
Expressing Implicit Semantic Relations without Supervision

Peter D. Turney

Institute for Information Technology
National Research Council Canada

M-50 Montreal Road
Ottawa, Ontario, Canada, K1A 0R6

peter.turney@nrc-cnrc.gc.ca

Abstract

We present an unsupervised learning al-
gorithm that mines large text corpora for
patterns that express implicit semantic re-
lations. For a given input word pair

YX : with some unspecified semantic
relations, the corresponding output list of
patterns mPP ,,1� is ranked according
to how well each pattern iP expresses the
relations between X and Y . For exam-
ple, given ostrich=X and bird=Y , the
two highest ranking output patterns are
“X is the largest Y” and “Y such as the
X” . The output patterns are intended to
be useful for finding further pairs with
the same relations, to support the con-
struction of lexicons, ontologies, and se-
mantic networks. The patterns are sorted
by pertinence, where the pertinence of a
pattern iP for a word pair YX : is the
expected relational similarity between the
given pair and typical pairs for iP . The
algorithm is empirically evaluated on two
tasks, solving multiple-choice SAT word
analogy questions and classifying seman-
tic relations in noun-modifier pairs. On
both tasks, the algorithm achieves state-
of-the-art results, performing signifi-
cantly better than several alternative pat-
tern ranking algorithms, based on tf-idf.

1 Introduction

In a widely cited paper, Hearst (1992) showed
that the lexico-syntactic pattern “Y such as the
X” can be used to mine large text corpora for
word pairs YX : in which X is a hyponym (type)
of Y. For example, if we search in a large corpus
using the pattern “Y such as the X” and we find
the string “bird such as the ostrich”, then we can
infer that “ostrich” is a hyponym of “bird”. Ber-
land and Charniak (1999) demonstrated that the
patterns “Y’ s X” and “X of the Y” can be used to

mine corpora for pairs YX : in which X is a
meronym (part) of Y (e.g., “wheel of the car”).

Here we consider the inverse of this problem:
Given a word pair YX : with some unspecified
semantic relations, can we mine a large text cor-
pus for lexico-syntactic patterns that express the
implicit relations between X and Y ? For exam-
ple, if we are given the pair ostrich:bird, can we
discover the pattern “Y such as the X” ? We are
particularly interested in discovering high quality
patterns that are reliable for mining further word
pairs with the same semantic relations.

In our experiments, we use a corpus of web
pages containing about 10105× English words
(Terra and Clarke, 2003). From co-occurrences
of the pair ostrich:bird in this corpus, we can
generate 516 patterns of the form “X ... Y” and
452 patterns of the form “Y ... X” . Most of these
patterns are not very useful for text mining. The
main challenge is to find a way of ranking the
patterns, so that patterns like “Y such as the X”
are highly ranked. Another challenge is to find a
way to empirically evaluate the performance of
any such pattern ranking algorithm.

For a given input word pair YX : with some
unspecified semantic relations, we rank the cor-
responding output list of patterns mPP ,,1� in
order of decreasing pertinence. The pertinence of
a pattern iP for a word pair YX : is the expected
relational similarity between the given pair and
typical pairs that fit iP . We define pertinence
more precisely in Section 2.

Hearst (1992) suggests that her work may be
useful for building a thesaurus. Berland and
Charniak (1999) suggest their work may be use-
ful for building a lexicon or ontology, like
WordNet. Our algorithm is also applicable to
these tasks. Other potential applications and re-
lated problems are discussed in Section 3.

To calculate pertinence, we must be able to
measure relational similarity. Our measure is
based on Latent Relational Analysis (Turney,
2005). The details are given in Section 4.

Given a word pair YX : , we want our algo-
rithm to rank the corresponding list of patterns

mPP ,,1� according to their value for mining
text, in support of semantic network construction
and similar tasks. Unfortunately, it is difficult to
measure performance on such tasks. Therefore
our experiments are based on two tasks that pro-
vide objective performance measures.

In Section 5, ranking algorithms are compared
by their performance on solving multiple-choice
SAT word analogy questions. In Section 6, they
are compared by their performance on classify-
ing semantic relations in noun-modifier pairs.
The experiments demonstrate that ranking by
pertinence is significantly better than several al-
ternative pattern ranking algorithms, based on
tf-idf. The performance of pertinence on these
two tasks is slightly below the best performance
that has been reported so far (Turney, 2005), but
the difference is not statistically significant.

We discuss the results in Section 7 and con-
clude in Section 8.

2 Pertinence

The relational similarity between two pairs of
words, 11 :YX and 22 :YX , is the degree to
which their semantic relations are analogous. For
example, mason:stone and carpenter:wood have
a high degree of relational similarity. Measuring
relational similarity will be discussed in Sec-
tion 4. For now, assume that we have a measure
of the relational similarity between pairs of
words, ℜ∈):,:(sim 2211r YXYX .

Let }:,,:{ 11 nn YXYXW �= be a set of word
pairs and let },,{ 1 mPPP �= be a set of patterns.
The pertinence of pattern iP to a word pair

jj YX : is the expected relational similarity be-
tween a word pair kk YX : , randomly selected
from W according to the probability distribution

):(p ikk PYX , and the word pair jj YX : :
),:(pertinence ijj PYX

�
=

⋅=
n

k
kkjjikk YXYXPYX

1
r):,:(sim):(p

The conditional probability):(p ikk PYX can be
interpreted as the degree to which the pair

kk YX : is representative (i.e., typical) of pairs
that fit the pattern iP . That is, iP is pertinent to

jj YX : if highly typical word pairs kk YX : for
the pattern iP tend to be relationally similar to

jj YX : .
Pertinence tends to be highest with patterns

that are unambiguous. The maximum value of
),:(pertinence ijj PYX is attained when the pair

jj YX : belongs to a cluster of highly similar
pairs and the conditional probability distribution

):(p ikk PYX is concentrated on the cluster. An
ambiguous pattern, with its probability spread
over multiple clusters, will have less pertinence.

If a pattern with high pertinence is used for
text mining, it will tend to produce word pairs
that are very similar to the given word pair; this
follows from the definition of pertinence. We
believe this definition is the first formal measure
of quality for text mining patterns.

Let ikf , be the number of occurrences in a
corpus of the word pair kk YX : with the pattern

iP . We could estimate):(p ikk PYX as follows:

�
=

=
n

j
ijikikk ffPYX

1
,,):(p

Instead, we first estimate):(p kki YXP :

�
=

=
m

j
jkikkki ffYXP

1
,,):(p

Then we apply Bayes’ Theorem:

�
=

⋅

⋅
=

n

j

jjijj

kkikk
ikk

YXPYX

YXPYX
PYX

1

):p():p(

):p():p(
):p(

We assume nYX jj 1):p(= for all pairs in W :

�
=

=
n

j
jjikkiikk YXPYXPPYX

1

):p():p():p(

The use of Bayes’ Theorem and the assumption
that nYX jj 1):p(= for all word pairs is a way
of smoothing the probability):(p ikk PYX , simi-
lar to Laplace smoothing.

3 Related Work

Hearst (1992) describes a method for finding
patterns like “Y such as the X” , but her method
requires human judgement. Berland and
Charniak (1999) use Hearst’s manual procedure.

Riloff and Jones (1999) use a mutual boot-
strapping technique that can find patterns auto-
matically, but the bootstrapping requires an ini-
tial seed of manually chosen examples for each
class of words. Miller et al. (2000) propose an
approach to relation extraction that was evalu-
ated in the Seventh Message Understanding Con-
ference (MUC7). Their algorithm requires la-
beled examples of each relation. Similarly, Ze-
lenko et al. (2003) use a supervised kernel
method that requires labeled training examples.
Agichtein and Gravano (2000) also require train-
ing examples for each relation. Brin (1998) uses
bootstrapping from seed examples of author:title
pairs to discover patterns for mining further pairs.

Yangarber et al. (2000) and Yangarber (2003)
present an algorithm that can find patterns auto-
matically, but it requires an initial seed of manu-
ally designed patterns for each semantic relation.
Stevenson (2004) uses WordNet to extract rela-
tions from text, but also requires initial seed pat-
terns for each relation.

Lapata (2002) examines the task of expressing
the implicit relations in nominalizations, which
are noun compounds whose head noun is derived
from a verb and whose modifier can be inter-
preted as an argument of the verb. In contrast
with this work, our algorithm is not restricted to
nominalizations. Section 6 shows that our algo-
rithm works with arbitrary noun compounds and
the SAT questions in Section 5 include all nine
possible pairings of nouns, verbs, and adjectives.

As far as we know, our algorithm is the first
unsupervised learning algorithm that can find
patterns for semantic relations, given only a large
corpus (e.g., in our experiments, about 10105×
words) and a moderately sized set of word pairs
(e.g., 600 or more pairs in the experiments), such
that the members of each pair appear together
frequently in short phrases in the corpus. These
word pairs are not seeds, since the algorithm
does not require the pairs to be labeled or
grouped; we do not assume they are homogenous.

The word pairs that we need could be gener-
ated automatically, by searching for word pairs
that co-occur frequently in the corpus. However,
our evaluation methods (Sections 5 and 6) both
involve a predetermined list of word pairs. If our
algorithm were allowed to generate its own word
pairs, the overlap with the predetermined lists
would likely be small. This is a limitation of our
evaluation methods rather than the algorithm.

Since any two word pairs may have some rela-
tions in common and some that are not shared,
our algorithm generates a unique list of patterns
for each input word pair. For example, ma-
son:stone and carpenter:wood share the pattern
“X carves Y” , but the patterns “X nails Y” and
“X bends Y” are unique to carpenter:wood. The
ranked list of patterns for a word pair YX :
gives the relations between X and Y in the corpus,
sorted with the most pertinent (i.e., characteristic,
distinctive, unambiguous) relations first.

Turney (2005) gives an algorithm for measur-
ing the relational similarity between two pairs of
words, called Latent Relational Analysis (LRA).
This algorithm can be used to solve multiple-
choice word analogy questions and to classify
noun-modifier pairs (Turney, 2005), but it does
not attempt to express the implicit semantic rela-
tions. Turney (2005) maps each pair YX : to a
high-dimensional vector v� . The value of each
element iv in v� is based on the frequency, for
the pair YX : , of a corresponding pattern iP .
The relational similarity between two pairs,

11 :YX and 22 :YX , is derived from the cosine of
the angle between their two vectors. A limitation
of this approach is that the semantic content of
the vectors is difficult to interpret; the magnitude
of an element iv is not a good indicator of how

well the corresponding pattern iP expresses a
relation of YX : . This claim is supported by the
experiments in Sections 5 and 6.

Pertinence (as defined in Section 2) builds on
the measure of relational similarity in Turney
(2005), but it has the advantage that the semantic
content can be interpreted; we can point to spe-
cific patterns and say that they express the im-
plicit relations. Furthermore, we can use the pat-
terns to find other pairs with the same relations.

Hearst (1992) processed her text with a part-
of-speech tagger and a unification-based con-
stituent analyzer. This makes it possible to use
more general patterns. For example, instead of
the literal string pattern “Y such as the X” , where
X and Y are words, Hearst (1992) used the more
abstract pattern “ 0NP such as 1NP ”, where iNP
represents a noun phrase. For the sake of sim-
plicity, we have avoided part-of-speech tagging,
which limits us to literal patterns. We plan to
experiment with tagging in future work.

4 The Algorithm

The algorithm takes as input a set of word pairs
}:,,:{ 11 nn YXYXW �= and produces as output

ranked lists of patterns mPP ,,1� for each input
pair. The following steps are similar to the algo-
rithm of Turney (2005), with several changes to
support the calculation of pertinence.
1. Find phrases: For each pair ii YX : , make a
list of phrases in the corpus that contain the pair.
We use the Waterloo MultiText System (Clarke
et al., 1998) to search in a corpus of about

10105× English words (Terra and Clarke, 2003).
Make one list of phrases that begin with iX and
end with iY and a second list for the opposite
order. Each phrase must have one to three inter-
vening words between iX and iY . The first and
last words in the phrase do not need to exactly
match iX and iY . The MultiText query language
allows different suffixes. Veale (2004) has ob-
served that it is easier to identify semantic rela-
tions between nouns than between other parts of
speech. Therefore we use WordNet 2.0 (Miller,
1995) to guess whether iX and iY are likely to
be nouns. When they are nouns, we are relatively
strict about suffixes; we only allow variation in
pluralization. For all other parts of speech, we
are liberal about suffixes. For example, we allow
an adjective such as “inflated” to match a noun
such as “inflation”. With MultiText, the query
“inflat*” matches both “inflated” and “inflation”.
2. Generate patterns: For each list of phrases,
generate a list of patterns, based on the phrases.
Replace the first word in each phrase with the
generic marker “X” and replace the last word
with “Y” . The intervening words in each phrase

may be either left as they are or replaced with the
wildcard “*”. For example, the phrase “carpenter
nails the wood” yields the patterns “X nails the
Y” , “X nails * Y” , “X * the Y” , and “X * * Y” .
Do not allow duplicate patterns in a list, but note
the number of times a pattern is generated for
each word pair ii YX : in each order (iX first and

iY last or vice versa). We call this the pattern
frequency. It is a local frequency count, analo-
gous to term frequency in information retrieval.
3. Count pair frequency: The pair frequency
for a pattern is the number of lists from the pre-
ceding step that contain the given pattern. It is a
global frequency count, analogous to document
frequency in information retrieval. Note that a
pair ii YX : yields two lists of phrases and hence
two lists of patterns. A given pattern might ap-
pear in zero, one, or two of the lists for ii YX : .
4. Map pairs to rows: In preparation for build-
ing a matrix X , create a mapping of word pairs
to row numbers. For each pair ii YX : , create a
row for ii YX : and another row for ii XY : . If W
does not already contain }:,,:{ 11 nn XYXY � ,
then we have effectively doubled the number of
word pairs, which increases the sample size for
calculating pertinence.
5. Map patterns to columns: Create a mapping
of patterns to column numbers. For each unique
pattern of the form “X ... Y” from Step 2, create
a column for the original pattern “X ... Y” and
another column for the same pattern with X and
Y swapped, “Y ... X” . Step 2 can generate mil-
lions of distinct patterns. The experiment in Sec-
tion 5 results in 1,706,845 distinct patterns,
yielding 3,413,690 columns. This is too many
columns for matrix operations with today’s stan-
dard desktop computer. Most of the patterns have
a very low pair frequency. For the experiment in
Section 5, 1,371,702 of the patterns have a pair
frequency of one. To keep the matrix X man-
ageable, we drop all patterns with a pair fre-
quency less than ten. For Section 5, this leaves
42,032 patterns, yielding 84,064 columns. Tur-
ney (2005) limited the matrix to 8,000 columns,
but a larger pool of patterns is better for our pur-
poses, since it increases the likelihood of finding
good patterns for expressing the semantic rela-
tions of a given word pair.
6. Build a sparse matrix: Build a matrix X in
sparse matrix format. The value for the cell in
row i and column j is the pattern frequency of the
j-th pattern for the the i-th word pair.
7. Calculate entropy: Apply log and entropy
transformations to the sparse matrix X (Lan-
dauer and Dumais, 1997). Each cell is replaced
with its logarithm, multiplied by a weight based
on the negative entropy of the corresponding
column vector in the matrix. This gives more

weight to patterns that vary substantially in fre-
quency for each pair.
8. Apply SVD: After log and entropy transforms,
apply the Singular Value Decomposition (SVD)
to X (Golub and Van Loan, 1996). SVD de-
composes X into a product of three matrices

TVUΣ , where U and V are in column or-
thonormal form (i.e., the columns are orthogonal
and have unit length) and Σ is a diagonal matrix
of singular values (hence SVD). If X is of rank
r , then Σ is also of rank r . Let kΣ , where

rk < , be the diagonal matrix formed from the
top k singular values, and let kU and kV be the
matrices produced by selecting the correspond-
ing columns from U and V . The matrix

T
kkk VU Σ is the matrix of rank k that best ap-

proximates the original matrix X , in the sense
that it minimizes the approximation errors
(Golub and Van Loan, 1996). Following Lan-
dauer and Dumais (1997), we use 300=k . We
may think of this matrix T

kkk VU Σ as a smoothed
version of the original matrix. SVD is used to
reduce noise and compensate for sparseness
(Landauer and Dumais, 1997).
9. Calculate cosines: The relational similarity
between two pairs,):,:(sim 2211r YXYX , is
given by the cosine of the angle between their
corresponding row vectors in the matrix

T
kkk VU Σ (Turney, 2005). To calculate perti-

nence, we will need the relational similarity be-
tween all possible pairs of pairs. All of the co-
sines can be efficiently derived from the matrix

T
kkkk)(ΣΣ UU (Landauer and Dumais, 1997).

10. Calculate conditional probabilities: Using
Bayes’ Theorem (see Section 2) and the raw fre-
quency data in the matrix X from Step 6, before
log and entropy transforms, calculate the condi-
tional probability):(p jii PYX for every row
(word pair) and every column (pattern).
11. Calculate pertinence: With the cosines from
Step 9 and the conditional probabilities from
Step 10, calculate),:(pertinence jii PYX for
every row ii YX : and every column jP for
which 0):(p >jii PYX . When 0):(p =jii PYX ,
it is possible that 0),:(pertinence >jii PYX , but
we avoid calculating pertinence in these cases for
two reasons. First, it speeds computation, be-
cause X is sparse, so 0):(p =jii PYX for most
rows and columns. Second, 0):(p =jii PYX im-
plies that the pattern jP does not actually appear
with the word pair ii YX : in the corpus; we are
only guessing that the pattern is appropriate for
the word pair, and we could be wrong. Therefore
we prefer to limit ourselves to patterns and word
pairs that have actually been observed in the cor-
pus. For each pair ii YX : in W, output two sepa-
rate ranked lists, one for patterns of the form
“X … Y” and another for patterns of the form

“Y … X” , where the patterns in both lists are
sorted in order of decreasing pertinence to ii YX : .
Ranking serves as a kind of normalization. We
have found that the relative rank of a pattern is
more reliable as an indicator of its importance
than the absolute pertinence. This is analogous to
information retrieval, where documents are
ranked in order of their relevance to a query. The
relative rank of a document is more important
than its actual numerical score (which is usually
hidden from the user of a search engine). Having
two separate ranked lists helps to avoid bias. For
example, ostrich:bird generates 516 patterns of
the form “X ... Y” and 452 patterns of the form
“Y ... X” . Since there are more patterns of the
form “X ... Y” , there is a slight bias towards
these patterns. If the two lists were merged, the
“Y ... X” patterns would be at a disadvantage.

5 Experiments with Word Analogies

In these experiments, we evaluate pertinence us-
ing 374 college-level multiple-choice word
analogies, taken from the SAT test. For each
question, there is a target word pair, called the
stem pair, and five choice pairs. The task is to
find the choice that is most analogous (i.e., has
the highest relational similarity) to the stem. This
choice pair is called the solution and the other
choices are distractors. Since there are six word
pairs per question (the stem and the five choices),
there are 22446374 =× pairs in the input set W.
In Step 4 of the algorithm, we double the pairs,
but we also drop some pairs because they do not
co-occur in the corpus. This leaves us with 4194
rows in the matrix. As mentioned in Step 5, the
matrix has 84,064 columns (patterns). The sparse
matrix density is 0.91%.

To answer a SAT question, we generate
ranked lists of patterns for each of the six word
pairs. Each choice is evaluated by taking the in-
tersection of its patterns with the stem’s patterns.
The shared patterns are scored by the average of
their rank in the stem’s lists and the choice’s lists.
Since the lists are sorted in order of decreasing
pertinence, a low score means a high pertinence.
Our guess is the choice with the lowest scoring
shared pattern.

Table 1 shows three examples, two questions
that are answered correctly followed by one that
is answered incorrectly. The correct answers are
in bold font. For the first question, the stem is
ostrich:bird and the best choice is (a) lion:cat.
The highest ranking pattern that is shared by both
of these pairs is “Y such as the X” . The third
question illustrates that, even when the answer is
incorrect, the best shared pattern (“Y powered *
* X”) may be plausible.

 Word pair Best shared pattern Score
1. ostrich:bird
(a) lion:cat “Y such as the X” 1.0
(b) goose:flock “X * * breeding Y” 43.5
(c) ewe:sheep “X are the only Y” 13.5
(d) cub:bear “Y are called X” 29.0
(e) primate:monkey “Y is the * X” 80.0
2. traffic:street
(a) ship:gangplank “X * down the Y” 53.0
(b) crop:harvest “X * adjacent * Y” 248.0
(c) car:garage “X * a residential Y” 63.0
(d) pedestrians:feet “Y * accommodate X” 23.0
(e) water:riverbed “Y that carry X” 17.0
3. locomotive:train
(a) horse:saddle “X carrying * Y” 82.0
(b) tractor:plow “X pulled * Y” 7.0
(c) rudder:rowboat “Y * X” 319.0
(d) camel:desert “Y with two X” 43.0
(e) gasoline:automobile “Y powered * * X” 5.0
Table 1. Three examples of SAT questions.

Table 2 shows the four highest ranking pat-
terns for the stem and solution for the first exam-
ple. The pattern “X lion Y” is anomalous, but the
other patterns seem reasonable. The shared pat-
tern “Y such as the X” is ranked 1 for both pairs,
hence the average score for this pattern is 1.0, as
shown in Table 1. Note that the “ostrich is the
largest bird” and “lions are large cats”, but the
largest cat is the Siberian tiger.

Word pair “X ... Y” “Y ... X”
ostrich:bird “X is the largest Y” “Y such as the X”
 “X is * largest Y” “Y such * the X”
lion:cat “X lion Y” “Y such as the X”
 “X are large Y” “Y and mountain X”
Table 2. The highest ranking patterns.

Table 3 lists the top five pairs in W that match
the pattern “Y such as the X” . The pairs are
sorted by):(p PYX . The pattern “Y such as the
X” is one of 146 patterns that are shared by os-
trich:bird and lion:cat. Most of these shared pat-
terns are not very informative.

Word pair Conditional probability
heart:organ 0.49342
dodo:bird 0.08888
elbow:joint 0.06385
ostrich:bird 0.05774
semaphore:signal 0.03741

Table 3. The top five pairs for “Y such as the X” .

In Table 4, we compare ranking patterns by
pertinence to ranking by various other measures,
mostly based on varieties of tf-idf (term fre-
quency times inverse document frequency, a
common way to rank documents in information
retrieval). The tf-idf measures are taken from
Salton and Buckley (1988). For comparison, we
also include three algorithms that do not rank

patterns (the bottom three rows in the table).
These three algorithms can answer the SAT
questions, but they do not provide any kind of
explanation for their answers.

 Algorithm Prec. Rec. F
1 pertinence (Step 11) 55.7 53.5 54.6
2 log and entropy matrix

(Step 7)
43.5 41.7 42.6

3 TF = f, IDF = log((N-n)/n) 43.2 41.4 42.3
4 TF = log(f+1), IDF = log(N/n) 42.9 41.2 42.0
5 TF = f, IDF = log(N/n) 42.9 41.2 42.0
6 TF = log(f+1),

IDF = log((N-n)/n)
42.3 40.6 41.4

7 TF = 1.0, IDF = 1/n 41.5 39.8 40.6
8 TF = f, IDF = 1/n 41.5 39.8 40.6
9 TF = 0.5 + 0.5 * (f/F),

IDF = log(N/n)
41.5 39.8 40.6

10 TF = log(f+1), IDF = 1/n 41.2 39.6 40.4
11 p(X:Y|P) (Step 10) 39.8 38.2 39.0
12 SVD matrix (Step 8) 35.9 34.5 35.2
13 random 27.0 25.9 26.4
14 TF = 1/f, IDF = 1.0 26.7 25.7 26.2
15 TF = f, IDF = 1.0 (Step 6) 18.1 17.4 17.7
16 Turney (2005) 56.8 56.1 56.4
17 Turney and Littman (2005) 47.7 47.1 47.4
18 Veale (2004) 42.8 42.8 42.8
Table 4. Performance of various algorithms on SAT.

All of the pattern ranking algorithms are given
exactly the same sets of patterns to rank. Any
differences in performance are due to the ranking
method alone. The algorithms may skip ques-
tions when the word pairs do not co-occur in the
corpus. All of the ranking algorithms skip the
same set of 15 of the 374 SAT questions. Preci-
sion is defined as the percentage of correct an-
swers out of the questions that were answered
(not skipped). Recall is the percentage of correct
answers out of the maximum possible number
correct (374). The F measure is the harmonic
mean of precision and recall.

For the tf-idf methods in Table 4, f is the pat-
tern frequency, n is the pair frequency, F is the
maximum f for all patterns for the given word
pair, and N is the total number of word pairs. By
“TF = f, IDF = n/1 ”, for example (row 8), we
mean that f plays a role that is analogous to term
frequency and n/1 plays a role that is analogous
to inverse document frequency. That is, in row 8,
the patterns are ranked in decreasing order of
pattern frequency divided by pair frequency.

Table 4 also shows some ranking methods
based on intermediate calculations in the algo-
rithm in Section 4. For example, row 2 in Table 4
gives the results when patterns are ranked in or-
der of decreasing values in the corresponding
cells of the matrix X from Step 7.

Row 12 in Table 4 shows the results we would
get using Latent Relational Analysis (Turney,

2005) to rank patterns. The results in row 12
support the claim made in Section 3, that LRA is
not suitable for ranking patterns, although it
works well for answering the SAT questions (as
we see in row 16). The vectors in LRA yield a
good measure of relational similarity, but the
magnitude of the value of a specific element in a
vector is not a good indicator of the quality of the
corresponding pattern.

The best method for ranking patterns is perti-
nence (row 1 in Table 4). As a point of compari-
son, the performance of the average senior
highschool student on the SAT analogies is about
57% (Turney and Littman, 2005). The second
best method is to use the values in the matrix X
after the log and entropy transformations in
Step 7 (row 2). The difference between these two
methods is statistically significant with 95% con-
fidence. Pertinence (row 1) performs slightly
below Latent Relational Analysis (row 16; Tur-
ney, 2005), but the difference is not significant.

Randomly guessing answers should yield an F
of 20% (1 out of 5 choices), but ranking patterns
randomly (row 13) results in an F of 26.4%. This
is because the stem pair tends to share more pat-
terns with the solution pair than with the distrac-
tors. The minimum of a large set of random
numbers is likely to be lower than the minimum
of a small set of random numbers.

6 Experiments with Noun-Modifiers

In these experiments, we evaluate pertinence on
the task of classifying noun-modifier pairs. The
problem is to classify a noun-modifier pair, such
as “flu virus”, according to the semantic relation
between the head noun (virus) and the modifier
(flu). For example, “flu virus” is classified as a
causality relation (the flu is caused by a virus).
For these experiments, we use a set of 600
manually labeled noun-modifier pairs (Nastase
and Szpakowicz, 2003). There are five general
classes of labels with thirty subclasses. We pre-
sent here the results with five classes; the results
with thirty subclasses follow the same trends
(that is, pertinence performs significantly better
than the other ranking methods). The five classes
are causality (storm cloud), temporality (daily
exercise), spatial (desert storm), participant
(student protest), and quality (expensive book).

The input set W consists of the 600 noun-
modifier pairs. This set is doubled in Step 4, but
we drop some pairs because they do not co-occur
in the corpus, leaving us with 1184 rows in the
matrix. There are 16,849 distinct patterns with a
pair frequency of ten or more, resulting in 33,698
columns. The matrix density is 2.57%.

To classify a noun-modifier pair, we use a sin-
gle nearest neighbour algorithm with leave-one-
out cross-validation. We split the set 600 times.
Each pair gets a turn as the single testing exam-
ple, while the other 599 pairs serve as training
examples. The testing example is classified ac-
cording to the label of its nearest neighbour in
the training set. The distance between two noun-
modifier pairs is measured by the average rank of
their best shared pattern. Table 5 shows the re-
sulting precision, recall, and F, when ranking
patterns by pertinence.

Class name Prec. Rec. F Class size
causality 37.3 36.0 36.7 86
participant 61.1 64.4 62.7 260
quality 49.3 50.7 50.0 146
spatial 43.9 32.7 37.5 56
temporality 64.7 63.5 64.1 52
all 51.3 49.5 50.2 600

Table 5. Performance on noun-modifiers.

To gain some insight into the algorithm, we
examined the 600 best shared patterns for each
pair and its single nearest neighbour. For each of
the five classes, Table 6 lists the most frequent
pattern among the best shared patterns for the
given class. All of these patterns seem appropri-
ate for their respective classes.

Class Most frequent pattern Example pair
causality “Y * causes X” “cold virus”
participant “Y of his X” “dream analysis”
quality “Y made of X” “copper coin”
spatial “X * * terrestrial Y” “aquatic mammal”
temporality “Y in * early X” “morning frost”
Table 6. Most frequent of the best shared patterns.

Table 7 gives the performance of pertinence
on the noun-modifier problem, compared to
various other pattern ranking methods. The bot-
tom two rows are included for comparison; they
are not pattern ranking algorithms. The best
method for ranking patterns is pertinence (row 1
in Table 7). The difference between pertinence
and the second best ranking method (row 2) is
statistically significant with 95% confidence.
Latent Relational Analysis (row 16) performs
slightly better than pertinence (row 1), but the
difference is not statistically significant.

Row 6 in Table 7 shows the results we would
get using Latent Relational Analysis (Turney,
2005) to rank patterns. Again, the results support
the claim in Section 3, that LRA is not suitable
for ranking patterns. LRA can classify the noun-
modifiers (as we see in row 16), but it cannot
express the implicit semantic relations that make
an unlabeled noun-modifier in the testing set
similar to its nearest neighbour in the training set.

 Algorithm Prec. Rec. F
1 pertinence (Step 11) 51.3 49.5 50.2
2 TF = log(f+1), IDF = 1/n 37.4 36.5 36.9
3 TF = log(f+1), IDF = log(N/n) 36.5 36.0 36.2
4 TF = log(f+1),

IDF = log((N-n)/n)
36.0 35.4 35.7

5 TF = f, IDF = log((N-n)/n) 36.0 35.3 35.6
6 SVD matrix (Step 8) 43.9 33.4 34.8
7 TF = f, IDF = 1/n 35.4 33.6 34.3
8 log and entropy matrix

(Step 7)
35.6 33.3 34.1

9 TF = f, IDF = log(N/n) 34.1 31.4 32.2
10 TF = 0.5 + 0.5 * (f/F),

IDF = log(N/n)
31.9 31.7 31.6

11 p(X:Y|P) (Step 10) 31.8 30.8 31.2
12 TF = 1.0, IDF = 1/n 29.2 28.8 28.7
13 random 19.4 19.3 19.2
14 TF = 1/f, IDF = 1.0 20.3 20.7 19.2
15 TF = f, IDF = 1.0 (Step 6) 12.8 19.7 8.0
16 Turney (2005) 55.9 53.6 54.6
17 Turney and Littman (2005) 43.4 43.1 43.2
Table 7. Performance on noun-modifiers.

7 Discussion

Computing pertinence took about 18 hours for
the experiments in Section 5 and 9 hours for Sec-
tion 6. In both cases, the majority of the time was
spent in Step 1, using MultiText (Clarke et al.,
1998) to search through the corpus of 10105×
words. MultiText was running on a Beowulf
cluster with sixteen 2.4 GHz Intel Xeon CPUs.
The corpus and the search index require about
one terabyte of disk space. This may seem com-
putationally demanding by today’s standards, but
progress in hardware will soon allow an average
desktop computer to handle corpora of this size.

Although the performance on the SAT anal-
ogy questions (54.6%) is near the level of the
average senior highschool student (57%), there is
room for improvement. For applications such as
building a thesaurus, lexicon, or ontology, this
level of performance suggests that our algorithm
could assist, but not replace, a human expert.

One possible improvement would be to add
part-of-speech tagging or parsing. We have done
some preliminary experiments with parsing and
plan to explore tagging as well. A difficulty is
that much of the text in our corpus does not con-
sist of properly formed sentences, since the text
comes from web pages. This poses problems for
most part-of-speech taggers and parsers.

8 Conclusion

Latent Relational Analysis (Turney, 2005) pro-
vides a way to measure the relational similarity
between two word pairs, but it gives us little in-
sight into how the two pairs are similar. In effect,

LRA is a black box. The main contribution of
this paper is the idea of pertinence, which allows
us to take an opaque measure of relational simi-
larity and use it to find patterns that express the
implicit semantic relations between two words.

The experiments in Sections 5 and 6 show that
ranking patterns by pertinence is superior to
ranking them by a variety of tf-idf methods. On
the word analogy and noun-modifier tasks, perti-
nence performs as well as the state-of-the-art,
LRA, but pertinence goes beyond LRA by mak-
ing relations explicit.

Acknowledgements

Thanks to Joel Martin, David Nadeau, and Deniz
Yuret for helpful comments and suggestions.

References

Eugene Agichtein and Luis Gravano. 2000. Snowball:
Extracting relations from large plain-text collec-
tions. In Proceedings of the Fifth ACM Conference
on Digital Libraries (ACM DL 2000), pages 85-94.

Matthew Berland and Eugene Charniak. 1999. Find-
ing parts in very large corpora. In Proceedings of
the 37th Annual Meeting of the Association for
Computational Linguistics (ACL-99), pages 57-64.

Sergey Brin. 1998. Extracting patterns and relations
from the World Wide Web. In WebDB Workshop
at the 6th International Conference on Extending
Database Technology (EDBT-98), pages 172-183.

Charles L.A. Clarke, Gordon V. Cormack, and Chris-
topher R. Palmer. 1998. An overview of MultiText.
ACM SIGIR Forum, 32(2):14-15.

Gene H. Golub and Charles F. Van Loan. 1996. Ma-
trix Computations. Third edition. Johns Hopkins
University Press, Baltimore, MD.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th International Conference on Computa-
tional Linguistics (COLING-92), pages 539-545.

Thomas K. Landauer and Susan T. Dumais. 1997. A
solution to Plato’s problem: The latent semantic
analysis theory of the acquisition, induction, and
representation of knowledge. Psychological Review,
104(2):211-240.

Maria Lapata. 2002. The disambiguation of nominali-
sations. Computational Linguistics, 28(3):357-388.

George A. Miller. 1995. WordNet: A lexical database
for English. Communications of the ACM,
38(11):39-41.

Scott Miller, Heidi Fox, Lance Ramshaw, and Ralph
Weischedel. 2000. A novel use of statistical pars-

ing to extract information from text. In Proceed-
ings of the Sixth Applied Natural Language Proc-
essing Conference (ANLP 2000), pages 226-233.

Vivi Nastase and Stan Szpakowicz. 2003. Exploring
noun-modifier semantic relations. In Fifth Interna-
tional Workshop on Computational Semantics
(IWCS-5), pages 285-301.

Ellen Riloff and Rosie Jones. 1999. Learning diction-
aries for information extraction by multi-level
bootstrapping. In Proceedings of the 16th National
Conference on Artificial Intelligence (AAAI-99),
pages 474-479.

Gerard Salton and Chris Buckley. 1988. Term weight-
ing approaches in automatic text retrieval. Informa-
tion Processing and Management, 24(5):513-523.

Mark Stevenson. 2004. An unsupervised WordNet-
based algorithm for relation extraction. In Proceed-
ings of the Fourth International Conference on
Language Resources and Evaluation (LREC)
Workshop, Beyond Named Entity Recognition: Se-
mantic Labelling for NLP Tasks, Lisbon, Portugal.

Egidio Terra and Charles L.A. Clarke. 2003. Fre-
quency estimates for statistical word similarity
measures. In Proceedings of the Human Language
Technology and North American Chapter of Asso-
ciation of Computational Linguistics Conference
(HLT/NAACL-03), pages 244-251.

Peter D. Turney. 2005. Measuring semantic similarity
by latent relational analysis. In Proceedings of the
Nineteenth International Joint Conference on Arti-
ficial Intelligence (IJCAI-05), pages 1136-1141.

Peter D. Turney and Michael L. Littman. 2005. Cor-
pus-based learning of analogies and semantic rela-
tions. Machine Learning, 60(1-3):251-278.

Tony Veale. 2004. WordNet sits the SAT: A knowl-
edge-based approach to lexical analogy. In Pro-
ceedings of the 16th European Conference on Arti-
ficial Intelligence (ECAI 2004), pages 606-612.

Roman Yangarber, Ralph Grishman, Pasi Tapanainen,
and Silja Huttunen. 2000. Unsupervised discovery
of scenario-level patterns for information extrac-
tion. In Proceedings of the Sixth Applied Natural
Language Processing Conference (ANLP 2000),
pages 282-289.

Roman Yangarber. 2003. Counter-training in discov-
ery of semantic patterns. In Proceedings of the 41st
Annual Meeting of the Association for Computa-
tional Linguistics (ACL-03), pages 343-350.

Dmitry Zelenko, Chinatsu Aone, and Anthony Rich-
ardella. 2003. Kernel methods for relation extrac-
tion. Journal of Machine Learning Research,
3:1083-1106.

