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Abstract 

We present an unsupervised learning al-
gorithm that mines large text corpora for 
patterns that express implicit semantic re-
lations. For a given input word pair 

YX :  with some unspecified semantic 
relations, the corresponding output list of 
patterns mPP ,,1�  is ranked according 
to how well each pattern iP  expresses the 
relations between X  and Y . For exam-
ple, given ostrich=X  and bird=Y , the 
two highest ranking output patterns are 
“X  is the largest Y”  and “Y  such as the 
X” . The output patterns are intended to 
be useful for finding further pairs with 
the same relations, to support the con-
struction of lexicons, ontologies, and se-
mantic networks. The patterns are sorted 
by pertinence, where the pertinence of a 
pattern iP  for a word pair YX :  is the 
expected relational similarity between the 
given pair and typical pairs for iP . The 
algorithm is empirically evaluated on two 
tasks, solving multiple-choice SAT word 
analogy questions and classifying seman-
tic relations in noun-modifier pairs. On 
both tasks, the algorithm achieves state-
of-the-art results, performing signifi-
cantly better than several alternative pat-
tern ranking algorithms, based on tf-idf.  

1 Introduction 

In a widely cited paper, Hearst (1992) showed 
that the lexico-syntactic pattern “Y  such as the 
X”  can be used to mine large text corpora for 
word pairs YX :  in which X is a hyponym (type) 
of Y. For example, if we search in a large corpus 
using the pattern “Y  such as the X”  and we find 
the string “bird such as the ostrich”, then we can 
infer that “ostrich” is a hyponym of “bird”. Ber-
land and Charniak (1999) demonstrated that the 
patterns “Y’ s X”  and “X  of the Y”  can be used to 

mine corpora for pairs YX :  in which X is a 
meronym (part) of Y (e.g., “wheel of the car”). 

Here we consider the inverse of this problem: 
Given a word pair YX :  with some unspecified 
semantic relations, can we mine a large text cor-
pus for lexico-syntactic patterns that express the 
implicit relations between X  and Y ? For exam-
ple, if we are given the pair ostrich:bird, can we 
discover the pattern “Y  such as the X” ? We are 
particularly interested in discovering high quality 
patterns that are reliable for mining further word 
pairs with the same semantic relations. 

In our experiments, we use a corpus of web 
pages containing about 10105×  English words 
(Terra and Clarke, 2003). From co-occurrences 
of the pair ostrich:bird in this corpus, we can 
generate 516 patterns of the form “X  ... Y”  and 
452 patterns of the form “Y  ... X” . Most of these 
patterns are not very useful for text mining. The 
main challenge is to find a way of ranking the 
patterns, so that patterns like “Y  such as the X”  
are highly ranked. Another challenge is to find a 
way to empirically evaluate the performance of 
any such pattern ranking algorithm. 

For a given input word pair YX :  with some 
unspecified semantic relations, we rank the cor-
responding output list of patterns mPP ,,1�  in 
order of decreasing pertinence. The pertinence of 
a pattern iP  for a word pair YX :  is the expected 
relational similarity between the given pair and 
typical pairs that fit iP . We define pertinence 
more precisely in Section 2.  

Hearst (1992) suggests that her work may be 
useful for building a thesaurus. Berland and 
Charniak (1999) suggest their work may be use-
ful for building a lexicon or ontology, like 
WordNet. Our algorithm is also applicable to 
these tasks. Other potential applications and re-
lated problems are discussed in Section 3. 

To calculate pertinence, we must be able to 
measure relational similarity. Our measure is 
based on Latent Relational Analysis (Turney, 
2005). The details are given in Section 4. 

Given a word pair YX : , we want our algo-
rithm to rank the corresponding list of patterns 



mPP ,,1�  according to their value for mining 
text, in support of semantic network construction 
and similar tasks. Unfortunately, it is difficult to 
measure performance on such tasks. Therefore 
our experiments are based on two tasks that pro-
vide objective performance measures.  

In Section 5, ranking algorithms are compared 
by their performance on solving multiple-choice 
SAT word analogy questions. In Section 6, they 
are compared by their performance on classify-
ing semantic relations in noun-modifier pairs. 
The experiments demonstrate that ranking by 
pertinence is significantly better than several al-
ternative pattern ranking algorithms, based on 
tf-idf. The performance of pertinence on these 
two tasks is slightly below the best performance 
that has been reported so far (Turney, 2005), but 
the difference is not statistically significant. 

We discuss the results in Section 7 and con-
clude in Section 8.  

2 Pertinence 

The relational similarity between two pairs of 
words, 11 :YX  and 22 :YX , is the degree to 
which their semantic relations are analogous. For 
example, mason:stone and carpenter:wood have 
a high degree of relational similarity. Measuring 
relational similarity will be discussed in Sec-
tion 4. For now, assume that we have a measure 
of the relational similarity between pairs of 
words, ℜ∈):,:(sim 2211r YXYX .  

Let }:,,:{ 11 nn YXYXW �=  be a set of word 
pairs and let },,{ 1 mPPP �=  be a set of patterns. 
The pertinence of pattern iP  to a word pair 

jj YX :  is the expected relational similarity be-
tween a word pair kk YX : , randomly selected 
from W  according to the probability distribution 

):(p ikk PYX , and the word pair jj YX : : 
),:(pertinence ijj PYX  
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The conditional probability ):(p ikk PYX  can be 
interpreted as the degree to which the pair 

kk YX :  is representative (i.e., typical) of pairs 
that fit the pattern iP . That is, iP  is pertinent to 

jj YX :  if highly typical word pairs kk YX :  for 
the pattern iP  tend to be relationally similar to 

jj YX : .  
Pertinence tends to be highest with patterns 

that are unambiguous. The maximum value of 
),:(pertinence ijj PYX  is attained when the pair 

jj YX :  belongs to a cluster of highly similar 
pairs and the conditional probability distribution 

):(p ikk PYX  is concentrated on the cluster. An 
ambiguous pattern, with its probability spread 
over multiple clusters, will have less pertinence. 

If a pattern with high pertinence is used for 
text mining, it will tend to produce word pairs 
that are very similar to the given word pair; this 
follows from the definition of pertinence. We 
believe this definition is the first formal measure 
of quality for text mining patterns. 

Let ikf ,  be the number of occurrences in a 
corpus of the word pair kk YX :  with the pattern 

iP . We could estimate ):(p ikk PYX  as follows: 
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Instead, we first estimate ):(p kki YXP : 
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Then we apply Bayes’ Theorem: 
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The use of Bayes’ Theorem and the assumption 
that nYX jj 1):p( =  for all word pairs is a way 
of smoothing the probability ):(p ikk PYX , simi-
lar to Laplace smoothing. 

3 Related Work 

Hearst (1992) describes a method for finding 
patterns like “Y  such as the X” , but her method 
requires human judgement. Berland and 
Charniak (1999) use Hearst’s manual procedure.  

Riloff and Jones (1999) use a mutual boot-
strapping technique that can find patterns auto-
matically, but the bootstrapping requires an ini-
tial seed of manually chosen examples for each 
class of words. Miller et al. (2000) propose an 
approach to relation extraction that was evalu-
ated in the Seventh Message Understanding Con-
ference (MUC7). Their algorithm requires la-
beled examples of each relation. Similarly, Ze-
lenko et al. (2003) use a supervised kernel 
method that requires labeled training examples. 
Agichtein and Gravano (2000) also require train-
ing examples for each relation. Brin (1998) uses 
bootstrapping from seed examples of author:title 
pairs to discover patterns for mining further pairs. 

Yangarber et al. (2000) and Yangarber (2003) 
present an algorithm that can find patterns auto-
matically, but it requires an initial seed of manu-
ally designed patterns for each semantic relation. 
Stevenson (2004) uses WordNet to extract rela-
tions from text, but also requires initial seed pat-
terns for each relation.  



Lapata (2002) examines the task of expressing 
the implicit relations in nominalizations, which 
are noun compounds whose head noun is derived 
from a verb and whose modifier can be inter-
preted as an argument of the verb. In contrast 
with this work, our algorithm is not restricted to 
nominalizations. Section 6 shows that our algo-
rithm works with arbitrary noun compounds and 
the SAT questions in Section 5 include all nine 
possible pairings of nouns, verbs, and adjectives. 

As far as we know, our algorithm is the first 
unsupervised learning algorithm that can find 
patterns for semantic relations, given only a large 
corpus (e.g., in our experiments, about 10105×  
words) and a moderately sized set of word pairs 
(e.g., 600 or more pairs in the experiments), such 
that the members of each pair appear together 
frequently in short phrases in the corpus. These 
word pairs are not seeds, since the algorithm 
does not require the pairs to be labeled or 
grouped; we do not assume they are homogenous.   

The word pairs that we need could be gener-
ated automatically, by searching for word pairs 
that co-occur frequently in the corpus. However, 
our evaluation methods (Sections 5 and 6) both 
involve a predetermined list of word pairs. If our 
algorithm were allowed to generate its own word 
pairs, the overlap with the predetermined lists 
would likely be small. This is a limitation of our 
evaluation methods rather than the algorithm. 

Since any two word pairs may have some rela-
tions in common and some that are not shared, 
our algorithm generates a unique list of patterns 
for each input word pair. For example, ma-
son:stone and carpenter:wood share the pattern 
“X  carves Y” , but the patterns “X  nails Y”  and 
“X  bends Y”  are unique to carpenter:wood. The 
ranked list of patterns for a word pair YX :  
gives the relations between X and Y in the corpus, 
sorted with the most pertinent (i.e., characteristic, 
distinctive, unambiguous) relations first. 

Turney (2005) gives an algorithm for measur-
ing the relational similarity between two pairs of 
words, called Latent Relational Analysis (LRA). 
This algorithm can be used to solve multiple-
choice word analogy questions and to classify 
noun-modifier pairs (Turney, 2005), but it does 
not attempt to express the implicit semantic rela-
tions. Turney (2005) maps each pair YX :  to a 
high-dimensional vector v� . The value of each 
element iv  in v�  is based on the frequency, for 
the pair YX : , of a corresponding pattern iP . 
The relational similarity between two pairs, 

11 :YX  and 22 :YX , is derived from the cosine of 
the angle between their two vectors. A limitation 
of this approach is that the semantic content of 
the vectors is difficult to interpret; the magnitude 
of an element iv  is not a good indicator of how 

well the corresponding pattern iP  expresses a 
relation of YX : . This claim is supported by the 
experiments in Sections 5 and 6. 

Pertinence (as defined in Section 2) builds on 
the measure of relational similarity in Turney 
(2005), but it has the advantage that the semantic 
content can be interpreted; we can point to spe-
cific patterns and say that they express the im-
plicit relations. Furthermore, we can use the pat-
terns to find other pairs with the same relations. 

Hearst (1992) processed her text with a part-
of-speech tagger and a unification-based con-
stituent analyzer. This makes it possible to use 
more general patterns. For example, instead of 
the literal string pattern “Y  such as the X” , where 
X and Y are words, Hearst (1992) used the more 
abstract pattern “ 0NP  such as 1NP ”, where iNP  
represents a noun phrase. For the sake of sim-
plicity, we have avoided part-of-speech tagging, 
which limits us to literal patterns. We plan to 
experiment with tagging in future work. 

4 The Algorithm 

The algorithm takes as input a set of word pairs 
}:,,:{ 11 nn YXYXW �=  and produces as output 

ranked lists of patterns mPP ,,1�  for each input 
pair. The following steps are similar to the algo-
rithm of Turney (2005), with several changes to 
support the calculation of pertinence. 
1. Find phrases: For each pair ii YX : , make a 
list of phrases in the corpus that contain the pair. 
We use the Waterloo MultiText System (Clarke 
et al., 1998) to search in a corpus of about 

10105×  English words (Terra and Clarke, 2003). 
Make one list of phrases that begin with iX  and 
end with iY  and a second list for the opposite 
order. Each phrase must have one to three inter-
vening words between iX  and iY . The first and 
last words in the phrase do not need to exactly 
match iX  and iY . The MultiText query language 
allows different suffixes. Veale (2004) has ob-
served that it is easier to identify semantic rela-
tions between nouns than between other parts of 
speech. Therefore we use WordNet 2.0 (Miller, 
1995) to guess whether iX  and iY  are likely to 
be nouns. When they are nouns, we are relatively 
strict about suffixes; we only allow variation in 
pluralization. For all other parts of speech, we 
are liberal about suffixes. For example, we allow 
an adjective such as “inflated” to match a noun 
such as “inflation”. With MultiText, the query 
“inflat*” matches both “inflated” and “inflation”. 
2. Generate patterns: For each list of phrases, 
generate a list of patterns, based on the phrases. 
Replace the first word in each phrase with the 
generic marker “X”  and replace the last word 
with “Y” . The intervening words in each phrase 



may be either left as they are or replaced with the 
wildcard “*”. For example, the phrase “carpenter 
nails the wood” yields the patterns “X  nails the 
Y” , “X  nails * Y” , “X  * the Y” , and “X  * * Y” . 
Do not allow duplicate patterns in a list, but note 
the number of times a pattern is generated for 
each word pair ii YX :  in each order ( iX  first and 

iY  last or vice versa). We call this the pattern 
frequency. It is a local frequency count, analo-
gous to term frequency in information retrieval. 
3. Count pair frequency: The pair frequency 
for a pattern is the number of lists from the pre-
ceding step that contain the given pattern. It is a 
global frequency count, analogous to document 
frequency in information retrieval. Note that a 
pair ii YX :  yields two lists of phrases and hence 
two lists of patterns. A given pattern might ap-
pear in zero, one, or two of the lists for ii YX : . 
4. Map pairs to rows: In preparation for build-
ing a matrix X , create a mapping of word pairs 
to row numbers. For each pair ii YX : , create a 
row for ii YX :  and another row for ii XY : . If W 
does not already contain }:,,:{ 11 nn XYXY � , 
then we have effectively doubled the number of 
word pairs, which increases the sample size for 
calculating pertinence. 
5. Map patterns to columns: Create a mapping 
of patterns to column numbers. For each unique 
pattern of the form “X  ... Y”  from Step 2, create 
a column for the original pattern “X  ... Y”  and 
another column for the same pattern with X and 
Y swapped, “Y  ... X” . Step 2 can generate mil-
lions of distinct patterns. The experiment in Sec-
tion 5 results in 1,706,845 distinct patterns, 
yielding 3,413,690 columns. This is too many 
columns for matrix operations with today’s stan-
dard desktop computer. Most of the patterns have 
a very low pair frequency. For the experiment in 
Section 5, 1,371,702 of the patterns have a pair 
frequency of one. To keep the matrix X  man-
ageable, we drop all patterns with a pair fre-
quency less than ten. For Section 5, this leaves 
42,032 patterns, yielding 84,064 columns. Tur-
ney (2005) limited the matrix to 8,000 columns, 
but a larger pool of patterns is better for our pur-
poses, since it increases the likelihood of finding 
good patterns for expressing the semantic rela-
tions of a given word pair. 
6. Build a sparse matrix: Build a matrix X  in 
sparse matrix format. The value for the cell in 
row i and column j is the pattern frequency of the 
j-th pattern for the the i-th word pair.  
7. Calculate entropy: Apply log and entropy 
transformations to the sparse matrix X  (Lan-
dauer and Dumais, 1997). Each cell is replaced 
with its logarithm, multiplied by a weight based 
on the negative entropy of the corresponding 
column vector in the matrix. This gives more 

weight to patterns that vary substantially in fre-
quency for each pair. 
8. Apply SVD: After log and entropy transforms, 
apply the Singular Value Decomposition (SVD) 
to X  (Golub and Van Loan, 1996). SVD de-
composes X  into a product of three matrices 

TVUΣ , where U  and V  are in column or-
thonormal form (i.e., the columns are orthogonal 
and have unit length) and Σ  is a diagonal matrix 
of singular values (hence SVD). If X  is of rank 
r , then Σ  is also of rank r . Let kΣ , where 

rk < , be the diagonal matrix formed from the 
top k  singular values, and let kU  and kV  be the 
matrices produced by selecting the correspond-
ing columns from U  and V . The matrix 

T
kkk VU Σ  is the matrix of rank k  that best ap-

proximates the original matrix X , in the sense 
that it minimizes the approximation errors 
(Golub and Van Loan, 1996). Following Lan-
dauer and Dumais (1997), we use 300=k . We 
may think of this matrix T

kkk VU Σ  as a smoothed 
version of the original matrix. SVD is used to 
reduce noise and compensate for sparseness 
(Landauer and Dumais, 1997). 
9. Calculate cosines: The relational similarity 
between two pairs, ):,:(sim 2211r YXYX , is 
given by the cosine of the angle between their 
corresponding row vectors in the matrix 

T
kkk VU Σ  (Turney, 2005). To calculate perti-

nence, we will need the relational similarity be-
tween all possible pairs of pairs. All of the co-
sines can be efficiently derived from the matrix 

T
kkkk )( ΣΣ UU  (Landauer and Dumais, 1997). 

10. Calculate conditional probabilities: Using 
Bayes’ Theorem (see Section 2) and the raw fre-
quency data in the matrix X  from Step 6, before 
log and entropy transforms, calculate the condi-
tional probability ):(p jii PYX  for every row 
(word pair) and every column (pattern). 
11. Calculate pertinence: With the cosines from 
Step 9 and the conditional probabilities from 
Step 10, calculate ),:(pertinence jii PYX  for 
every row ii YX :  and every column jP  for 
which 0):(p >jii PYX . When 0):(p =jii PYX , 
it is possible that 0),:(pertinence >jii PYX , but 
we avoid calculating pertinence in these cases for 
two reasons. First, it speeds computation, be-
cause X  is sparse, so 0):(p =jii PYX  for most 
rows and columns. Second, 0):(p =jii PYX  im-
plies that the pattern jP  does not actually appear 
with the word pair ii YX :  in the corpus; we are 
only guessing that the pattern is appropriate for 
the word pair, and we could be wrong. Therefore 
we prefer to limit ourselves to patterns and word 
pairs that have actually been observed in the cor-
pus. For each pair ii YX :  in W, output two sepa-
rate ranked lists, one for patterns of the form 
“X  … Y”  and another for patterns of the form 



“Y  … X” , where the patterns in both lists are 
sorted in order of decreasing pertinence to ii YX : . 
Ranking serves as a kind of normalization. We 
have found that the relative rank of a pattern is 
more reliable as an indicator of its importance 
than the absolute pertinence. This is analogous to 
information retrieval, where documents are 
ranked in order of their relevance to a query. The 
relative rank of a document is more important 
than its actual numerical score (which is usually 
hidden from the user of a search engine). Having 
two separate ranked lists helps to avoid bias. For 
example, ostrich:bird generates 516 patterns of 
the form “X  ... Y”  and 452 patterns of the form 
“Y  ... X” . Since there are more patterns of the 
form “X  ... Y” , there is a slight bias towards 
these patterns. If the two lists were merged, the 
“Y  ... X”  patterns would be at a disadvantage. 

5 Experiments with Word Analogies 

In these experiments, we evaluate pertinence us-
ing 374 college-level multiple-choice word 
analogies, taken from the SAT test. For each 
question, there is a target word pair, called the 
stem pair, and five choice pairs. The task is to 
find the choice that is most analogous (i.e., has 
the highest relational similarity) to the stem. This 
choice pair is called the solution and the other 
choices are distractors. Since there are six word 
pairs per question (the stem and the five choices), 
there are 22446374 =×  pairs in the input set W. 
In Step 4 of the algorithm, we double the pairs, 
but we also drop some pairs because they do not 
co-occur in the corpus. This leaves us with 4194 
rows in the matrix. As mentioned in Step 5, the 
matrix has 84,064 columns (patterns). The sparse 
matrix density is 0.91%. 

To answer a SAT question, we generate 
ranked lists of patterns for each of the six word 
pairs. Each choice is evaluated by taking the in-
tersection of its patterns with the stem’s patterns. 
The shared patterns are scored by the average of 
their rank in the stem’s lists and the choice’s lists. 
Since the lists are sorted in order of decreasing 
pertinence, a low score means a high pertinence. 
Our guess is the choice with the lowest scoring 
shared pattern. 

Table 1 shows three examples, two questions 
that are answered correctly followed by one that 
is answered incorrectly. The correct answers are 
in bold font. For the first question, the stem is 
ostrich:bird and the best choice is (a) lion:cat. 
The highest ranking pattern that is shared by both 
of these pairs is “Y  such as the X” . The third 
question illustrates that, even when the answer is 
incorrect, the best shared pattern (“Y  powered * 
* X” ) may be plausible. 

 Word pair Best shared pattern Score 
1. ostrich:bird   
(a) lion:cat “Y  such as the X”  1.0 
(b) goose:flock “X  * * breeding Y”  43.5 
(c) ewe:sheep “X  are the only Y”  13.5 
(d) cub:bear “Y  are called X”  29.0 
(e) primate:monkey “Y  is the * X”  80.0 
2. traffic:street   
(a) ship:gangplank “X  * down the Y”  53.0 
(b) crop:harvest “X  * adjacent * Y”  248.0 
(c) car:garage “X  * a residential Y”  63.0 
(d) pedestrians:feet “Y  * accommodate X”  23.0 
(e) water:riverbed “Y  that carry X”  17.0 
3. locomotive:train   
(a) horse:saddle “X  carrying * Y”  82.0 
(b) tractor:plow “X  pulled * Y”  7.0 
(c) rudder:rowboat “Y  * X”  319.0 
(d) camel:desert “Y  with two X”  43.0 
(e) gasoline:automobile “Y  powered * * X”  5.0 
Table 1. Three examples of SAT questions. 

Table 2 shows the four highest ranking pat-
terns for the stem and solution for the first exam-
ple. The pattern “X  lion Y”  is anomalous, but the 
other patterns seem reasonable. The shared pat-
tern “Y  such as the X”  is ranked 1 for both pairs, 
hence the average score for this pattern is 1.0, as 
shown in Table 1. Note that the “ostrich is the 
largest bird” and “lions are large cats”, but the 
largest cat is the Siberian tiger. 

Word pair “X ... Y” “Y ... X” 
ostrich:bird “X  is the largest Y”  “Y  such as the X”  
 “X  is * largest Y”  “Y  such * the X”  
lion:cat “X  lion Y”  “Y  such as the X”  
 “X  are large Y”  “Y  and mountain X”  
Table 2. The highest ranking patterns. 

Table 3 lists the top five pairs in W that match 
the pattern “Y  such as the X” . The pairs are 
sorted by ):(p PYX . The pattern “Y  such as the 
X”  is one of 146 patterns that are shared by os-
trich:bird and lion:cat. Most of these shared pat-
terns are not very informative. 

Word pair Conditional probability 
heart:organ 0.49342 
dodo:bird 0.08888 
elbow:joint 0.06385 
ostrich:bird 0.05774 
semaphore:signal 0.03741 

Table 3. The top five pairs for “Y  such as the X” . 

In Table 4, we compare ranking patterns by 
pertinence to ranking by various other measures, 
mostly based on varieties of tf-idf (term fre-
quency times inverse document frequency, a 
common way to rank documents in information 
retrieval). The tf-idf measures are taken from 
Salton and Buckley (1988). For comparison, we 
also include three algorithms that do not rank 



patterns (the bottom three rows in the table). 
These three algorithms can answer the SAT 
questions, but they do not provide any kind of 
explanation for their answers. 

 Algorithm Prec. Rec. F 
1 pertinence (Step 11) 55.7 53.5 54.6 
2 log and entropy matrix  

(Step 7) 
43.5 41.7 42.6 

3 TF = f, IDF = log((N-n)/n) 43.2 41.4 42.3 
4 TF = log(f+1), IDF = log(N/n) 42.9 41.2 42.0 
5 TF = f, IDF = log(N/n) 42.9 41.2 42.0 
6 TF = log(f+1), 

IDF = log((N-n)/n) 
42.3 40.6 41.4 

7 TF = 1.0, IDF = 1/n 41.5 39.8 40.6 
8 TF = f, IDF = 1/n 41.5 39.8 40.6 
9 TF = 0.5 + 0.5 * (f/F), 

IDF = log(N/n) 
41.5 39.8 40.6 

10 TF = log(f+1), IDF = 1/n 41.2 39.6 40.4 
11 p(X:Y|P) (Step 10) 39.8 38.2 39.0 
12 SVD matrix (Step 8) 35.9 34.5 35.2 
13 random 27.0 25.9 26.4 
14 TF = 1/f, IDF = 1.0 26.7 25.7 26.2 
15 TF = f, IDF = 1.0 (Step 6) 18.1 17.4 17.7 
16 Turney (2005) 56.8 56.1 56.4 
17 Turney and Littman (2005) 47.7 47.1 47.4 
18 Veale (2004) 42.8 42.8 42.8 
Table 4. Performance of various algorithms on SAT. 

All of the pattern ranking algorithms are given 
exactly the same sets of patterns to rank. Any 
differences in performance are due to the ranking 
method alone. The algorithms may skip ques-
tions when the word pairs do not co-occur in the 
corpus. All of the ranking algorithms skip the 
same set of 15 of the 374 SAT questions. Preci-
sion is defined as the percentage of correct an-
swers out of the questions that were answered 
(not skipped). Recall is the percentage of correct 
answers out of the maximum possible number 
correct (374). The F measure is the harmonic 
mean of precision and recall. 

For the tf-idf methods in Table 4, f is the pat-
tern frequency, n is the pair frequency, F is the 
maximum f for all patterns for the given word 
pair, and N is the total number of word pairs. By 
“TF = f, IDF = n/1 ”, for example (row 8), we 
mean that f plays a role that is analogous to term 
frequency and n/1  plays a role that is analogous 
to inverse document frequency. That is, in row 8, 
the patterns are ranked in decreasing order of 
pattern frequency divided by pair frequency. 

Table 4 also shows some ranking methods 
based on intermediate calculations in the algo-
rithm in Section 4. For example, row 2 in Table 4 
gives the results when patterns are ranked in or-
der of decreasing values in the corresponding 
cells of the matrix X  from Step 7.  

Row 12 in Table 4 shows the results we would 
get using Latent Relational Analysis (Turney, 

2005) to rank patterns. The results in row 12 
support the claim made in Section 3, that LRA is 
not suitable for ranking patterns, although it 
works well for answering the SAT questions (as 
we see in row 16). The vectors in LRA yield a 
good measure of relational similarity, but the 
magnitude of the value of a specific element in a 
vector is not a good indicator of the quality of the 
corresponding pattern.  

The best method for ranking patterns is perti-
nence (row 1 in Table 4). As a point of compari-
son, the performance of the average senior 
highschool student on the SAT analogies is about 
57% (Turney and Littman, 2005). The second 
best method is to use the values in the matrix X  
after the log and entropy transformations in 
Step 7 (row 2). The difference between these two 
methods is statistically significant with 95% con-
fidence. Pertinence (row 1) performs slightly 
below Latent Relational Analysis (row 16; Tur-
ney, 2005), but the difference is not significant.  

Randomly guessing answers should yield an F 
of 20% (1 out of 5 choices), but ranking patterns 
randomly (row 13) results in an F of 26.4%. This 
is because the stem pair tends to share more pat-
terns with the solution pair than with the distrac-
tors. The minimum of a large set of random 
numbers is likely to be lower than the minimum 
of a small set of random numbers. 

6 Experiments with Noun-Modifiers 

In these experiments, we evaluate pertinence on 
the task of classifying noun-modifier pairs. The 
problem is to classify a noun-modifier pair, such 
as “flu virus”, according to the semantic relation 
between the head noun (virus) and the modifier 
(flu). For example, “flu virus” is classified as a 
causality relation (the flu is caused by a virus). 
For these experiments, we use a set of 600 
manually labeled noun-modifier pairs (Nastase 
and Szpakowicz, 2003). There are five general 
classes of labels with thirty subclasses. We pre-
sent here the results with five classes; the results 
with thirty subclasses follow the same trends 
(that is, pertinence performs significantly better 
than the other ranking methods). The five classes 
are causality (storm cloud), temporality (daily 
exercise), spatial (desert storm), participant 
(student protest), and quality (expensive book).  

The input set W consists of the 600 noun-
modifier pairs. This set is doubled in Step 4, but 
we drop some pairs because they do not co-occur 
in the corpus, leaving us with 1184 rows in the 
matrix. There are 16,849 distinct patterns with a 
pair frequency of ten or more, resulting in 33,698 
columns. The matrix density is 2.57%. 



To classify a noun-modifier pair, we use a sin-
gle nearest neighbour algorithm with leave-one-
out cross-validation. We split the set 600 times. 
Each pair gets a turn as the single testing exam-
ple, while the other 599 pairs serve as training 
examples. The testing example is classified ac-
cording to the label of its nearest neighbour in 
the training set. The distance between two noun-
modifier pairs is measured by the average rank of 
their best shared pattern. Table 5 shows the re-
sulting precision, recall, and F, when ranking 
patterns by pertinence. 

Class name Prec. Rec. F Class size 
causality 37.3 36.0 36.7 86 
participant 61.1 64.4 62.7 260 
quality 49.3 50.7 50.0 146 
spatial 43.9 32.7 37.5 56 
temporality 64.7 63.5 64.1 52 
all 51.3 49.5 50.2 600 

Table 5. Performance on noun-modifiers. 

To gain some insight into the algorithm, we 
examined the 600 best shared patterns for each 
pair and its single nearest neighbour. For each of 
the five classes, Table 6 lists the most frequent 
pattern among the best shared patterns for the 
given class. All of these patterns seem appropri-
ate for their respective classes. 

Class Most frequent pattern Example pair 
causality “Y  * causes X”  “cold virus” 
participant “Y  of his X”  “dream analysis” 
quality “Y  made of X”  “copper coin” 
spatial “X  * * terrestrial Y”  “aquatic mammal” 
temporality “Y  in * early X”  “morning frost” 
Table 6. Most frequent of the best shared patterns. 

Table 7 gives the performance of pertinence 
on the noun-modifier problem, compared to 
various other pattern ranking methods. The bot-
tom two rows are included for comparison; they 
are not pattern ranking algorithms. The best 
method for ranking patterns is pertinence (row 1 
in Table 7). The difference between pertinence 
and the second best ranking method (row 2) is 
statistically significant with 95% confidence. 
Latent Relational Analysis (row 16) performs 
slightly better than pertinence (row 1), but the 
difference is not statistically significant. 

Row 6 in Table 7 shows the results we would 
get using Latent Relational Analysis (Turney, 
2005) to rank patterns. Again, the results support 
the claim in Section 3, that LRA is not suitable 
for ranking patterns. LRA can classify the noun-
modifiers (as we see in row 16), but it cannot 
express the implicit semantic relations that make 
an unlabeled noun-modifier in the testing set 
similar to its nearest neighbour in the training set. 

 Algorithm Prec. Rec. F 
1 pertinence (Step 11) 51.3 49.5 50.2 
2 TF = log(f+1), IDF = 1/n 37.4 36.5 36.9 
3 TF = log(f+1), IDF = log(N/n) 36.5 36.0 36.2 
4 TF = log(f+1),  

IDF = log((N-n)/n) 
36.0 35.4 35.7 

5 TF = f, IDF = log((N-n)/n) 36.0 35.3 35.6 
6 SVD matrix (Step 8) 43.9 33.4 34.8 
7 TF = f, IDF = 1/n 35.4 33.6 34.3 
8 log and entropy matrix  

(Step 7) 
35.6 33.3 34.1 

9 TF = f, IDF = log(N/n) 34.1 31.4 32.2 
10 TF = 0.5 + 0.5 * (f/F),  

IDF = log(N/n) 
31.9 31.7 31.6 

11 p(X:Y|P) (Step 10) 31.8 30.8 31.2 
12 TF = 1.0, IDF = 1/n 29.2 28.8 28.7 
13 random 19.4 19.3 19.2 
14 TF = 1/f, IDF = 1.0 20.3 20.7 19.2 
15 TF = f, IDF = 1.0 (Step 6) 12.8 19.7 8.0 
16 Turney (2005) 55.9 53.6 54.6 
17 Turney and Littman (2005) 43.4 43.1 43.2 
Table 7. Performance on noun-modifiers. 

7 Discussion 

Computing pertinence took about 18 hours for 
the experiments in Section 5 and 9 hours for Sec-
tion 6. In both cases, the majority of the time was 
spent in Step 1, using MultiText (Clarke et al., 
1998) to search through the corpus of 10105×  
words. MultiText was running on a Beowulf 
cluster with sixteen 2.4 GHz Intel Xeon CPUs. 
The corpus and the search index require about 
one terabyte of disk space. This may seem com-
putationally demanding by today’s standards, but 
progress in hardware will soon allow an average 
desktop computer to handle corpora of this size. 

Although the performance on the SAT anal-
ogy questions (54.6%) is near the level of the 
average senior highschool student (57%), there is 
room for improvement. For applications such as 
building a thesaurus, lexicon, or ontology, this 
level of performance suggests that our algorithm 
could assist, but not replace, a human expert. 

One possible improvement would be to add 
part-of-speech tagging or parsing. We have done 
some preliminary experiments with parsing and 
plan to explore tagging as well. A difficulty is 
that much of the text in our corpus does not con-
sist of properly formed sentences, since the text 
comes from web pages. This poses problems for 
most part-of-speech taggers and parsers. 

8 Conclusion 

Latent Relational Analysis (Turney, 2005) pro-
vides a way to measure the relational similarity 
between two word pairs, but it gives us little in-
sight into how the two pairs are similar. In effect, 



LRA is a black box. The main contribution of 
this paper is the idea of pertinence, which allows 
us to take an opaque measure of relational simi-
larity and use it to find patterns that express the 
implicit semantic relations between two words. 

The experiments in Sections 5 and 6 show that 
ranking patterns by pertinence is superior to 
ranking them by a variety of tf-idf methods. On 
the word analogy and noun-modifier tasks, perti-
nence performs as well as the state-of-the-art, 
LRA, but pertinence goes beyond LRA by mak-
ing relations explicit.  
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