CLINICAL RESEARCH HISTOMARKERS FOR OBJECTIVELY ESTIMATING PREMORBID VAGAL TONE CHRONOLOGY IN GULF WAR VETERANS' ILLNESSES AND IN ACUTE STRESS REACTION

National Center for PTSD, Department of Veterans Affairs
Spark M. Matsunaga VA Medical and Regional Office Center, Honolulu, Hawaii

Abstract: While laboratory techniques for estimating genetic susceptibility for adult psychopathology have received much recent attention, laboratory techniques for objectively estimating a person's early stress related autonomic nervous system perturbations have been under-researched. Biological psychiatric research on heart rate variability suggests that early life episodes of low vagal tone may predict poor stress resilience in adults. This chapter will detail a research technique for retrospectively estimating in adults the chronology of low vagal tone episodes experienced prior to age ten. This technique makes use of the developing enamel matrix, one of very few tissues that cannot recover after being stressed. This is likely to be clinically useful in understanding the etiology of several disorders, especially Posttraumatic Stress Disorder (PTSD) as well as post-deployment disorders of unclear etiology such as Gulf War Veterans' Illness (GWVI). Finally, our proposed technique may be useful in the research on Acute Stress Reaction, Acute Stress Disorder, and on stress resilience (hardiness) in populations expected to be exposed to high levels of cumulative stress (e.g., special forces and other active duty personnel during deployment).

1. Relevance to the department of defense and veterans affairs mission

Post-deployment disorders such as Gulf War Veterans' Illnesses (GWVI) has become a topic of considerable concern. Extensive research over the last twelve years strongly suggests that the most likely mechanism in the etiology of these disorders in most veterans is neurochemical brain changes resulting from stress sensitization. Additionally, there is extensive indirect evidence that pre-enlistment extreme stress is a predisposing factor for GWVI [8, 23, 29, 43, 55]. However, it has been very difficult for the scientific and federal community to convince GWVI patients and other stakeholders that the above neurobiological mechanism underlying GWVI makes it akin to Combat Related-Posttraumatic Stress Disorder (CR-PTSD) and thus probably amenable to evidence-based treatments currently established for PTSD.

We have reasoned that the current generation of patients and veterans is increasingly accustomed to expecting confirmation or refutation of medical decisions by laboratory tests. Laboratory tests are perceived as tangible physical evidence. Psychiatry has only recently embarked on including biomarkers to enhance clinical decision making. Therefore, an evidence-based biological laboratory estimate of pre-enlistment stress may be of interest for research in GWVI. Additionally, a biological laboratory estimate of pre-enlistment stress may be of interest for research on stress resilience and

hardiness. Understanding resilience and hardiness is a new and growing area of emphasis at the DoD [44].

2. The parasympathetic nervous system in acute stress reaction

Extreme autonomic nervous system perturbations during early life can produce long-term deleterious effects. For reviews of recent important work see Porges et al. [34, 45], McEwen [18, 28, 52] and Sapolsky [47, 48]. Stress research has focused on the adverse effects of adreno-cortical activation. Following Porges' important theoretical contributions, there has been growing attention to low vagal tone as an important final common pathway leading to the adverse effects of the acute stress reaction [34, 45].

The vagus is a complex bi-directional system with a left and right myelinated branch. Each branch has two source nuclei with fibers originating either in the dorsal motor nucleus or the nucleus ambiguus. As Porges (1995) points out, while previous research has focused on the dorsal motor nucleus of the vagus, less attention has been given to the motor pathways originating from the vagal nucleus ambiguus.

The nucleus ambiguus is the more anterior and rostral (limbic) of the two vagal nuclei. Furthermore, a potentially important hemispheric lateralization exists in the ambiguous motor neurons. As articulated by Porges (1995, p. 228):

“In the study of acute stress and emotional expression, vagal pathways originating in the right nucleus ambiguus are critical. The right nucleus ambiguus provides the primary vagal input to the sino-atrial node to regulate heart rate...and to the larynx to regulate the vocal intonation. Acute stress, especially during painful procedures, is associated with high heart rate and high pitch vocalizations and cries (e.g., the high pitched cries of infants in severe pain). Both characteristics are determined by a withdrawal of vagal efferent outflow originating in the nucleus ambiguus. These vagal afferents can act instantaneously to change heart rate and the pitch of vocalizations. Unlike the involuntary and often prolonged, characteristic pattern of vagal outflow from the dorsal motor nucleus, the outflow from the nucleus ambiguus may exhibit rapid and transitory patterns associated with perceptive pain or unpleasantness. The central nucleus of the amygdala, implicated in emotional lability [and fear], directly communicates with the nucleus ambiguus. Thus, the branch of the vagus originating in the nucleus ambiguus is closely linked to the rapid expression and regulation of emotional state…”

3. Nucleus ambiguus control of enamel secretion by ameloblasts

The nucleus ambiguus has been implicated in several physiological markers of Combat Related-Posttraumatic Stress Disorder (CR-PTSD) such as heart-rate variability (respiratory sinus arrhythmia) [33, 46]. There has been little attention given to the fact that vagal cholinergic neurons originating in the nucleus ambiguus control the trophic parasympathetic regulation of blood flow to the enamel secreting ameloblasts. The nucleus ambiguus neurons ending in the ameloblast layer travel by a circuitous route through other cranial nerves [21, 32]. The dramatic slowing of enamel secretion by the
ameloblast is produced by an abrupt drop in ambiguous cholinergic activity (vagal tone) which also produces the change in vocal intonation, facial expression, and especially saliva secretion and thus the symptom of “dry mouth.” All of these are well-documented physical signs of acute stress. These neurons affecting the rate of enamel secretion are of the same extended amygdala origin as the neurons that coordinate increased heart rate, breathing, and peri-laryngeal constriction (high-pitch vocalizations and the feeling of a “lump in the throat”) which are part of acute stress reactions [33].

As a rule, during acute stress reaction and acute stress disorder, the trophic parasympathetic functions slow or cease transiently [15]. Prior to age ten, the trophic “luxury” parasympathetic functions that typically slow or cease during stress include secretion of the still developing dental enamel matrix [19, 22, 51, 54].

4. “DDE-SH Rings”: a proposed technique for estimating early vagal tone chronology

Our technique uses some of the histological markers known in the fields of anthropology and paleopathology as Developmental Defects of Enamel or DDE. In this review, we use the term DDE-Stress Histomarker Rings (DDE-SH Rings; pronounced “desh rings”) primarily to differentiate them from other DDE which are mineralization defects but also to emphasize the recent understanding of the etiology of these histomarkers. DDE-SH Rings have been developed as a Histomarker based upon carefully conducted research by paleopathologists, forensic dental anthropologists, and bio-archeologists. For recent work see Dean, Leakey, and Reid, (Nature 2001).

DDE-SH Rings are dome-shaped malformations demarcating the layer of dental enamel secreted by ameloblast cells during periods associated with low vagal tone [2, 3, 9, 30, 41]. Both acute and more chronic stress can be estimated via DDE-SH Rings of various widths. There are various grades of histological features which together we call DDE-SH Rings. These include microscopic histomarkers (Circadian Cross Striations, Circaseptan Striae of Retzius, Accentuated Striae of Retzius, and Wilson Bands) as well as clinically detectable histomarkers (Linear Enamel Hypoplasias and other Gross Enamel Hypoplasias) [16, 17, 20]. There is growing consensus in the paleopathology and dental anthropology literature that “Solyan stress” lasting one-week or longer will produce DDE-SH Rings [3, 22], and that the transient disruption of ameloblast activity during severely depressed vagal tone can be detected as long as the tooth remains largely intact [17, 26]. Studies by Wright [60] suggest that the DDE-SH Rings called Accentuated Striae of Retzius, may be especially useful and can be produced in as little as one or two days of extreme stress.

At present it may be too early to determine which histomarker will be the most useful in clinical stress research in humans. Nevertheless, based on the above literature and additional literature cited below, we have proposed that human enamel is an untapped resource for detecting periods of low vagal tone that occur during early brain development [5, 6, 7].

DDE-SH Rings are conceptually akin to tree rings that mark periods of environmental adversity during a tree’s development. The developing enamel matrix is one of very few tissues that cannot recover after being stressed. [1, 11, 12, 13, 22, 36,
Thus, the developing enamel has promise as an accessible repository of information on vagal tone chronology prior to age ten when human 3rd molars (the last developing teeth) complete crown formation [19, 54].

As one of the very few premorbid physiological stress markers, DDE-SH Rings may be important for research on the etiology of anxiety and mood disorders. DDE-SH Rings may be useful in researching disorders such as Combat Related-Posttraumatic Stress Disorder (CR-PTSD), Chronic Fatigue Syndrome (CFS), and Fibromyalgia Syndrome (FS). Additionally, DDE-SH Rings may be useful in researching medically unexplained syndromes, such as GWVI, often seen in military veterans in which it is hard to determine whether pre-enlistment stress sensitization has an etiological role in the patient’s current illness.

![Image of a tooth with rings](image)

Figure 1: A single microscopic DDE-SH Ring in a combat veteran with a post-deployment disorder (Combat Related-PTSD). The stress Histomarker provides indelible evidence of stress sensitization occurring prior to enlistment, in this case at age 3. Incidentally, this particular tooth also demonstrates evidence of bruxism providing objective evidence of recent symptoms of anxiety.

5. **Current clinical and forensic uses**

Earlier DDE-SH Rings research in contemporary populations has focused almost entirely on deciduous dentition. DDE-SH Rings in deciduous teeth were found to be useful tools for ruling in, or ruling out, late prenatal, intranatal, and infancy distress in research participants [24, 25].

Several early studies of DDE-SH Rings conducted with deciduous teeth suggest that clinical DDE-SH Rings may be several times more common in patients with neurodevelopmental disorders than in controls. This finding is consistent with the role that low vagal tone during infancy, intranatal and prenatal period plays in the etiology of these disorders [10, 58]. Additionally, poorer clinical outcomes were shown to be associated with DDE-SH Rings [30]. Early stressors, as estimated by the location of
DDE-SH Rings, were associated with a more severe impairment [30]. These studies lend support to the potential utility of DDE-SH Rings.

In a forensic investigation, Skinner and Anderson [54] reported in detail the pattern and timing of a series of DDE-SH rings. They have demonstrated that the rings could be matched to a premortem record of physiological stress experienced. This chronological determination is possible since the rate of enamel elongation is well known. Prior studies observed that, although there is a certain amount of known nonlinearity in this rate, permanent enamel elongates in the cervical (root) direction at approximately 2.60 μm/day (about one millimeter/year). This information was obtained by measuring the mean inter-striae distance for a first permanent molar from a terminally ill child given timed injections of tetracycline which marked the enamel with orange striae [27].

6. Prevalence of DDE-SH rings in molars in non-clinical populations

Our current research specifically focuses on DDE-SH Rings in permanent molars. Permanent molars have been the least studied human teeth as far as vagal tone is concerned. The most severe form of DDE-SH Rings is Dental Enamel Hypoplasias which are relatively uncommon in permanent molars [31, 57]. Goodman and Rose [19], in their review of five large studies of contemporary populations (over 1,000 subjects), concluded that approximately 11% of first molars and 5% of second molars show enamel hypoplasias. In 3rd molars the prevalence is unknown. The one published study of 24 healthy subjects over age 16 [49], reported enamel hypoplasias in none of the 3rd molars.

The prevalence of less severe (subclinical) DDE-SH Rings is also unclear, although generally believed to be higher. Wright found that out of 43 permanent teeth with subclinical DDE-SH Rings, only 51% manifested clinical hypoplasias [60]. The first study of subclinical DDE-SH Rings specifically focusing on molars is currently being completed by our research team.

7. Evolutionary reasoning for research on DDE-SH rings

A research program investigating enamel markers of vagal tone perturbations is a step towards developing a clinical tool (biomarker) for researching the autonomic nervous system’s response during Acute Stress Reaction. Evolutionary biological reasoning has led us to take this approach. Extensive research suggests that survival during extreme stress, throughout human evolution, depended primarily on blood supply to the brain and heart. Several other organs, such as skin, intestines, other mucousae, nails, hair, and bone were of lower priority and grow predominantly during spans of low stress such as sleep. We have reasoned that the anatomical structures of lowest survival priority may be a neglected indicator to the negative effects of stress. While little research has been done on the topic, amelogenesis of the still erupting teeth is one luxury trophic function likely to be among the lowest survival priorities during extreme stress.
8. Few bio-markers are indelible and unaffected by adulthood stress

One unique strength of our DDE-SH Rings technique for estimating premorbid vagal tone chronology is that enamel (the most durable human tissue and is the only human tissue that can withstand cremation) cannot naturally remodel or undergo repair after its initial formation in the way that other human tissues, including dentin, bone, and brain tissue can [19, 22, 42, 51, 54]. DDE-SH Rings therefore, cannot be affected by a stress reaction that occurs after the age at which enamel secretion ceases (shortly after age 10). Since enamel has the permanence of stone, DDE-SH Rings are indelible indicators of pre-adulthood experiences. In other words, DDE-SH Rings are a specific marker of infancy and childhood stress and are completely unaffected by post-pubertal and adult stress. Specifically, DDE-SH Rings cannot be produced by research confounding factors after age 10 such as current or recent exposure to alcohol, drug abuse, smoking, medical illness, medications, poor nutrition, or head injuries. Similarly, DDE-SH Rings are not affected by the research participants’ quality of self-report as influenced by current mood, Cooperativeness, current psychopathologies, or cultural factors.

9. Conclusions

The possible role of stress sensitization and kindling-like mechanisms in the etiology of anxiety and mood disorders suggests a wide range of disorders to which this technique may be applicable [4, 14, 35, 50, 56]. A histological marker that can retrospectively estimate vagal tone chronology during the first ten years of life would be valuable for clinical research on both PTSD and GWVI. Additionally, such a technique may be valuable for research on Acute Stress Reaction, Acute Stress Disorder, and for understanding stress resilience and hardness. Finally, DDE-SH Rings may be useful in researching any post-deployment disorder in which it is difficult to convincingly determine whether or not pre-enlistment stress sensitization has an etiological role in the person’s current illness.

10. Acknowledgements

This material is based upon work supported in part by the Office of Research and Development, National Center for PTSD, Department of Veterans Affairs, Spark M. Matsunaga Medical and Regional Office Center. Support was also provided by a National Alliance for Research on Schizophrenia and Depression (NARSAD) independent investigator award, a NAMI Stanley Foundation award, and a Japan Ministry of Education and Technology - Basic Research Projects Award. The authors thank Col. Donald A. Person MD and Andrew Williams MA for comments on sections of this manuscript.
11. References:

NATO Science Series

A Series presenting the results of scientific meetings supported under the NATO Science Programme.

The Series is published by IOS Press, Amsterdam, and Kluwer Academic Publishers in conjunction with the NATO Scientific Affairs Division

Sub-Series

I. Life and Behavioural Sciences IOS Press
III. Computer and Systems Science IOS Press
IV. Earth and Environmental Sciences Kluwer Academic Publishers
V. Science and Technology Policy IOS Press

The NATO Science Series continues the series of books published formerly as the NATO ASI Series.

The NATO Science Programme offers support for collaboration in civil science between scientists of countries of the Euro-Atlantic Partnership Council. The types of scientific meeting generally supported are "Advanced Study Institutes" and "Advanced Research Workshops", although other types of meeting are supported from time to time. The NATO Science Series collects together the results of these meetings. The meetings are co-organized by scientists from NATO countries and scientists from NATO's Partner countries - countries of the CIS and Central and Eastern Europe.

Advanced Study Institutes are high-level tutorial courses offering in-depth study of latest advances in a field.

Advanced Research Workshops are expert meetings aimed at critical assessment of a field, and identification of directions for future action.

As a consequence of the restructuring of the NATO Science Programme in 1999, the NATO Science Series has been re-organised and there are currently Five Sub-series as noted above. Please consult the following web sites for information on previous volumes published in the Series, as well as details of earlier Sub-series.

http://www.nato.int/science
http://www.wkap.nl
http://www.iopress.nl
http://www.wlv-books.de/nato-ppo.htm

Series II: Mathematics, Physics and Chemistry – Vol. 121
Formal Descriptions of Developing Systems

edited by

James Nation
Department of Mathematics,
University of Hawaii, Honolulu, U.S.A.

Irina Trofimova
Collective Intelligence Lab,
McMaster University, Hamilton, Canada

John D. Rand
Department of Physiology,
University of Hawaii, Honolulu, U.S.A.

and

William Sulis
Department of Psychiatry and Behavioural Neurosciences,
McMaster University, Hamilton, Canada

Kluwer Academic Publishers
Dordrecht / Boston / London

Published in cooperation with NATO Scientific Affairs Division