Neuroinformatics Tools for Functional MRI: Experimental Design and Data Analysis

Miyapuram, Krishna P. and Pammi, V. S. Chandrasekhar and Ahmed, Ahmed and Bapi, Raju S. (2007) Neuroinformatics Tools for Functional MRI: Experimental Design and Data Analysis. (Unpublished)

Full text available as:



Neuroimaging in vivo is becoming popular from the last two decades. The primary quest of neuroimaging is to better-understanding the functions of various brain areas pertaining to various cognitive processes of interest. Though there are several neuroimaging techniques available currently, the functional Magnetic Resonance Imaging (fMRI) is playing an important role in the field of Imaging Neuroscience. In this paper an introduction to fMRI, the issues related to experimental design and analysis will be presented. This paper also discusses some of the neuroinformatics tools available for fMRI research.

Item Type:Other
Keywords:fMRI, Experimental design, Statistical Parametric Mapping
Subjects:Neuroscience > Brain Imaging
ID Code:5485
Deposited By:Miyapuram, Mr Krishna
Deposited On:26 Apr 2007
Last Modified:11 Mar 2011 08:56

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

Biswal, B.B., Ulmer, J.L., 1999. Blind source separation of multiple signal sources of fMRI data sets using independent component analysis. J. Comput. Assist. Tomogr. 23, 265– 271.

Chein, J. M. and Schneider, W. (2003). Designing effective fMRI experiments. In Grafman, J. and Robertson, I., editors, Handbook of Neuropsychology. Elsevier Science B.V., Amsterdam.

Cohen, M. S. and Bookheimer, S. Y. (1994). Functional magnetic resonance imaging. Trends in Neurosciences, 17:268–277.

Cox, R. W. (1996) AFNI – Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages. Computers and Biomedical Research 29:162-173.

Culham, J. C. (2005). Functional neuroimaging: Experimental design and analysis. In Cabeza, R. and Kingstone, A., editors, Handbook of Functional Neuroimaging of Cognition, 2nd edition. MIT Press, Cambridge MA.

Davatzikos C., Ruparel K., Fan Y., Shen D. G., Acharyya M., Loughead J. W., Gur R. C., and Langleben D. D. (2005). Classifying spatial patterns of brain activity with machine learning methods: application to lie detection. NeuroImage, 28:663–668.

Friston, K. J. (1997). Imaging cognitive anatomy. Trends in Cognitive Sciences, 1:21–27.

Friston, K. (1998). Imaging neuroscience: principles or maps? Proc. Natl. Acad. Sci. USA, 95:796–802.

Friston K.J., Glaser D.E., Henson R.N.A., Kiebel S., Phillips C., and Ashburner J. (2002). Classical and Bayesian Inference in Neuroimaging: Applications. NeuroImage, 16:484-512.

Friston, K. J., Harrison, L., and Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19:1273–1302.

Friston, K. , Ashburner, J., Kiebel, S., Nichols, T., and Penny, W., Eds, (2006) Statistical Parametric Mapping: The analysis of functional brain images. Elsevier, London.

Haynes, J-D., and Rees G. (2006). Decoding mental states from brain activity in humans. Nature Reviews Neuroscience 7: 523–534.

Heeger, D. J. and Ress, D. (2002). What does fMRI tell us about neural activity? Nature Reviews, 3:142–150.

Hornak, J. P. (2002). The basics of MRI. Online book at:, Rochester, NY.

Makeig, S., Jung, T.P., Bell, A.J., Ghahremani, D., Sejnowski, T.J., 1997. Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. U. S. A. 94, 10979–10984.

McKeown, M.J., Jung, T.P., Makeig, S., Brown, G., Kindermann, S.S., Lee, T.W., Sejnowski, T.J., 1998. Spatially independent activity patterns in functional MRI data during the stroop color-naming task. Proc. Natl. Acad. Sci. U. S. A. 95, 803–810.

Mechelli, A., Henson, R. N. A., Price, C. J., and Friston, K. J. (2003). Comparing event-related and epoch analysis in blocked design fMRI. NeuroImage, 18:806–810.

Mitchell, T., Hutchinson, R., Niculescu, R., Pereira, F., Wang, X., Just M., and Newman, S. (2004). Learning to decode cognitive states from brain images. Machine Learning, 57:145–175.

Ogawa, S., Lee, T. M., Kay, A. R., and Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences, USA, 87:9868–9872.

Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S., Merkle, H., and Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings of the National Academy of Sciences, USA, 89:5951–5955.

Partain, C. L. (2006). JMRI special issue: Clinical potential of brain mapping using MRI, Journal of Magnetic Resonance Imaging, 23:785–786

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., and Matthews, P.M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(S1):208-219

Talairach P, Tournoux J. (1988). A Stereotactic Coplanar Atlas of the Human Brain. Stuttgart: Thieme

Ugurbil, K., Toth, L., and Kim, D. S. (2003). How accurate is magnetic resonance imaging of brain function? Trends in Neuroscience, 26:108–114.

Volkow, N. D., Rosen, B., and Farde, L. (1997). Imaging the living human brain: Magnetic resonance imaging and positron emission tomography. Proceedings of National Academy of Sciences, USA, 94:2787–2788.


Repository Staff Only: item control page