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Abstract. Experimental evidence for self-organised criticality (SOC) in non-
conservative systems has recently been found in studies of rat cortical slices. The
size distribution of observed neuronal avalanches has been attested to obey 3/2 power-
law scaling. A mean-field sandpile model of a noisy neuronal system is proposed to
refute the irreconcilability between non-conservation and criticality put forward by
longstanding SOC hypotheses. The model predicts that neuronal networks achieve
and maintain criticality despite non-conservation due to the presence of background
activity originating from membrane potential fluctuations within individual neurons.
Furthermore, small networks are demonstrated to tip towards epileptiform activity
when background activity is strong. This finding ties in redundancy, an intriguing
feature of brain networks, to robustness of SOC behaviour.
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1. Introduction

One of the most recent, concrete, experimental evidence for SOC in real systems has

been found in slices of rat brain tissue [1]. This new type of activity, dubbed as neuronal

avalanche, is observed using an array of micro-electrodes placed over a neocortical

slice. Neuronal avalanche has been proposed as a mode for high-speed information

transmission and as a possible substrate for memory [2].

The ultimate problem with colligating this remarkable experimental phenomenon

to SOC theory is the fact that information propagation between neurons via stimulus

transfer is highly non-conservative [3, 4]. All SOC models so far predict that non-

conservation and criticality cannot be simultaneously satisfied [5, 6, 7, 8, 9].

The goal of the present work is to demonstrate that SOC can possibly be achieved

despite violation of the conservation law during stimulus transfer. In relation to this,

the role of the ever-present membrane potential fluctuations as a contributory SOC

mechanism in neuronal systems is explored through a mean-field model of a noisy

neuronal network that exhibits avalanche activity. The findings presented here provide

useful insight into how non-conservative, leaky, dissipative systems such as neuronal

networks can possibly maintain a critical state in the context of SOC theory.

2. Possibility of SOC Mechanisms

A neuronal avalanche is characterised as a cascade of bursts of local field potentials

(LFP), originating from synchronised action potentials triggered by the relaxation of a

single neuron. When observed with a micro-electrode array, the number of electrodes

that detect LFP, which is roughly proportional to the actual number of neurons

synchronously firing action potentials, varies among avalanche sequences recorded at

different times. The avalanche sizes are distributed approximately as an inverse power-

law with exponent ≈ 3/2. This observed trend has only so far been broadly linked with

SOC principles, particularly through the study of critical branching processes [10].

Neurons receive and transmit information using one dominant form of medium—

the electric potential, which is both received as input (synaptic potential) and fired as

output (action potential). Each neuron stores the input as membrane potential and

when this exceeds a threshold value, the neuron fires. Utilisation of a single medium in

receiving, encoding, storing and transmitting information, in addition to the well-known

all-or-none response of individual neurons, parallels with SOC sandpile models. A “sand

grain” serves as the currency of exchange, and a sandpile site only transfers grains

whenever a threshold amount of stored grains is exceeded. Thus, the critical behaviour

of neuronal avalanche activity may parsimoniously, yet sufficiently, be analysed in terms

of sandpile models. Furthermore, the large number of neurons (∼ 1011 in normal human

brains) and the high degree of non-local connections (∼ 104 per neuron) allow for the

approximation of neuronal information transport by mean-field models.

However, prevailing SOC models are not capable of satisfying both non-conservation
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and criticality. Tsuchiya and Katori offered rigorous proof that violation of the

conservation law frustrates the criticality of Abelian sandpiles [5]. A mean-field

treatment of the Manna sandpile known as the self-organised branching process (SOBP)

by Zapperi, Lauritsen & Stanley further demonstrates that non-conservation disrupts

criticality [11, 12]. Breaking of SOC due to non-conservation has also been later

demonstrated numerically and analytically in the Olami-Feder-Christensen earthquake

model [6, 7, 8]. The forest-fire model (FFM), which does not have conservation laws,

might have been a promising SOC model, but it was ultimately proven, via Lyapunov

exponent analysis [9] and later by renormalization group approach [13], that FFM is not

self-organised, hence not SOC. Therefore, any attempt to subsume critical phenomena

in neuronal systems within the SOC framework needs to circumvent the conceptual

barricade that prevents any non-conservative system from achieving criticality.

3. Non-Conservative Mean-Field Model

3.1. Neuronal Phenomena in Sandpile Language

An individual neuron is modelled as a binary ON-OFF switch and its state z is described

by mapping {z} = {0, 1, 2} to its membrane potential Vm in relation to resting potential

Vre and threshold potential Vth, as follows:

• Dormant state: z = 0 7→ Vre ≤ Vm < Vth

• Threshold state: z = 1 7→ Vm = Vth

• Excited state: z = 2 7→ Vm > Vth

The excited state of a neuron is highly unstable, and an excited neuron instantly de-

excites by firing an action potential [14]. Hence, z = 2 is a transient ON state and

z = 0, 1 are stable OFF states. This mapping concords with Manna’s version of the

sandpile model [15].

Grain addition and subtraction operations of the Abelian sandpile are associated

with the processes known as depolarisation and hyperpolarisation, respectively.

Depolarisation displaces Vm towards a lower value, whereas hyperpolarisation raises

Vm to a higher value [14]. In sandpile terms, both processes can be formulated as a

generic operation z → z + ∆z, where ∆z = +1 for depolarisation and ∆z = −1 or

−2 for hyperpolarisation. An excited neuron, for instance, hyperpolarises immediately

after it fires an action potential.

3.2. Neuronal Avalanche Rules

The system is a model neuronal network assumed to be fully connected and non-

recurrent, i.e., each neuron links to every other neuron but not to itself. Although fully

connected, a maximum of only two randomly chosen synaptic connections per neuron

are activated during a single avalanche event. The network has size N = 2n+1 − 1

neurons, where n is the upper bound on the number of generations of depolarisation in
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every avalanche sequence. Thus, n may be interpreted as a boundary condition, if one

imagines that the neurons depolarised at the n-th generation are those situated at the

network’s periphery. This is in accord with the definition of boundaries for the SOBP

model [11].

The entire network is in a quiescent state when no excited neurons are present;

otherwise it is activated. Let us define the density of dormant and threshold neurons

in a quiescent network as 1 − ρ and ρ, respectively. The quiescent network is “slowly”

stimulated via Rule A, defined as follows:

(A.1) Choose a neuron at random.

(A.2) Depolarise chosen neuron: z → z + 1.

If a dormant neuron is chosen at time t, Rule A is repeated in the next time step

and another neuron is randomly selected. The probability that Rule A is applied to

a threshold neuron at time t is ρ = ρ(t). If indeed a threshold neuron is selected, it

becomes excited due to Rule A.2. Consequently, time is frozen and avalanche ensues.

Freezing time follows from the assumption that the ensuant avalanche event takes place

instantaneously with respect to the rate at which Rule A is applied. This is what is

essentially meant by “slow” stimulation, conventionally referred to as “infinite time-scale

separation,” which is justified by the fact that the time interval between two distinct

avalanche sequences is much longer than the duration of a single avalanche sequence [1].

Infinite time-scale separation is also a typical assumption in sandpile models [16].

The ensuant events following the emergence of an excited neuron are collectively

referred to as Rule B:

(B.1) Randomly choose two post-synaptic neurons (u and v) connected to excited neuron

w.

(B.2) After firing an action potential, w immediately hyperpolarises, and u and v may

depolarise. Three cases possible:

(a) With probability α, w hyperpolarises to dormant state (zw : 2 → 0); both u

and v depolarise.

(b) With probability β, w hyperpolarises back to threshold state (zw : 2 → 1);

only one of either u or v depolarises.

(c) With probability ε = 1−α−β, w hyperpolarises to dormant state (zw : 2 → 0);

neither u nor v depolarise.

(B.3) Repeat B.1 and B.2 until all excited neurons are depleted, or after n generations of

depolarisation are reached.

(B.4) Resume Rule A.

Rule B essentially describes the avalanche sequence, which only terminates if the

activated network relaxes back to its quiescent state (i.e., no excited neurons present),

or after the boundary condition (i.e., n generations of depolarisation) is met. Time

takes off again after Rule B terminates and once more the network builds up for the
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next avalanche event via Rule A. The total number of neurons s depolarised during the

sequence is defined as the avalanche size.

3.3. Background Activity

The significant distinction of this model from typical sandpile models is the

presence of background activity—the system is a noisy neuronal network. This

is conceived by postulating the existence of membrane potential fluctuations inside

each individual neuron when the network is quiescent. This postulate is motivated

by electrophysiological studies on membrane potential transitions that arise through

activation of a hyperpolarisation-activated cation current or H-current [17]. Kang,

Kitano & Fukai have demonstrated that membrane potential fluctuations “can be

generated through a spike-timing-dependent self-organizing process in a network of

inhibitory neurons and excitatory neurons expressing the H-current,” using a realistic

model of a cortical neural network [17]. Spike-timing dependent processes that affect

the probability with which a neuron fires an action potential have also been investigated

experimentally in whole-cell recordings of cortico-striatal slices [18]. The existence of

membrane potential fluctuations is also linked to the presence of background noise

in neuronal activity, which has been found to play a significant role in neuronal

responsiveness to varying intensities of stimuli (see [19] for a review). The role

of background noise is analogous to stochastic resonance, a well-studied nonlinear

phenomenon with a wealth of following in the neuroscience and computational

neuroscience research community [20, 21, 22, 23, 24].

The level of background activity in the quiescent network is quantified by a

parameter η ∈ (0, 1]. The background activity is denoted as Rule C, defined as follows:

(C.1) With probability η, a dormant neuron depolarises to threshold state (z : 0 → 1).

(C.2) With probability η(σ/ρ − 1), a threshold neuron hyperpolarises to dormant state

(z : 1 → 0),

where σ is known as the branching parameter, to be discussed in more detail in section 4.

At time t, Rule C is concurrent with Rule A and operates over the entire network in

parallel. It changes ρ(t) for the next time step t + ∆t such that Rule C.1 contributes,

on the average, a change to ρ

ρ(t + ∆t)− ρ(t) = η[1− ρ(t)]∆t , (1)

and Rule C.2 contributes

ρ(t + ∆t)− ρ(t) = −η

[
σ(ρ(t))

ρ(t)
− 1

]
ρ(t)∆t , (2)

where σ/ρ is the local branching parameter. Since Rules C.1 and C.2 happen

concurrently, then (1) and (2) can directly be added together to yield a net change

in ρ per unit time

B(ρ; η) = η [1− σ(ρ)] . (3)
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Table 1. Transition rules of the non-conservative mean-field model with corresponding
transition probabilities. The central digits for the avalanche rules correspond to the
excited agent and the flanking digits are the two random neighbors, in no particular
order. The sum of transition probabilities for the avalanche and nonconservative rules
is ρ, which is, self-consistently, the probability that the avalanche had initiated.
Process Rule Transition probability

Background activity 1 → 0 η(σ/ρ− 1)ρ

0 → 1 η(1− ρ)

Avalanche 121 → 202 αρ3

021 → 102 2αρ2(1− ρ)

020 → 101 αρ(1− ρ)2

121 → 112 βρ3

021 → 012 2βρ2(1− ρ)

020 → 011 βρ(1− ρ)2

Non-conservation 2 → 0 ερ = (1− α− β)ρ

Equation (3) serves as the phenomenological model of background activity. B
is excitatory (i.e., increases ρ) when σ < 1, and inhibitory (i.e., decreases ρ) when

σ > 1. Experimental evidence suggests that this seesaw between cortical excitation

and inhibition contributes in stabilising the network, keeping it on the border between

inactivity and epileptiform activity [4].

4. Dynamics and Branching Process

The transition rules of the model are summarised in table 1. Background activity is

derived from Rule C. The first three avalanche rules are from Rule B.2.a, whereas the

last three are from Rule B.2.b. The non-conservation process is taken from Rule B.2.c,

so that ε measures the level of non-conservation of the model. Conservation law is

essentially violated when ε > 0.

Given the transition rules, the density ρ, assumed to be a continuous dynamical

variable, satisfies

dρ

dt
= B(ρ; η) +A(ρ; ε) + χ(t) . (4)

The noise term χ(t) arises from the probabilistic nature of the transition rules, and

accounts for the fluctuations around average values assumed to hold in the mean-field

calculations. It appropriately vanishes in the large-N limit, which has been confirmed

through numerical simulations. The term A(ρ; ε) represents the change in ρ(t) due to

depolarisations brought about by an avalanche at time t. Treating the avalanche as a

branching process, and following closely the analysis in [12], A(ρ; ε) satisfies

NA = 1− σn − ερ

1− (1− ε)ρ

[
1 +

1− σn+1

1− σ
− 2σn

]
, (5)
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where the first term comes from Rule A acting on a threshold neuron with probability

ρ(t) at time t. The second term represents the average amount of stimuli dissipated by

threshold neurons becoming excited in the n-th generation. The third term, which is

non-zero when ε > 0, represents the average amount of stimuli lost due to transmission

failure (non-conservation [Rule B.2.c]). The branching parameter σ is derived from the

following definition

σ =
∑

k

kq(k) , (6)

wherein from table 1, the branching probability q(k) that an excited neuron subsequently

depolarises k other neurons is

q(k) = αρδk,2 + βρδk,1 + [1− (1− ε)ρ] δk,0 , (7)

with δi,j being the Kronecker delta. The first and second terms in (7) are the sum of

transition probabilities of the first three avalanche rules and of the last three avalanche

rules listed in table 1, respectively. The last term is the total of the probability coming

from the non-conservation rule and the probability that a dormant neuron is depolarised,

which both yield k = 0. Substitution of (7) to (6) renders

σ = (2α + β)ρ , (8)

which depends on α and β, and is proportional to density ρ. In this model it is

assumed that α and β remain fixed throughout so that the only dynamic variable is

ρ. Consequently,

dσ

dt
= (2α + β)

dρ

dt
. (9)

A branching process is sub-critical when σ < 1, for which avalanches have sizes no

larger than a finite cutoff size no matter how large the system is. On the other hand,

a branching process is supra-critical when σ > 1 such that avalanches as large as the

system itself are formed almost with certainty. Hence, σ = 1 is a critical value that

results to a critical branching process [25]. The avalanche size distribution emerging

from a critical branching process is expected to be power law. Since σ only varies when

ρ changes, then ρ determines whether the branching process is sub-critical, critical, or

supra-critical.

5. Avalanche Size Distribution

A diagram of an avalanche is illustrated as a binary branching tree in figure 1. The initial

excited neuron emerging from Rule A at time t with probability ρ(t) is the topmost node.

During the avalanche, it depolarises two neurons with probability αρ, both becoming

excited. One of these depolarises one neuron with probability βρ. Also shown is an

excited neuron that does not depolarise any neuron with probability ερ due to non-

conservation. Setting n = 3, all excited neurons at three levels below the topmost node

do not further depolarise other neurons. In the example shown, the avalanche size is

s = 9.
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Figure 1. Avalanche shown as a branching tree with n = 3. Shaded circles
corresponded to depolarised neurons. The avalanche size s = 9 corresponds to the
total number of shaded circles.

The branching probability q(k) defined in (7) fundamentally describes the likelihood

that an excited neuron subsequently depolarises k ∈ {0, 1, 2} neurons in the succeeding

generation. With q(k) the avalanche size distribution P (s) is calculated using a

generating functional formalism. A generating function Fm(ω) of P (s) after m

generations is defined as

Fm(ω) =
∞∑

s=1

P (s)ωs . (10)

Fm is also considered the m-th iterate of the generating function F1 := F

F(ω) =
∞∑

s=1

q(s− 1)ωs = ω
∞∑

s=1

q(s− 1)ωs−1 . (11)

Furthermore, by definition Fm+1(ω) = F [F(ω)], such that from (11), the following

sufficiently holds [25]

Fm+1(ω) = ω
∞∑

s=1

q(s− 1) [Fm(ω)]s−1 , (12)

which simplifies to

Fm+1(ω) = ω
{
αρF2

m + βρFm + [1− (1− ε)ρ]
}

, (13)

following from (7). For sufficiently large m, the theory of branching processes asserts a

self-consistency relation wherein Fm+1 ' Fm, so that solving for Fm in (13) yields

Fm(ω) =
1− bω −√1− 2bω + aω2

2αρω
, (14)

where a = β2ρ2 − 4αρ[1− (1− ε)ρ], and b = βρ. Binomial expansion of (14) around its

singularity ω = 0 yields a power series of the form defined in (10). The coefficients of

expansion correspond to P (s). In a more compact form the solution can be expressed

as a recurrence relation

P (s) =
1

s + 1
[(2s− 1)bP (s− 1)− (s− 2)aP (s− 2)] . (15)
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In particular, Pinho & Prado [7] have calculated an analytic form of (15) for the special

case of β = 0. Equation (15) can easily be demonstrated, by graphical inspection, to

have the asymptotic behavior P (s) ∼ s−3/2 for s À 1 if a = 2b− 1; a condition that can

equivalently be expressed as

Q(ρ) = a− 2b + 1

= β2ρ2 − 4αρ[1− (1− ε)ρ]− 2βρ + 1 (16)

= 0 .

Since σ ∝ ρ from (8), then (16) can also be expressed as Q(σ) with root at σ = 1, which

is the critical value of the branching parameter.
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S = 3/2

 P
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)
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Figure 2. Typical avalanche size distribution from simulation of the model with
ε = 0.2, η = 0.03125 and n = 183. P (s) exhibits power-law scaling with exponent 3/2
spanning three orders of magnitude. The fat tail is an artifact of finite n, which moves
to the right by simply increasing n. The inset graph is the distribution of avalanche
lifetime T , which is the actual number (≤ n) of generations of depolarisations before
the avalanche dies out. A power-law with exponent 2 is drawn as guide.

Numerical simulations of the model also confirms the asymptotic behavior of P (s),

as shown in figure 2. Note that by increasing n, the scaling trend also extends to the

right so that the power-law regime also spans a wider range of orders, as expected for a

truly critical system. In figure 2, the 3/2-scaling in P (s) extends roughly three orders of

magnitude. Also shown is the avalanche lifetime distribution P (T ), which also exhibits

scaling with exponent 2.
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6. Results and Discussion

The stationary behaviour of the model is examined using a well-established geometrical

theory of fixed points [26]. Nonlinear differential equations such as (9) may be analysed

graphically in terms of vector fields. In this framework, σ̇ := dσ/dt is interpreted as a

“velocity vector” at each possible σ value. A plot of σ̇ versus σ is known as the phase

portrait of the model. The fixed point σ∗ corresponds to the σ-value at which σ̇ = 0.

The trajectory of the vector around the neighbourhood of this fixed point is directed to

the right where σ̇ > 0, and to the left where σ̇ < 0. This means that if σ̇ is increasing

around the neighbourhood of σ∗, then the fixed point is repulsive. On the other hand,

if σ̇ is decreasing, then the fixed point is attractive.

Linearisation of (9) actually yields

lim
σ→σ∗

∂

∂σ

dσ

dt
< 0 ,

which implies that the fixed points of the model are attractive. This is confirmed by

plotting the actual phase portraits for different n, shown in figure 3. The plots are

monotonically decreasing, implying that indeed the fixed points of (9) are dynamically

attractive. Therefore, the network spontaneously approaches (without the tuning of

control parameters) the state defined by its fixed point—the essence of self-organisation.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
-0.02

-0.01

0.00

0.01

0.02

0.03

n=

n=4

n=16
n=8

d
dt

Q( )

Figure 3. Phase portrait, showing σ̇ versus σ, for a non-conservative system with
ε = 0.25 and η = 0.03125 of different sizes N = 2n+1−1: 31 (chain curve), 511 (dotted
curve), 131, 071 (dashed curve), and ∞ (broken line). The fixed points σ∗ correspond
to the root of σ̇. The solid parabola is the function Q(σ) with root at σ = 1. For
N ≥ 131, 071, σ∗ = 1, indicating that the non-conservative system spontaneously
evolves towards its critical state via self-organisation.
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Also illustrated in figure 3 is the parabolic function Q(σ) with a root at σ = 1.

For network sizes N = 31 and N = 511, obviously σ∗ < 1, implying that the network

self-organises towards a sub-critical state. However, from N = 131, 071 up to N →∞,

|1 − σ∗| ¿ 1. A non-conservative network achieves SOC even if its size is finite. The

rapid approach of σ∗ towards 1 from N = 511 to N = 131, 071 in addition to the

decelerating change in σ∗ from N = 131, 071 to N →∞ indicates a phase transition.
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Figure 4. Phase transition in the non-conservative model. Data points result from
numerical analysis of the fixed point density ρ∗ of (4) neglecting the noise term
χ(t), for various ε ∈ (0, 1/2), η ∈ (0, 1], and system size N . The critical density
ρc = (2α + β)−1 is derived from (8) with σ = 1. The curve is a logistic fit of the form
y(x) = 1− [1 + (x/θ)γ ]−1 where y = (ρ∗ − 1/2)/(ρc − 1/2) and x = ηN .

Indeed as shown in figure 4, the model reveals a phase transition. The data points

are derived from numerical fixed-point analysis of (4), assuming that the noise term χ(t)

is very small to be significant. For a wide range of non-conservation levels ε ∈ (0, 1/2),

and background activity η ∈ (0, 1], a phase diagram emerges from the relation between

(ρ∗ − 1/2)/(ρc − 1/2) and ηN . The resultant plot is fitted by a logistic curve

ρ∗ − 1/2

ρc − 1/2
= 1−

[
1 +

(
ηN

θ

)γ
]−1

, (17)

wherein ρ∗ is the steady-state density corresponding to the fixed-point branching

parameter σ∗, and ρc is the critical density derived from (8) with σ = 1. The fitting

parameters are θ = 9.31±0.27 and γ = 0.68±0.01 (goodness of fit: χ2/DoF = 4×10−5,

R2 = 0.99986, no weighting). Equation (17) suitably describes two limiting cases of the

model. The first one is η → 0, which results to ρ∗ → 1/2. This limiting case is equivalent

to having no background activity, as in the SOBP model by Lauritsen, Zapperi &

Stanley [12]. They have similarly found that the steady-state density ρ∗ = 1/2,
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irrespective of any level of non-conservation ε. Consequently, the SOBP model is always

sub-critical (i.e., yields no power-law but rather exponentially truncated distributions)

whenever ε > 0. Therefore, a neuronal network without background activity in the form

of membrane potential fluctuations cannot display SOC.

The second limiting case corresponds to ηN À θ, which leads to ρ∗ → ρc. At this

limit, the non-conservative system is always critical. A closer look at figure 4 reveals that

the data points lie infinitesimally close to 1 starting at ηN ∼ 104. This means that if the

network is very large, say N ∼ 1011 which is typical of normal human brain networks,

then for a very wide range of background activity η ∈ (10−7, 1], the non-conservative

network is always expected to exhibit SOC behaviour in the form of neuronal avalanche

activity. Simulation of the model for various levels of non-conservation ε likewise yields

an avalanche size distribution P (s) of the form plotted in figure 2.

It is also interesting to note that for ηN ' θ, the fixed-point density ρ∗ is highly

uncertain to small variations in either η or N . This is the regime describing the abrupt

rise from 0 to 1 in figure 4.
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 = 3/2
 t

 

Figure 5. Distribution of neuronal avalanche size data adopted from [10] (circles), and
of a simulated network (full curve) with ηN ≈ 3, 670 having a level of non-conservation
ε = 0.25. Inset graph shows σ(t) as a function of time t, approaching the critical value
of 1 at the steady-state.

A simulation of the model is performed for a network with size N = 131, 071 with

background activity η = 0.025 such that ηN ≈ 3, 670, and level of non-conservation

ε = 0.25. After rescaling the simulated avalanche sizes with a factor deduced from

experiment [1], the model successfully fits the neuronal avalanche size distribution

P (s) adopted from [10], as shown in figure 5. A power-law with exponent 3/2

primarily characterises the distribution, as predicted. A cutoff appears because of
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the limited number of micro-electrodes utilised in resolving LFP intensity during the

experiments [1]. The cutoff shifts to the right (i.e., towards larger avalanche sizes)

when the number of micro-electrodes is increased. Data from simulation also fits this

cutoff remarkably well. The cutoff in the simulation arises from the imposed boundary

condition limiting the number of generations of depolarisation in a single avalanche.

This cutoff also shifts to the right by increasing n. Hence, both model and experimental

data agree not only in the power-law behaviour of P (s), but also with regards to the

underlying cause of the cutoff. The inset graph illustrates the evolution of the branching

parameter σ with time t, approaching the critical value of 1 at the steady state. This

Figure 6. Phase plot of the simulated network converging towards three dynamical
attractors: (A) excitatory membrane potential fluctuations; (B) fixed point (σ∗ = 1);
and (C) inhibitory membrane potential fluctuations. Solid line is the phase portrait
based on numerical analysis of (9), neglecting noise χ(t).

steady-state behaviour is supported by a phase plot of σ, shown in figure 6. The fixed

point (B) corresponds to σ∗ = 1. Also shown are two other dynamical attractors (A, C),

which correspond to the noise χ(t) that was neglected in the fixed-point analysis of (9).

The symmetry between (A) and (C) indicates a balance between cortical excitation and

inhibition, which consequently imparts stability to the network’s critical steady-state

(i.e., σ remains sufficiently close to 1 at any time). Thus, the background activity due

to membrane potential fluctuations is essential in letting the network hover around the

critical state such that a power-law P (s) is generated.

High redundancy has been regarded as one of the most intriguing characteristics

of the human brain. The presence of several identical neurons that perform similar

roles may be colligated with robust performance. Robustness of the network’s
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Figure 7. Phase plots for two simulated networks of different sizes N but similar
levels of non-conservation ε = 0.25 driven by a strong background η = 1.0. Expected
fixed point is at σ∗ = 1. Left panel.— N = 131, 071 neurons, showing a prominent
excursion at a region where σ > 1 and σ̇ > 0. Solid line corresponds to mean-field
prediction neglecting noise χ(t). Inset graph displays the resultant logarithmically-
binned histogram of avalanche sizes, having a marked peak (pointed by arrow) for
large sizes, suggestive of epileptiform activity. Right panel.— N = 4, 194, 303 neurons,
exhibiting fixed-point stability at σ∗ = 1. Inset graph presents the logarithmically-
binned P (s).

critical behaviour with respect to background intensity is examined by comparing the

performance of a small (N = 131, 071) and a large (N = 4, 194, 303) network driven by

a strong background (η = 1.0).

Figure 7 (Left panel) shows the phase plot of the small network exhibiting

imbalance in the excitatory and inhibitory dynamical attractors. There is a notable

excursion of the phase plot on a region wherein σ > 1 and σ̇ > 0. This implies that the

network is highly excited—i.e., more frequently, a majority of neurons are synchronously

firing action potentials. The inset graph reveals a high occurrence probability of

large neuronal avalanches as implied by the presence of a hump. High degree of

synchronisation has been believed to be the precursor of epileptic seizure attacks [14].

Epilepsy is also oftentimes attributed to damage of nerve cells resulting from accidents

or neuro-degenerative diseases thereby cutting down the network’s redundancy, hence

its robustness to over-excitation.

On the other hand, figure 7 (Right panel) shows that the large network is

highly robust even to a strong background intensity. This supports the link between

redundancy and robustness. The inset graph of the avalanche size distribution does not
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exhibit a hump. The large network therefore maintains its critical behaviour despite

the intensiveness of membrane potential fluctuations.

7. Possible Extension of the Model

The model’s effectiveness relies on having the branching parameter defined in (8)

spontaneously converge to the critical value of 1. A key assumption is that α and β are

fixed, so that σ = 1 is achieved solely by means of the background activity. One could

assume instead that both α and β, which both represent synaptic efficacy, also change

in time. Efficacy of synaptic transmission changes as a result of synaptic plasticity—

the dynamical adjustment of the strength of connections between neurons [14]. This

assumption consequently yields the generalisation (9)

dσ

dt
=

(
2
∂α

∂t
+

∂β

∂t

)
ρ + (2α + β)

∂ρ

∂t
.

The implementation of the above modification incorporates the role of synaptic plasticity

to the criticality of neuronal avalanche activity.

8. Summary and Conclusion

Recent experimental evidence for SOC discovered in neuronal networks has primarily

motivated this research. A non-conservative mean-field sandpile model of SOC has been

proposed to address the irreconcilability between critical behaviour manifested by the

power-law size distribution of neuronal avalanches and the inherent non-conservation

of information transmission of neuronal networks in the context of prevailing SOC

theory and models. Critical behaviour has been analysed in terms of the theory

of branching processes and fixed-point methods. Consequently, it generates scale-

invariant avalanche size distributions as demonstrated by theoretical analysis and

numerical simulations. The findings provide useful insight into the possible role of

membrane potential fluctuations, which effectively generates background activity, on

how dissipative neuronal networks maintain a critical state despite non-conservation.

Furthermore, the model has been able to associate network redundancy, which is an

intriguing characteristic of brain networks, to network robustness. Small networks which

are relatively less redundant than large networks may tip towards epileptiform activity

when membrane potential fluctuations are strong.

References

[1] Beggs J M and Plenz D 2003 J. Neurosci. 23 11167
[2] Beggs J M and Plenz D 2004 J. Neurosci. 24 5216
[3] Vogels T P and Abbott L F 2005 J. Neurosci. 25 10786
[4] Galarreta M and Hestrin S 1998 Nature Neurosci. 1 587
[5] Tsuchiya T and Katori M 2000 Phys. Rev. E 61 1183
[6] Drossel B 2002 Phys. Rev. Lett. 89 238701



Membrane potential fluctuations and neuronal avalanche criticality 16

[7] Pinho STR and Prado CPC 2003 Braz. J. Phys. 33 476
[8] Boulter C J and Miller G 2003 Phys. Rev. E 68 056108
[9] Socola J E S, Grinstein G and Jayaprakash C 1993 Phys. Rev. E 47 2366

[10] Haldeman C and Beggs J M 2005 Phys. Rev. Lett. 94 058101
[11] Zapperi S, Lauritsen K B and Stanley H E 1995 Phys. Rev. Lett. 75 10786: 4071
[12] Lauritsen K B, Zapperi S and Stanley H E 1996 Phys. Rev. E 54 2483
[13] Loreto V, Pietronero L, Vespignani A and Zapperi S 1995 Phys. Rev. Lett. 75 465
[14] Purves D et al , eds. 2004 Neuroscience, Third ed. (Sunderland, MA: Sinauer Associates)
[15] Manna S S 1991 J. Phys. A: Math. Gen. 24 L363
[16] Vespignani A and Zapperi S 1998 Phys. Rev. E 57 6345
[17] Kang S, Kitano K and Fukai T 2004 Neural Networks 17 307
[18] Mahon S, Cassasus G, Mulle C and Charpier S 2003 J. Physiol. 550 947
[19] Destexhe A and Conteras D 2006 Science 314 85
[20] Meunier C and Segev I, in Moss F and Gielen S, eds. 2000 Handbook of Biological Physics 4 426

(Amsterdam: Elsevier)
[21] Kish L B, Harmer G P and Abbott D 2001 Fluct. Noise Lett. 1 L13
[22] Longtin A 2002 Fluct. Noise Lett. 2 L183
[23] Ginzburg S L and Pustovoit M A 2003 Fluct. Noise Lett. 3 L265
[24] Arecchi F T 2005 Fluct. Noise Lett. 5 L163
[25] Harris T E 1963 The Theory of Branching Processes (Berlin: Springer-Verlag)
[26] Strogatz S H 1994 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology,

Chemistry, and Engineering (Reading, MA: Perseus Books)


