activity significantly decreased by 22 and 18% 

versus sham-operated group after 48 and 72 h of recirculation respectively. In hippocampus, glutathione 

reductase activity was significantly reduced by 46, 42 and 31% when compared with the sham group at 

48, 72 and 96 h of reperfusion respectively. In contrast, no statistically significant differences in 

glutathione-related enzyme activities were observed at any time point in the other brain regions (data not 
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shown). Finally, the effects of ischemia and different reperfusion times on both MnSOD and Cu/ZnSOD 

activities in hippocampus, cortex and striatum are presented in Table 2. Hippocampal MnSOD activity 

significantly increased at 24, 48 and 72 h of reperfusion (57, 46 and 51% vs. control, respectively). 

MnSOD activity did not change in cerebral cortex or striatum at any time point examined. On the other 

hand, striatal Cu/ZnSOD activity was significantly reduced at 12 h of reperfusion following ischemia. A 

similar trend was observed at 24 h in this brain area although this reduction did not reach statistical 

significance (Table 2). However, no significant changes in Cu/ZnSOD activity were seen at any 

reperfusion time in either hippocampus or cortex. Moreover, a brief period of ischemia without reflow 

resulted in no significant changes in glutathione-related enzymes or SODs activities.  

 

4. DISCUSSION 

There is increasing evidence that the brain damage produced by cerebral ischemia develops over a 

period longer than previously believed. A critical role of oxidative stress has been implicated in 

ischemic brain damage. The findings of this study show that certain neuronal populations are highly 

susceptible to oxidative damage induced by a brief global cerebral ischemia episode, which is very 

similar to the pattern of neuronal loss assessed histopathologically (Kirino, 1982; Nitatori et al., 1995). 

The time course of oxidative injury is not the same in the different brain regions examined. In 

hippocampus, it was observed a late maximal increase in markers of oxidative damage coincident with a 

significant impairment of glutathione homeostasis. On the other hand, cerebral cortex showed early 

changes in oxidative damage with no significant impairment in antioxidant capacity. Unlike cortex, 

striatal oxidative damage persisted until 48 h of reflow showing reduction in Cu/ZnSOD activity but no 

late alterations in glutathione homeostasis. 

 

4.1. Effects of ischemia on markers of lipid peroxidation in hippocampus  

Strong experimental evidences suggest that lipid peroxidation plays a widespread role in neuronal cell 

death. Lipid peroxidation results in loss of membrane integrity, impairment of the function of 

membrane-transport proteins and ion channels, disruption of cellular ion homeostasis and concomitantly 

increases neuronal vulnerability to excitotoxicity (Mattson, 1998; Springer et al., 1997).  

In hippocampus, our results have shown a sustained elevation of markers of lipid peroxidation following 

transient forebrain ischemia, which was maximal at 48, 72 and 96 h of recirculation. Our findings are 

consistent with other studies, which have found that the increased level of lipid peroxidation persists for 
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several days after brief forebrain ischemia in the gerbil hippocampus (Floyd and Carney, 1991; Haba et 

al., 1991; Caldwell et al., 1995). We have employed two distinct methods for assessing lipid 

peroxidation. Both MDA + 4-HDA and lipid hydroperoxides levels were similarly increased at the same 

time points. Agreement of both assays for assessing lipid peroxidation provides assurance of the 

involvement of lipid peroxidative mechanisms in global cerebral ischemia in our experimental 

conditions. Other studies have shown a significant delayed increase in MDA-related immunostaining at 

48 and 72 h in the gerbil brain subjected to a 5-min episode of near-complete global ischemia (Hall et 

al., 1997; Oostveen et al., 1998). In a more recent report, 4-hydroxy-2-nonenal immunoreactivity in CA1 

pyramidal neurons increased markedly from 8 h to seven days after transient global ischemia in gerbils 

(Urabe et al., 2000). It is interesting to note that the time course of increased lipid peroxidation was 

simultaneous with that of post-ischemic CA1 neuronal degeneration (Hall et al., 1997). Additionally, a 

recent study has shown a significant delayed increase in superoxide radical generation in hippocampus 

on the third and fifth days of reperfusion following 4 min of transient ischemia in gerbils, which 

correlated with histopathological changes in the CA1 hippocampal sector (Yamaguchi et al., 1998).  

Then, it seems reasonable to assume that the delayed occurrence of oxidative injury may correlate well 

with delayed neuronal loss of hippocampal CA1 pyramidal neurons. Nevertheless, the mechanisms 

underlying the increase in oxidative damage at late stages after the initial ischemic insult are not 

completely understood. It was recently found that glial (GLT-1 and GLAST) and neuronal (EAAC1) 

high-affinity glutamate reuptake mechanisms are downregulated at late stages after ischemia, which 

precedes delayed neuronal death in gerbil hippocampus (Rao et al., 2000). Their dysfunction leads to 

neuronal damage by allowing glutamate to remain in the synaptic cleft for a longer duration and so 

excitotoxicity-induced oxidative injury is likely to occur in the ischemic brain. Other mechanisms which 

might account for the late increase in oxidative damage are probably the delayed induction of ROS-

generating enzymes like cyclooxygenase-2 (Ohtsuki et al., 1996) and nitric oxide synthase (Yrjänheikki 

et al., 1998). 

 

4.2. Effects of ischemia on hippocampal antioxidant defenses 

In an attempt to further elucidate the factors that might influence ROS formation following cerebral 

ischemia, we have measured the antioxidant capacity in each brain area at different reflow times 

following ischemia. Our results have shown a significant reduction of both glutathione peroxidase (GPx) 

and glutathione reductase (GR) activity in the hippocampus at late periods of reperfusion, coincident 
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with maximal reduction in GSH and marked increase in GSSG (Table 1). The most robust and 

significant alteration in the antioxidant defense is a decrease in GSH content (Schulz, 2000). The 

persistent and profound decrease in hippocampal GPx and GR activities as well as the marked decrease 

in GSH levels following ischemia (Fig. 2 and Table 1) is indicative of the lowered antioxidant capacity 

of this brain region being possibly related to their greater vulnerability toward ischemia. Our results 

suggest that the delayed impairment of hippocampal glutathione homeostasis might be involved in the 

late increase in oxidative damage, which is likely related to delayed neuronal loss in this brain area. 

Oxygen radicals have been reported to inactivate GR (Huang and Philbert, 1996) and GPx (Pigeolet and 

Remacle, 1991). In addition, depletion of brain GSH results in a decrease of GR activity, an enzyme 

susceptible to oxidative injury (Barker et al., 1996). It is important to note that the marked reduction in 

GR and GPx activity occurred when GSH depletion and LP were maximal (Figs. 1 and 2; Table 1). 

Additionally, GSSG concentrations in hippocampus showed their maximal increase at 48 and 72 h, 

coincident with the maximal reduction in GR activity. The timing of the observed ischemia-induced 

maximal decrease in GSH (48-72 h after ischemia) indicates that the latter may represent an index of 

neuronal damage prior to death. Loss of glutathione and oxidative damage have been suggested to 

constitute early, possibly signaling events in apoptotic cell death (Sato et al., 1995; Chandra et al., 

2000), although GSH depletion alone may not trigger apoptosis (Wüllner et al., 1999). However, low 

cellular GSH levels could allow oxidative stress to occur which might favor the onset of apoptosis.  

On the other hand, hippocampal manganese superoxide dismutase (MnSOD) activity showed a sustained 

elevation between 24 and 72 h of reperfusion, most likely indicating a protective response to heightened 

oxidative stress after the initial ischemic insult.  SOD is essential for removal of superoxide radicals 

(O2·-) from cells. The removal of O2·- by SOD prevents the production of the hydroxyl radical (·OH); 

although paradoxically, the H2O2 it produces can interact with metal ions (Fe2+, Cu+) to produce ·OH via 

Fenton reaction. Hence, SOD is beneficial only in the presence of sufficient H2O2-detoxifying enzymes, 

such as catalase and GPx. In view that catalase activity is very low in brain, GPx is the main 

hydroperoxide-detoxifying enzyme in the central nervous system (Halliwell and Gutteridge, 1985). It is 

probably that delayed increase in MnSOD activity (Table 2) in the hippocampus is not beneficial in view 

that GPx activity is not concomitantly increased. On the contrary, GPx is significantly reduced at the late 

stages of reflow, which possibly accounts for the marked increase in lipid hydroperoxides observed at 

these reperfusion times (Fig. 1). It is possible that all these factors contribute to the cascade of events 

that ultimately mediate neuronal death after transient forebrain ischemia.  
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4.3. Oxidative stress in cerebral cortex and striatum following forebrain ischemia 

 

Unlike hippocampus, cerebral cortex showed early changes in markers of oxidative damage but these 

indices subsided after 24 h of reperfusion. Ischemia was unable to significantly alter enzymatic 

antioxidant defenses in cerebral cortex. The mechanisms responsible for this highly region-specific 

pattern of oxidative damage induced by ischemia are far from being well understood. On the other hand, 

in the striatum, the ischemia-induced increases in markers of oxidative injury persisted over longer 

periods of time after ischemia. This susceptibility might be associated with dopamine oxidation (either 

enzymatic or non-enzymatic) that increases the production of reactive oxygen species. This notion is 

based in previous reports which have demonstrated that prior depletion of dopamine is neuroprotective 

in cerebral ischemia suggesting that ischemia-induced dopamine release may contribute to increased 

oxidative stress in the striatum (Globus et al., 1987; Ren et al., 1997).  

 

4.4. Concluding remarks 

In summary, the results of this study show that transient ischemia-induced oxidative injury evolves 

temporally and spatially, and provide further evidence that oxidative stress may be involved in delayed 

neuronal death following ischemia in gerbils. In addition, our present findings suggest that the 

disturbance in oxidant-antioxidant balance at late stages after the ischemic insult might play a part in 

rendering brain tissue more vulnerable to free radical-induced injuries. These results might have 

important implications for the antioxidant therapy in transient global cerebral ischemia due to the 

maximal appearance of reactive oxygen species in the late stages, which suggest that postischemic 

administration of antioxidants would be probably valuable in preventing hippocampal neuronal loss. 
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Table 1. Reduced (GSH) and oxidized glutathione (GSSG) levels in different brain regions at different 

time intervals after 5 min of transient global cerebral ischemia in gerbils.   

 

 Hippocampus Cortex Striatum 

Time, h GSH  

(μg/g tissue) 

GSSG  

(ng/g tissue) 

GSH 

 (μg/g tissue) 

GSSG 

 (ng/g tissue)

GSH  

(μg/g tissue) 

GSSG  

(ng/g tissue) 

Sham 1.41 ± 0.13a 1.45 ± 0.46 a 1.42 ± 0.17 a 1.53 ± 0.25 a 1.33 ± 0.12 a 1.44 ± 0.43 a

Ischemia 1.50 ± 0.28a 1.67 ± 0.51a 1.45 ± 0.11 a 1.86 ± 0.99 a 1.28 ± 0.2 a 1.56 ± 0.62 a

2 1.00 ± 0.13 b,c 6.35 ± 1.56 d 1.13±0.19 a,b 3.94 ± 0.88 c 1.11 ± 0.18 a 2.91 ± 0.67 d

6 1.09 ± 0.10c 7.84 ± 1.90 d 1.01 ± 0.14 b 7.64 ± 0.97 b 0.87 ± 0.31 a 6.65 ± 0.87 b

12 1.45 ± 0.18a 2.61 ± 1.26 a 1.1 ± 0.11 a,b 4.58 ± 1.19 c 1.04 ± 0.23 a 5.7 ± 0.6 c 

24 1.20 ± 0.19 a,c 7.23 ± 2.18 d 1.20 ± 0.1 a,b 4.16 ± 1.46 c 1.09 ± 0.47 a 5.74 ± 0.84 c

48 0.80 ± 0.17 b 16.5 ± 2.60 b 1.33 ± 0.23 a 1.78 ± 0.42 a 1.21 ± 0.13 a 3.4 ± 0.99 d 

72 1.10 ± 0.11c 12.97 ± 2.4 c 1.40 ± 0.13 a 2.03 ± 0.99 a 1.31 ± 0.17 a 1.35 ± 0.32 a

96 1.29 ± 0.32 a,c 4.26 ± 1.26 a 1.47 ± 0.10 a 1.84 ± 0.54 a 1.33 ± 0.16 a 1.66 ± 0.41 a

7 d 1.50 ± 0.14a 1.50 ± 0.39 a 1.35 ± 0.37 a 1.69 ± 0.6 a 1.29 ± 0.17 a 1.49 ± 0.63 a

Data are mean ± SD. Means having different superscript letters indicate significant difference (P<0.05) 

between groups. 

 

 

 

 

 
 
 
 
 



 
 
Candelario-Jalil et al., 2001                                                              Neurosci. Res 41(3): 233-241 (2001) 

 17                                                                                                                                                                         
 

 
Table 2. Effects of 5 min of transient global cerebral ischemia on manganese-dependent and 

copper/zinc-dependent superoxide dismutase activity (MnSOD and Cu/ZnSOD, respectively) in 

different gerbil brain regions.  

 
 Hippocampus Cortex Striatum 

 U/mg protein U/mg protein U/mg protein 

Time (h) MnSOD Cu/ZnSOD MnSOD Cu/ZnSOD MnSOD Cu/ZnSOD

Sham 3.7 ± 0.9 6.5 ± 0.8 2.6 ± 0.7 4.8 ± 0.8 3.01 ± 0.5 5.9 ± 0.6 

Ischemia 3.6 ± 0.8 6.3 ± 1.1 2.5 ± 0.5 4.9 ± 0.9 2.9 ± 0.5 6.2 ± 1.0 

2 3.5 ± 0.5 6.6 ± 0.7 2.4 ± 0.3 4.9 ± 0.5 2.7 ± 0.6 5.7 ±1.0 

6 3.3 ± 1.5 6.6 ± 1.3 2.8 ± 0.6 5.0 ± 0.9 3.3 ± 0.9 5.3 ± 0.8 

12 3.6 ± 0.9 6.2 ± 1.0 2.6 ± 0.8 5.1 ± 1.0 3.1 ± 0.4 4.2 ± 0.4 * 

24 5.8 ± 0.7 * 6.6 ± 1.4 2.5 ± 0.4 5.3 ± 0.8 3.6 ± 0.7 4.5 ± 0.8 

48 5.4 ± 0.6 * 6.4 ± 0.9 2.6 ± 0.4 5.0 ± 0.7 3.2 ± 0.5 5.6 ± 1.0 

72 5.6 ± 1.1 * 6.6 ± 0.8 2.6 ± 0.28 5.1 ± 0.6 3.4 ± 0.7 6.1 ± 1.2 

96 3.9 ± 0.7  7.1 ± 0.7 2.9 ± 0.9 4.9 ± 1.1 2.9 ± 0.6 6.3 ± 1.3 

7 d 3.8 ± 0.8 7.0 ± 1.6 3.0 ± 1.2 5.1 ± 1.8 3.3 ± 0.9 6.1 ± 0.9 

 Data are mean ± SD.  

 * P<0.05 with respect to sham-operated animals. 
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Fig. 1. Lipid peroxidation, as assessed by malondialdehyde (MDA), 4-hydroxyalkenals 
(4-HDA) and lipid hydroperoxides levels in different brain areas at different time 
intervals after 5 min of transient forebrain ischemia in gerbils. Data are mean ± SD. 
*P<0.05 and **P<0.01 with respect to sham-operated animals. S: Sham group; I: 
Ischemia without reperfusion. 
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Fig. 2. Effects of ischemia on hippocampal glutathione peroxidase (GPx) and 
glutathione reductase (GR) activities at different reperfusion times following 5 min 
of global cerebral ischemia in the gerbil. Data are mean ± SD. *P<0.05 with respect 
to sham-operated animals. S: Sham group; I: Ischemia without reperfusion. 
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