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Abstract
Organisms can learn by individual experience to recognize relevant stim-

uli in the environment or they can genetically inherit this ability from their
parents. Here, we ask how these two modes of acquisition affect signal evo-
lution, focusing in particular on the exaggeration and cost of signals. We ar-
gue first, that faster learning by individual receivers cannot be a driving force
for the evolution of exaggerated and costly signals unless signal senders are
related or the same receiver and sender meet repeatedly. We argue instead
that biases in receivers’ recognition mechanisms can promote the evolution
of costly exaggeration in signals. We provide support for this hypothesis by
simulating coevolution between senders and receivers, using artificial neural
networks as a model of receivers’ recognition mechanisms. We analyse the
joint effects of receiver biases, signal cost and mode of acquisition, investi-
gating the circumstances under which learned recognition gives rise to more
exaggerated signals than inherited recognition. We conclude the paper by
discussing the relevance of our results to a number of biological scenarios.
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1 Introduction

The evolution of signal form has recently received a lot of attention (reviewed by
Bradbury & Vehrencamp, 1998; Enquist & Arak, 1998; Ryan, 1998). Determi-
nants of form, such as the coding and transmission of information, receiver biases
and strategic factors, have been considered. Here, we consider another potential
determinant of signal form, namely how recognition of the signal is acquired by
receivers. We distinguish between genetically inherited recognition and recogni-
tion learned by individual receivers, based on their own experiences with signal
senders. In the former case, receivers are born with knowledge obtained during
their species’ evolutionary history; in the latter, receivers are born naive and will
make mistakes while learning the appropriate reactions to the senders’ signals.

Both inherited and learned recognition occur in nature (Hogan & Bolhuis,
1994). For example, female frogs recognize the call of conspecific males without
any specific learning (Blair, 1964; Salthe & Mecham, 1974). Similarly, snakes
recognize food without learning (Arnold, 1981). Examples of where learning is
important include mate recognition in birds (ten Cate, 1994) and predators learn-
ing to avoid unpalatable prey (Edmunds, 1974). Why this diversity exists is an
important issue, but is not the topic of this paper. Rather, we ask whether individ-
ually learned and genetically inherited recognition have different consequences
for the evolution of signal form. In particular, we are interested in the degree of
exaggeration and cost of the signal, noting that exaggeration often entails a bigger
cost for senders (either costs in producing the signal or other costs, such as easier
detection by predators).

An important factor for the evolution of costly signals is conflict between in-
dividuals (Dawkins & Krebs, 1978; Arak & Enquist, 1995). Typically, conflict is
due to individuals preferring different courses of action (in gametheoretical anal-
yses, such conflicts can be seen in the payoff matrix of a game). However, in this
paper we assume that senders and receivers both benefit from receivers accurately
recognizing senders. Nevertheless, conflict can occur due to a lack of knowledge
in receivers, causing them to respond in ways that are suboptimal for both them-
selves and senders. For example, a naive bird may attack a distasteful bug. Once
a receiver has learned to recognize senders, the conflict diminishes. Note that, in
the case of learned recognition, the conflict reappears with every individual born
to the population, whereas in the case of inherited recognition, conflict disappears
once recognition has been successfully coded in the genes.

This last remark points out that signal evolution may be affected by whether
signal recognition is inherited or individually learned, but gives little clue as to
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what the difference might be. To date, most theoretical studies of signalling
seem to assume genetically inherited recognition (e.g. Grafen, 1990; Bradbury
& Vehrencamp, 1998). The only signalling context, to our knowledge, in which
the role of learning has been extensively studied is the evolution of aposematic
coloration (Leimar et al., 1986; Guilford, 1990; Mallet & Joron, 1999). In this
context, it is sometimes said that unprofitable prey may benefit from using an
exaggerated signal because receivers will learn more quickly, thus making fewer
mistakes that are costly for both prey and predator.

However, when a sender and a receiver meet, the sender’s fitnessdepends in
many cases on the receiver’s response only, not on what the receiver learns from
the encounter. If a would-be aposematic prey is killed by a predator, for exam-
ple, it does not matter to the dead prey whether its signal has been effectively
learned or not. More generally, learning by receivers has fitness consequences for
senders only if the same sender and receiver meet repeatedly or the receiver meets
relatives to the sender (Luce & Raiffa, 1957; Hamilton, 1964). In this paper, we
ignore these possibilities to study the simpler case of unrelated senders and single
encounters between senders and receivers. Under such circumstances, exagger-
ated signals cannot evolve simply because they are easier to learn. Rather, there
must be a direct benefit for a mutant bearing an exaggerated signal, compared with
the rest of the sender population that employs a less exaggerated one.

Biases in receiver recognition mechanisms can potentially provide such a ben-
efit (Leimar et al., 1986; Guilford, 1990). For example, if receivers learn to re-
spond to a stimulus, an exaggerated form of the stimulus (e.g. bigger, louder or
brighter) may elicit a stronger response (Hinde, 1970; Mackintosh, 1974). It will
be advantageous for senders to exploit such biases only to the extent that the exag-
gerated signal is better recognized by receivers and does not carry too high a cost.
As receivers will eventually recognize signals without mistakes if recognition is
inherited, we may conjecture that senders may benefit from exaggerated, costlier
signals mainly in the case of learned recognition. In the following, we examine
theoretically the coevolution between senders and receivers in the case of both
inherited and learned recognition, considering both cost-free and costly exaggera-
tion. To assess the role of receiver biases, we use arrificial neural networks as the
receiver recognition mechanism. These models are known to exhibit biases sim-
ilar to those of animals under many circumstances (Ghirlanda & Enquist, 1998;
Kamo et al., 1998; Phelps & Ryan, 1998; Kamo & Iwasa, 2000; Phelps, 2001).
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2 Model

2.1 Receivers and senders

As a model of receivers, we use feed-forward arrificial neural networks (see Haykin,
1994; Ghirlanda & Enquist, 1998, for a comprehensive presentation of artificial
neural networks and a study of their response properties in biologically relevant
settings, respectively). Here, we use a network with three interconnected layers.
The first layer contains 10 input units, whose activation transmits to five units in
the middle layer by means of weights (model synapses) that can amplify or atten-
uate the transmitted signal. In turn, activation of middle-layer units reaches one
output unit by a second layer of connections. The activation of the output unit
(a number between zero and unity) is the response of the network to the initial
stimulation.

A sender is described by specifying the effect of its signal, s, on the receiver’s
input units. A signal is thus a set of 10 numbers between zero and unity.

2.2 Fitness

Receiver fitness is determined by the extent to which it discriminates between the
sender signal, s, and a second stimulus, b, modelling background stimulation or
other stimuli which should be ignored. The optimal receiver responses to s and b
are assumed to be 0.9 and 0.1, respectively. Formally, receiver fitness is calculated
as follows based on the absolute differences eb and es (errors) between the actual
and optimal receiver responses to b and s:

fR =
√

(1− eb)(1− es) (1)

Note that fR reaches its maximum value of 1 when both errors eb and es are zero.
Sender fitness is determined by receiver responses to s and signal cost. We

assume that the the same value 0.9 of responding to s is optimal for both senders
and receivers. To calculate signal cost, we first define an exaggerated signal as
one eliciting a strong response from receiver sense organs. More precisely the
exaggeration x(s) of signal s is calculated as

x(s) =
1
n

n

∑
k=1

s2
k (2)

where sk is the value of signal unit k and n = 10 is the number of signal units.
Exaggeration so defined varies between 0 (if all signal units are 0) and 1 (if all
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signal units are 1), and we further assume that signal cost be proportional to signal
exaggeration. The full expression for sender fitness may thus be written as:

fS = 1− es− cx(s) (3)

where c is a non-negative number regulating signal cost. The term 1− es trans-
lates the assumption that accurate recognition by receivers (small es) is bene-
ficial to senders as well, while the term −cx(s) is the negative contribution of
exaggeration-induced signal cost. In the following we will analyse the evolution
of both cost-free signals (c = 0) and costly signals with different values of c.

2.3 Learning

To model learning by individual receivers, we use the well-known back-propagation
algorithm (LeCun, 1985; Parker, 1985; Rumelhart et al., 1986; Haykin, 1994).
This is an iterative procedure whereby, at each iteration, network weights are
slightly modified to reduce the difference between the actual output and the op-
timal response to each stimulus. More iterations of the algorithm and a bigger
difference between s and b both result in better approximation of the optimal
responses (1). The number of back-propagation iterations can thus be taken to
correspond to the amount of experience that receivers have with the relevant stim-
uli. As a model of biological learning, back-propagation is not fully realistic (e.g.
McLaren, 1989; Mitchison, 1989). However, in studies of signal evolution we are
not interested in the learning process per se. It is enough that receivers, after ex-
periences with a given sender signal, react realistically to mutant signals: in other
words, we need realistic models of generalization. Previous studies have ascer-
tained that feed-forward neural networks, learning by back-propagation, general-
ize similarly to real animals (Ghirlanda & Enquist, 1998; Phelps & Ryan, 1998;
Phelps, 2001).

2.4 Simulations

2.4.1 Inherited recognition

For simplicity, we consider fairly large populations, and we assume that favourable
mutations arise at a sufficiently low rate as to allow a successful mutant to invade
the population before a fitter one arises. Under such conditions, each population
may be assumed to be dominated by one phenotype, called the resident. Dur-
ing each generation, a mutant arises, and its fitnessis compared with that of the

5



R
es

po
ns

e 
to

 b
R

es
po

ns
e 

to
 s

Amount of Experience

0.2

0.4

0.6

0.8

1

200 400 600 800 1000

0.2

0.4

0.6

0.8

1

0
target

target

0

1.0
0.5
0.2
0.1

(background=0.02)

Signal Intensity

Figure 1: Learning curves as a function of the amount of experience (number of back-
propagation iterations) and signal exaggeration. The background b is a uniform stimulus
of value 0.02, and s is a uniform stimulus set at: solid line, 1.0; short-dashed line, 0.5; solid
and dotted line, 0.2; and solid and crossed line, 0.1. Long-dashed lines represent optimal
responses to s and b (0.9 and 0.1, respectively). Note that discrimination becomes more
accurate when the amount of learning increases and when the difference between the two
stimuli increases.

resident phenotype. The phenotype with higher fitnessis retained in the popula-
tion. Furthermore, because mutants are single individuals in a large population,
the fitness of both the mutant and the resident phenotypes in one population are
calculated based on the interaction with only the resident phenotype in the other
population (see Enquist & Arak, 1993, 1994; Kamo et al., 1998, for further details
and applications).

The background stimulus b is fixed throughout the course of evolution; all of
its units are set at 0.02. Units of s are set at 0.02 (the same as b) at the beginning of
each simulation and change by mutation by adding a small random number from a
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Gaussian distribution (m = 0 and s = 0.05) to a few signal units, with the constraint
that all unit values stay between zero and unity. On average, one unit is mutated
when generating a mutant. Receivers mutate by adding a random number from a
Gaussian distribution (m = 0 and s = 0.01) to several of their network weights. An
average of two weights are changed each time a mutant is generated.

2.4.2 Learned recognition

We also examine coevolution where receivers do not inherit any information from
the previous generation. In this case, the receiver population does not evolve and
it can be modelled simply as a single network whose weights are set at random
at the beginning of each generation. Senders evolve in the same way as with in-
herited recognition. As mutants are rare, we assume that receivers learn for some
time based on the resident sender alone, without experience of the mutant. This
is modelled by a number of back-propagation iterations where the network learns
to discriminate s from b , to an extent that depends on both the characteristics
of s and the number of learning iterations (cf. 1). After a number of experiences
with the resident sender, receivers will meet the mutant.The fitnessof the latter,
relative to the resident, can now be assessed by means of 3. That is, we check
whether, following initial experiences with the resident sender, the mutant is rec-
ognized more accurately than the resident and how much it pays for its signal.
The sender with the higher fitnessbecomes the resident in the next generation (the
transitional period where, in an actual population, both mutant and resident types
would be abundant can be ignored since the network will prefer the same sender
throughout).

3 Results

Generally, simulations reached a steady state after a number of generations, which
is a condition in which the observed quantities did not fluctuate appreciably. The
evolutionary trajectories are shown in 2. Replications with the same simulation
parameters yielded almost the same steady-state values. In the case of learned
recognition, the steady state was reached within less than 1000 generations (due
to evolution of the sender signal). In the case of inherited recognition, between
10000 and 30,000 generations were needed. Optimal receiver responding was
attained in the case of inherited recognition, both with cost-free and costly sig-
nals (recall that the same receiver response is optimal for both senders and re-
ceivers). In the case of learned recognition and cost-free signals, extreme exag-
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Figure 2: Coevolution between senders and receivers. Evolutionary trajectories of exag-
geration (solid and dotted line), receiver response to s− (solid and crossed line), receiver
response to s+ (dashed line) and sender fitness(solid line) are shown for (a) inherited
recognition versus non-costly signals, (b) learned recognition versus non-costly signals,
(c) inherited recognition versus costly signals, and (d) learned recognition versus costly
signals. Long-dashed lines represent optimal responses. We used c=1 for costly signals
(see 3) and 200 back-propagation iterations for learned recognition. All values are the
average of 10 replicates.

geration evolved, as it pays mutant senders to exploit even small biases for exag-
gerated signals in receivers. That such biases exist is known from previous studies
(Ghirlanda & Enquist, 1998) and is also shown below. By contrast, when exag-
geration is costly, there is a trade-off between the gain yielded by exaggerating the
signal and the loss caused by its greater cost.

The most intriguing result is that senders evolve a more exaggerated, costlier
signal when recognition in receivers is learned rather than inherited (cf. 2 c,d). To
study this effect in fuller detail, we have run a set of simulations where we varied
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Figure 3: Signal exaggeration evolved in simulations with learned recognition as a func-
tion of amount of experience (number of back-propagation iterations). Cost parameter, c,
is 1. The dashed line corresponds to inherited recognition. Bars on both lines denote s.e.

the amount of experience of receivers with the resident sender, before encounter-
ing the mutant. In these simulations, the most exaggerated and costly signals were
obtained for intermediate amounts of experience 3. The figure shows a case where
intermediate levels of exaggeration evolve; more extreme values are observed with
less costly exaggeration (see 5 below).

To understand this result, we have explored receiver biases during the evolu-
tionary process as follows. At each generation, we start with the signal that has
evolved so far and try to improve it by mutation. That is, we generate a new
signal and test whether it elicits from receivers a response that is closer to the op-
timal. We repeat this step 1000 times, each time mutating the signal that has so
far elicited the response closest to the optimal. We call the signal thus obtained
the “best” signal. Note that evolution is not affected because receivers are not
learning about the test signals. In figure 4a, we show the receiversÕ output to the
best and to the evolved signal as a function of the amount of experience in each
generation. We see that senders would not gain much by switching to the best
signal when receivers learn either a little or a lot (receivers show little bias). At
intermediate amounts of learning, receivers exhibit a larger bias and switching to
the best signal would yield bigger fitnessgains to mutant senders. In Figure 4b,
we also see that the best signal is considerably more exaggerated (costlier) than
the evolved one, especially for small amounts of experience. This further inhibits
the evolution of exaggeration when receivers learn little.
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Finally, we have explored the joint effect of signal cost and amount of learn-
ing (5). The results can be predicted, given the above discussion. When exag-
geration is cheap (small c in 3), exaggerated signals evolve easily because it is
advantageous to exploit even small receiver biases. When exaggeration is costly,
exaggeration evolves only for intermediate amounts of learning.
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4 Discussion

Exaggerated, costly signals may evolve for a number of reasons. For instance,
signals may be exaggerated in order to get through to the receiver. Alternatively,
the cost may be crucial for maintaining the communication of reliable informa-
tion (Zahavi, 1975; Grafen, 1990). Exaggerated signals may also evolve in an
arms race between senders and receivers, in which the sender tries to manipulate
the receiver and the receiver tries to resist being manipulated (Dawkins & Krebs,
1978; Arak & Enquist, 1995; Enquist & Arak, 1998). This requires that there is
an evolutionary conflict between senders and receivers (Arak & Enquist, 1995).

In this paper, we have studied another possible explanation for exaggeration
in cases where the sender and receiver both benefit from the same receiver re-
sponse. When signal recognition is learned rather than genetically inherited, our
simulations show that costlier exaggeration may evolve. The reason for this is that
mutant senders bearing a more exaggerated signal may elicit a response closer to
the optimal from receivers. This is a consequence of the generalization gradient
emerging during learning. In our simulations, the amount of exaggeration that
actually evolves is limited by its cost: when the cost was removed, extreme ex-
aggeration evolved both under learned and inherited recognition. This strategic
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scenario agrees with the results from a different type of model that was applied to
the evolution of aposematic coloration (Leimar et al., 1986).

Evolutionary processes that involve learning are difficult to study. To our
knowledge, no fully satisfactory model of learning exists today. We have cho-
sen arrificial neural networks as models of receivers because they do not constrain
signal form and are known to generalize realistically when novel signals appear
(Ghirlanda & Enquist, 1998). Nevertheless, available learning algorithms for neu-
ral networks, including the back-propagation one used here, are difficult to relate
to real learning events (learning models such as those proposed by Rescorla &
Wagner (1972) and Blough (1975) have similar advantages and disadvantages).
Our simulations involved several simplifications of the actual learning sequence,
but they capture the main difference between learned and inherited recognition:
that receivers are born naive and will thus make mistakes while learning the ap-
propriate behaviour.

To conclude, we discuss reality. For what signalling contexts will our results
be relevant? Learned aposematism is an obvious case: predators and unprofitable
preys have common interests, but these can not be exploited as long as the predator
is inexperienced. Note, however, that our model potentially applies to all situa-
tions where senders benefit from being accurately recognized by receivers (ex-
amples are interactions between pollinators and flowers, and between fruit eaters
and fruits). As stressed in §1, the model is not meant to predict why recognition
is learned or inherited in each particular system. Nevertheless, the simulation re-
sults provide us with some definite predictions about the co-occurrence of learned
versus inherited recognition and signal exaggeration. First, we expect signals that
are learned by the receiver to be more exaggerated than signals for which recogni-
tion is genetically inherited. Warning signals are often learned by predators (Ed-
munds, 1974; Guilford, 1990), although genetic factors are also known to play a
part. Inherited recognition is predicted to occur in conjunction with less colourful
appearances. A potential example of dangerous but inconspicuous organisms is
snakes (with a few exceptions). Interestingly, this is associated with innate avoid-
ance responses in frogs (Ewert, 1980) and with strong genetic predispositions to
develop fear for snakes in humans and monkeys (Mineka & Cook, 1988). Note
that in the latter case we have left the domain of prey-predator interactions.

We may also conjecture that less-striking signals will be found in systems
where a specialist predator has been associated with the same unprofitable prey
species for a long time. In these cases, inherited recognition may evolve, whereas
if predators are generalists (relying more on learning) we expect prey to develop
more exaggerated signals. Our simulations also indicate that signals that are either
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rarely or very often encountered by receivers might be less exaggerated than sig-
nals encountered an intermediate number of times (3). Thus, rare and very com-
mon species should be less colourful than those of intermediate density. Because
in our simulations we did not consider performance before and during learning as
relevant for fitness, the conclusion about rare species is uncertain. That individu-
als of common species should carry less-exaggerated signals seems to be a more
robust prediction, particularly when signalling only occurs at short distances.

It is probably possible to derive further predictions from our results. For
instance, an anonymous reviewer has suggested that exaggeration of signals in
M’́ullerian mimicry systems should decrease as more unpalatable species join
the system, because the same signal becomes increasingly common. We are, at
present, unable to evaluate this and other predictions. As recalled in §1 and at
the beginning of this section, many factors can affect the evolution of exagger-
ation. Not all of these are mutually exclusive (for instance, receiver biases and
kinship in senders might contribute independently).We therefore expect that ex-
tensive studies, including both comparative analysis and tracing of the ontogeny
of recognition, will be necessary to assess the relative importance of each factor
in concrete biological situations.
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