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Abstract 
 
The creative re-use of existing cognitive capacities may have played a significant role in 

the evolutionary development of the brain. There are obvious evolutionary advantages to 

such redeployment, and the data presented here confirm three important empirical 

predictions of this account of the development of cognition: (1) a typical brain area will 

be utilized by many cognitive functions in diverse task categories, (2) evolutionarily 

older brain areas will be deployed in more cognitive functions and (3) more recent 

cognitive functions will utilize more, and more widely scattered brain areas. These 

findings have implications not just for our understanding of the evolutionary origins of 

cognitive function, but also for the practice of both clinical and experimental 

neuroscience.  

 
 



 2

Evolution and redeployment 
 
Part of understanding the functional organization of the brain is understanding how it 

evolved. The current study suggests that while the brain may have originally emerged as 

an organ with functionally dedicated regions, the creative re-use of these regions has 

played a significant role in its evolutionary development. This would parallel the 

evolution of other capabilities wherein existing structures, evolved for other purposes, are 

re-used and built upon in the course of continuing evolutionary development 

(“exaptation”: Gould and Vrba, 1982). There is psychological support for exaptation in 

cognition (Cosmides, 1989; Cruse, 2003; Glenberg and Kashak, 2002; Gould, 1991; 

Lakoff and Nuñez, 2000; Riegler, 2001; Wilson, 2001), and neuroanatomic evidence that 

the brain evolved by preserving, extending, and combining existing network components, 

rather than by generating complex structures de novo (Sporns and Kötter, 2004).  

However, there has been little evidence that integrates these two perspectives, bringing 

such an account of the evolution of cognitive function into the realm of cognitive 

neuroscience (although see, e.g., Barsalou 1999).   

 

One recent hypothesis along these lines—that combines a story about the evolution of the 

brain based on the re-use and extension of existing elements with an exaptive account of 

cognitive functions—is the massive redeployment hypothesis (Anderson, 2006; 

Anderson, in press). The massive redeployment hypothesis suggests that cognitive 

evolution proceeds in a way analogous to component reuse in software engineering 

(Heinemann and Councill, 2001), whereby existing components—originally developed to 

serve some specific purpose—are used for new purposes and combined to support new 
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capacities, without disrupting their participation in existing programs. If cognitive 

functions evolved in this way, then we should be able to make some specific empirical 

predictions regarding the resulting functional topography of the brain; here I discuss 

three.   

 

First and most generally, we should expect a typical brain region to support numerous 

cognitive functions in diverse task categories.  If this were not the case, if a typical brain 

region in fact served a very limited set of cognitive functions, then this would suggest 

instead that the brain evolved by generating new, dedicated regions for each new 

purpose.   

 

Second, there should be a correlation between the phylogenetic age of a brain area and 

the frequency with which it is deployed in various cognitive functions.  The longer an 

area has been around the more likely it will have proved useful to some evolving 

cognitive capacity, and be incorporated into the functional network of brain regions 

supporting the new task. Naturally this will not be true for every brain region, since a 

given area may have evolved to serve a very particular purpose of little use in later 

developments.  But it should be generally the case that the older an area is, the more 

cognitive functions it supports.  

 

Third and finally, there should be a correlation between the phylogenetic age of a 

cognitive function and its degree of localization. That is, more recent functions should 

generally use more, and more widely scattered brain areas than evolutionarily older 
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functions. Again, the reasoning is simple: the more brain areas there are when a given 

cognitive capacity is evolving, the more likely that one of them will already serve some 

purpose useful for the emerging capacity, and there is little reason to suppose that the 

most useful areas will be grouped together (and less reason to suppose this as 

evolutionary time passes, making available more functions supported by more areas). 

 
Approach and methods 
 
To evaluate the predictions made by the redeployment hypothesis, I performed some 

statistical analyses of 135 brain-imaging experiments, collected by Cabeza and Nyberg 

(2000). They survey 275 fMRI and PET experiments, in ten task categories. Here I focus 

on only four categories: attention, perception, imagery, and language.  The 39 attention 

tasks included things like tone detection and Stroop tasks (naming colored words); the 42 

perception tasks included such things as object identification and facial recognition; the 

18 imagery tasks include mental rotation and landmark visualization; and the 36 language 

tasks included reading out loud and silently, lexical decision tasks (discriminating words 

from non-words), and the like.   

 
For each task, Cabeza and Nyberg catalog the brain areas reported to be activated by that 

task from a list including 26 numbered Brodmann areas, plus the insula and MT, and 

three subcortical areas—basal ganglia, thalamus and cerebellum—for each hemisphere. 

Each area was divided into a lateral and medial segment, for a total of 124 brain regions.  

Note that the reported activations do not represent the full network of brain areas 

activated by a given cognitive task, but those remaining after the relevant 

control/comparison tasks have been subtracted out. That is, the areas identified in the 
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studies are understood to be those specifically responsible for the cognitive function 

under investigation. 

 
In order to evaluate the three predictions, several values need to be calculated for this 

data set.  First, we need to know how many brain areas are activated by a typical 

cognitive task, and whether this varies by task category.  Second, we need to know how 

many cognitive tasks a typical brain area supports, and how these tasks are distributed 

across the four categories. Third, we need to measure the “scatter” of the areas 

participating in each task, and the variance of this value by task category.  Finally, we 

need to correlate these values with phylogenetic age. 

 
To calculate the first two values was primarily a matter of counting.  Cabeza and Nyberg 

use a coding scheme for activations that forces a decision between lateral and medial 

activation, such that it is not possible to show both a medial and a lateral activation in a 

given brain area for a given task. Instead, the possible activations for each brain area are 

left lateral (LL), right lateral (RL), bilateral lateral (BL); left medial (LM), right medial 

(RM), bilateral medial (BM).  Thus, for instance, they list the following activations for a 

task involving hearing words vs. a resting condition (Muller 1997): an LL activation in 

Brodmann area 47, and BL activations in areas 21 and 22.  For the purposes of counting 

areas activated by a task, I treated bilateral activations of an area as two participants, one 

left and one right (medial or lateral).  Thus, the language task above would have five 

participants, three LL participants (areas 47, 21 and 22) and two RL participants (areas 21 

and 22).  For the purposes of counting redeployments (areas activated by more than one 

task), I matched LL activations in an area to other LL activations of that area, as well as 
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to BL activations, and I matched RL activations in an area to other RL activations of that 

area, as well as to BL activations.  I followed the same procedure for medial activations.  

I did not match bilateral activations to each other. 

 
To calculate the diversity of activations across task categories I employed a standard 

measure of population diversity, Diversity Variability (DV).  DV is calculated using the 

following equation, a version of standard deviation, where Cati is the proportion of 

activations in category i; mean is the mean proportion of activations in each category 

(always 0.25 for 4 categories), and k is the number of categories: 
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The category diversity of a given area is just (1-DV). With four categories, category 

diversity ranges from 0.57 (all items in one category) to 1 (equal numbers in each 

category). Note that for the purpose of calculating category diversity, the activation 

counts in each category were normalized to n=42. 

 
Finally, to measure the distribution, or “scatter” of areas activated by a given task, I 

constructed an adjacency graph for the cortex (Figure 3).  A graph is a set of objects 

called points or vertices connected by links called lines or edges.  For constructing a 

graph of the cortex, I took the nodes to be numbered Brodmann areas (Brodmann, 1907) 

and the edges to indicate adjacency. Adjacency in this context means only that the 

Brodmann areas share a physical border in the brain. 
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Graph theory (Diestel, 2005) is a branch of mathematics that allows one to explore the 

topological properties of graphs.  Graph-theoretic analyses have been used in 

neuroscience for such purposes as investigating neural connectivity patterns (Sporns, 

2002), correcting brain images (Han, et al. 2001), and analyzing the patterns of neural 

activations in epilepsy (Suharitdamrong, Chaovalitwongse and Pardalos, 2006). 

 

One of the simplest concepts in graph theory is minimum graph distance, which is just 

the fewest number of edges one must traverse to get from one node to another. Nodes that 

are adjacent in a graph have a graph distance of 1, nodes not adjacent to each other, but 

both adjacent to a third have a graph distance of 2, and so on.  The minimum graph 

distance between every pair of nodes in the graph of the cortex was calculated using 

Dijkstra’s algorithm (Dijkstra, 1959).  

 
A simple extension of minimum graph distance is average minimum graph distance, 

which is the average of the minimum graph distances between every pair of nodes in 

some subset of nodes in a graph.  Figure 1 illustrates some different graphs, and the 

average minimum graph distances between all the nodes in the graph.  
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AMGD = 1   AMGD = 1.5   AMGD = 2.0 
 
Figure 1: Illustrations of the average minimum graph distance (AMGD).  The figure shows the 

average minimum graph distances between nodes in some simple graphs.  Lines between nodes indicate 

adjacency. 

 
 
Results 
 
On average, each of the 135 tasks activated 5.97 regions (SD 4.80). Perceptual tasks 

activated 4.88 (n = 42, SD 3.55), attention 5.26 (n = 39, SD 4.23), imagery 6.39 (n = 18, 

SD 3.29) and language 7.81 (n = 36, SD 6.56).  More importantly, the 86 brain regions 

that were activated by at least one task supported, on average, 9.36 different tasks (SD 

8.62).  Ignoring the division into medial and lateral regions gives an average of 13.00 

tasks per area (SD 8.44), nearly one in ten of the tasks surveyed. 

 
The activations were not limited to closely related tasks.  Of the 86 regions activated in 

some task, 57 (66.3%) had activations in at least three categories; 28 of these had 

activations in all four categories. Only 15 regions (17.4%) had activations in just one 

category. Counting the number of tasks by category that activated each region, and 

normalizing the count of tasks in each category to n=42, shows that an average of 37.8% 
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(SD 21.5) of activations are in categories other than the category with the highest number 

of activations.   

 
Using the measure of population diversity among categories discussed above shows that 

the 86 brain regions have a mean category diversity of 0.76 (SD 0.11); ignoring the 

medial/lateral division gives 0.81 (SD 0.09).  As shown in Table 1, an average category 

diversity of 0.81 suggests a fairly high degree of redeployment throughout the brain.  

 
 
 
 
 
 
 
 
 
 
 
 
Table 1: Illustrations of the category diversity of some Brodmann areas.  The table shows some 

examples of the diversity of activations across categories for three Brodmann areas. 

 
These results are perhaps even more striking when put in graphical form.  Figure 2 

represents activations of Brodmann areas in the left hemisphere, in each of the four task 

domains, by both color and intensity.  The color represents the task domain, and the 

intensity indicates the number of tasks in the category that activate the area. I use the 

colors cyan (language), magenta (attention), yellow (perception) and black (imagery) so 

that these colors can be mixed using standard CMYK 4-color printing methods.   

 

 

 

0.570.001.000.000.00BA38L 

0.970.240.280.210.26BA18L 

0.800.210.000.240.55BA46R 

(1 – DV) Perception Language Imagery Attention Area 

Category 
diversity

Normalized proportion of activations by category
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Figure 2: Color-coded activations of left cortex.  The figure illustrates the activations of Brodmann areas 

in the left hemisphere according to color and intensity, where color represents the cognitive domain and 

intensity the number of tasks in the domain activating the area.  In this figure, cyan represents language, 

magenta represents attention, yellow represents perception and black represents imagery. Overlaying the 

single-color images gives the 4-color image in the bottom center.  This image contrasts sharply with the 

standard picture of localization by domain as shown in the bottom right panel. 

 

Far from supporting the standard notion that cognitive functions are generally localizable 

by domain (as illustrated in the lower right panel of figure 2), the data suggest a much 
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more complex and subtle structure, where activity in many (most) brain areas supports 

multiple tasks in multiple cognitive domains.  The difference between the standard 

picture and the functional organization suggested by the redeployment hypothesis is 

perhaps best illustrated by contrasting the lower middle panel with the lower right panel.  

Rather than large areas of mono-chromatic cortex, what we see instead is a large array of 

unique colors, indicating the relative contributions of each Brodmann area to supporting 

tasks in a given cognitive domain. 

 

However, this does not mean that the cortex is in any way randomly or holistically 

organized; far from it.  In fact, as is illustrated below, we can make (and support) some 

specific predictions about the relations between cognitive functions and brain areas based 

on the phylogenetic age of the function and the brain area. 

 

But first we need to present the data on the “scatter” of brain areas supporting various 

cognitive functions. The average minimum graph distance between the Brodmann areas 

activated by each of the 135 tasks is 3.89 (SD 2.00).  Broken down by task category, we 

get attention 3.13 (SD 2.06), perception 3.71 (SD 1.98), imagery 3.97 (SD 1.75), and 

language 4.82 (SD 1.76).  Figure 2 represents the cortex as an adjacency graph, with an 

attention task (Corbetta, et al, 1993) superimposed. 
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Figure 3: The cortex represented as an adjacency graph, showing the Brodmann areas as nodes, with lines 

between adjacent areas.  The darkened nodes are those activated by an attention task reported by Corbetta 

(1993). That task activated left Brodmann areas 7, 8 and 24, and right Brodmann areas 7 and 32; average 

minimum graph distance is 4.0, close to the average for all tasks. 

 
 
With this basic data in front of us, we can look at correlations between these values and 

phylogenetic age.  As noted above, if the evolution of cognition proceeded via the 

extensive re-use of existing components, then evolutionarily more recent cognitive 

functions should activate more, and more widely scattered brain areas. Comparing 

language tasks with perception tasks and attention tasks gives the predicted result.  For 

the mean number of areas activated, language is greater than perception by 2.93 (2-

sample Student’s-t test, double-sided p = 0.0165) and greater than attention by 2.55 (p = 
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0.0475). For average minimum graph distance, language is greater than perception by 

1.11 (p = 0.0121) and greater than attention by 1.69 (p = 0.0003).  Differences between 

other categories are not significant (Table 2). 

 
Categories being 
compared 

Difference in average 
number of regions 
activated per task 

Difference in average 
minimum graph distance 
of activated regions 

Language vs. Perception 2.93, p = 0.0165* 1.11, p = 0.0121* 
Language vs. Attention 2.55, p = 0.0475* 1.69, p = 0.0003* 
Language vs. Imagery 1.42, p = 0.3922 0.85, p = 0.0998 
Perception vs. Attention 0.38, p = 0.6618 0.58, p = 0.2002 
Perception vs. Imagery 1.51, p = 0.1285 0.26, p = 0.6317 
Attention vs. Imagery 1.13, p = 0.3214 0.84, p = 0.1402 
Table 2: Results for all category comparisons on average number of brain regions activated per task and 

average minimum graph distance between the activated regions.  Note that only the differences between 

language and perception and language and attention are significant. 

 
 
The last important prediction of the redeployment hypothesis to be discussed here is that 

evolutionarily older brain areas should be deployed in more cognitive functions.  Figure 2 

gives the results of plotting the number of tasks that activate a given Brodmann area 

versus the Y-coordinate of the area, based on the simplifying assumption that areas in the 

rear of the cerebral cortex (occipital lobe) are evolutionarily older than those in the front 

(pre-frontal cortex), ceterus paribus. Although the data are highly variable, as expected, 

there is nevertheless a significant linear correlation.   
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Figure 2: A plot of the number of tasks (out of 135) that activated each Brodmann area vs. the Y 

coordinate of the area (calculated in Talairach (Talairach and Tornaux, 1988) space using the Brede 

(Nielsen, 2003) database). The data shows a linear correlation, R = -0.4121, p <= 0.00244 (t = -3.198, DF = 

50). 

 
Discussion  
 
Together, these data suggest a picture of the evolution of cognition where redeployment 

plays a significant role. As predicted, we see correlations between phylogenetic age of 

brain areas and the frequency of their participation in cognitive function, and between the 

age of cognitive functions and their degree of localization.  We also saw that the typical 

brain area is a diverse instrument, supporting cognitive tasks in multiple task categories. 

The massive redeployment hypothesis thus appears to be both empirically supported, and 

consistent with the evidence for evolution by exaptation in both psychology and 

neuroanatomy.  
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Before concluding, I would like to say a few words about the more theoretical attractions 

and implications of the massive redeployment hypothesis.  First of all, the hypothesis 

offers the potential for explaining both localization of function (cognitive functions only 

use limited and specific parts of the brain), and diversity of purpose (a typical brain area 

is activated by highly diverse cognitive tasks).  This may help dissolve the debate 

between localization and holism (Uttal, 2001), which in its typical form offers a false 

choice between equipotentiality (a given brain area can do many different things when it 

is activated) and strict localization (each brain area does one and only one thing). 

According to the massive redeployment hypothesis, the fact that a brain area is dedicated 

to some highly specific low-level task is perfectly compatible with its being used to 

support many different cognitive functions (Anderson, 2006; in press).  In fact, if brain 

areas were multi- or equi-potential, and so could easily be recruited to compute 

substantially different functions, then it is hard to understand why older brain areas are 

more often recruited than younger ones, and why newer cognitive functions recruit more 

widely scattered brain areas.  It would seem that such a pattern of redeployment would 

only arise if the low-level (computational) functions of brain areas were relatively fixed, 

such that developing a new cognitive function requires either developing new capacities 

de novo, or finding areas already performing some required role.  If brain areas could 

instead be easily encouraged to compute many different functions, then considerations of 

information-processing efficiency would favor recruitment of nearer areas over areas 

already computing some desired function, but further away. 
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Second, redeployment may offer a clearer way of organizing the search for the 

neurological bases of cognitive function.  In particular, it suggests that in order to 

determine the functional role of a given brain region it is necessary to consider its 

participation across multiple task categories, and not just focus on one, as has been the 

typical practice.  Making this claim a bit more specific, when modeling a given cognitive 

function, and attempting to map that model onto brain areas, it will be necessary to 

consider not just the model of the function under primary consideration, but also the 

models of other functions recruiting the same brain areas, such that the sub-functional 

elements of each model attribute the same role to the brain areas where they overlap.  

Finding the functional role of a given brain area will be something like finding the right 

letter to go into a box on a (multidimensional) crossword puzzle, determined not just by 

the answer to a single clue, but by all the clues whose answers cross that box.  This 

makes the task both harder, because it is multiply constrained, but also easier, because it 

offers the possibility of leveraging information from several sources to make the 

attribution. 

 

Third, and closely related to the last point above, as we come to recognize the diverse 

cognitive functions supported by given brain regions, this should suggest more fine-

grained predictions about such matters as priming and cognitive interference, as well as 

the likely effects (and the localization) of brain injuries. The knowledge that a given brain 

area is used in multiple tasks and domains opens the possibility of designing experiments 

leveraging these overlaps, e.g. in cross-domain priming or interference studies, or in the 

development of cross-domain therapies for brain-injury patients. 
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Finally, looking at brain organization in this way can offer a different a method to assess 

the relative evolutionary age of cognitive functions, and of brain areas, opening another 

window on our evolutionary past. 
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