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Chapter 1

Introduction

The purpose of this MPhil. project is to simulate the processes by which psy-
chological development occurs. More speci�cally it concerns modelling the ability
for novice systems with only very limited behaviour or understanding, to develop
into much more sophisticated expert systems, through a process of adaption and
self-organisation.

Examples of such development abound, from infants learning to walk, talk and
grasp, to adults learning to operate new technology. In each of these, the individ-
ual is presented with a challenging situation to which he adapts and eventually
masters.

Psychology has provided a number of theoretical frameworks to help explain
the mechanism of this development. A review of this work and its potential for
use in a computer simulation is carried out in chapter 2.

The ability to innovate and produce structured but also novel solutions to such
problems is of key importance in the process of adaption. However, the produc-
tion of such solutions has been di�cult to achieve with conventional computer
simulations. A review of the main conventional approaches to the computer simu-
lation of psychological development, in general termed arti�cial intelligence (AI),
is given in chapter 3.

More recently, the failings of conventional computer simulations has led to al-
ternative approaches being proposed. Two important examples, Emergent Mem-
ory Models and Modular Neural Networks, are examined in detail in chapter 4.
These attempt to harness , rather than simply exploit, the phenomenon of emer-
gence, in order to reproduce the structured and novel approach to development
present in humans but found lacking in conventional AI.

Emergence, the production of fundamentally new behaviour in a system, is felt
to be an essential feature of a model of psychological development. This asser-
tion stems from the similarity of psychological theories of development - chiey
Piaget's genetic epistemology - with theories on the formation of emergent phe-
nomena. For instance hyperstructure theory predicts the formation of hierarchies
of emergent structures given the right conditions. The phenomena of emergence
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CHAPTER 1. INTRODUCTION 6

and the proposals of hyperstructure theory are addressed in chapter 5.
A computer simulation is proposed which takes into account all of the above

mentioned factors. Novel structured solutions to developmental problems are
formed as emergent phenomena. From a basis set of schemes - analogous to the
modules in Modular Neural Networks - emergent hyperstructures of schemes are
formed as a solution to a given developmental problem. This is achieved using
the Bucket Brigade algorithm (used in the Emergent Memory Model reviewed)
to create sequences that solve particular aspects of the problem, forming new,
emergent schemes. The resulting system is found able to solve the inverse pendu-
lum problem using a second order emergent structure, and has great potential for
further development.



Chapter 2

Psychological Theories of

Development

2.1 Introduction to Modern Developmental Psy-

chology

Developmental psychology aims to provide a scienti�c understanding of age-related
change in human mental experiences and behaviour. Although most developmen-
tal theories have been speci�cally concerned with children, the ultimate aim is to
provide an account of development throughout the lifespan.

Before the start of the Twentieth-Century, theories of development were noth-
ing more than anecdotal descriptions. For example John Locke (1632-1704) con-
sidered each child to be born a tabula rasa (blank slate) whose mind would de-
velop solely according to experience. Thus a new-born baby is considered to
be psychologically structureless, denying any importance of innate factors in its
psychological development.

This is in sharp contrast to the views of Prussian philosopher G. W. Leibnitz
(1646-1716) who considered all knowledge to be derived from innate structures
with which every child is born. As such, all knowledge was considered to be
derived from the exercise of reason and purported to give an absolute, objective,
description of the world.1

The application of rigorous systematic testing has put theories of psychological
development on a more scienti�c base. In addition, a number of psychologists have
attempted to provide a theory of development to interrelate the roles of 'nurture'
and 'nature' which previously formed two mutually exclusive bodies of theory.

Lev Vogotsky(1896-1934), for example, was concerned to show how culture and
in particular language, inuences the course of intellectual development. Whereas

1Leibnitz belonged to the school of thought now generally labelled 'rationalist' and Locke to
the school of 'empiricism'. An attempt to consolidate these opposing views was later made by
Kant[1], whose work was to be an inuence on the Swiss psychologist Piaget.

7



CHAPTER 2. PSYCHOLOGICAL THEORIES OF DEVELOPMENT 8

John Bowlby (1907-1990) was primarily concerned with the role family bonding
on a child's emotional development.

However, it is the work of Jean Piaget[15, 49, 50] (1896-1980) that is of greatest
interest. This is due to the ability of the ideas proposed to lend themselves well to
a number of ideas in complexity theory (see section 5) as well as to the processes
of computer simulation.

2.2 The Work of Jean Piaget

Jean Piaget studied psychology with the intention of deriving a biologically orien-
tated theory of the origins of knowledge. This was inspired by his basic concern
with the adaption of living things to their environment. As a special case of this
biological problem, he was led to consider the phenomenon of human knowledge,
especially formal, logical knowledge, which acts to transcend the limitations of
human physical embodiment.

The resulting 'Genetic Epistemology' attempts to describe the acquisition of
knowledge as a constituent part of the process of biological evolution.

2.2.1 Piaget's Methodology

An understanding of Piaget's methodology is important in understanding his the-
ories on epistemology.

Piaget addresses the problems of knowledge acquisition through a process
of dialectical argument, to which he refers as 'dialectic constructionism'. This
involves passing an argument from a thesis to a contradictory antithesis, and
thence to a synthesis - which in turn acts as a new thesis.

This approach is applied by Piaget to the theoretical traditions of epistemology
within biology, psychology and philosophy. In each case, he says, the thesis posits
structuralism without genesis, the antithesis genesis without structure and Piaget's
own synthesis o�ers structure with genesis.

As a consequence of his dialectic approach, Piaget proposes the association of
a continual equilibration with the progress of the developmental process.

2.2.2 Piaget's Psychology

The process of equilibration manifests itself, in Piaget's description of psychology,
in the form of assimilation and accommodation. These two are polar opposites,
analogous to the 'thesis' and 'antithesis' outlined above.

Assimilation is the modi�cation of an incoming stimulus by the activity of a
pre-existent mental structure. Such structures are denoted 'schemes', and repre-
sent the regular structure of an action. For example, the general method involved
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in throwing a ball: the unique circumstances in which person and ball may start
are assimilated by the ball throwing scheme, producing a throwing action.

Accommodation is the active modi�cation of the structure - scheme - itself, so
as to adapt to the situation. For example, the lifting of an unfamiliar object: an
initial attempt is made to assimilate the object into a general lifting scheme. If this
fails - the object cannot be lifted by this method - then an accommodation takes
place; the lifting scheme is adapted, for instance by adjusting hand position to get
a better grip, and then re-applied. This adjusting procedure - accommodation -
is applied until the operation is successful.

Equilibrium is a relatively stable state of a structure, in that it can accept and
adapt to varied input without any essential change. This is the case when given
a routine, well practiced task to do, for example driving a familiar car or signing
a well practiced signature.

Further discussion on the nature of scheme development is covered in section
2.3.

These ideas on development are extended by Piaget to their biological origins,
fueled by his conviction that the biological problem of adaption relates to the epis-
temological problem of the acquisition of knowledge. He builds on the work of
C. W. Waddington[17] to form a theory of 'evolution by epigenetic assimilation'.
This considers a person to develop according to his particular genotype, encoded
as DNA. However, it is the interaction of the developing person with the environ-
ment - via the dialectic processes described above - that determines phenotype.
This bears a resemblance to the various process that lead to emergent behaviour
in complex systems, an important point discussed in section 5.

Piaget sees the development of intelligence in successive psychological stages.
Each new stage is derived from the interactions of the previous one with the envi-
ronment together with the processes of assimilation and accommodation. These
stages are ordered roughly in terms of the human subject age at which they are
prevalent:

� The Sensorimotoric Stage: Active between the ages of 0-2 years. During
this period, a child learns, in general, to coordinate muscle actions in an
attempt to gain control over its body.

� The Pre-Operational Stage: Active between the ages of 2-7 years. This
stage requires a number of new skills, learnt during the sensorimotoric stage.
Some characteristics of development include muscle actions becoming more
elaborate and the ability to make simple mental representations of the world.
As such, objects out of immediate sight can still exist in the child's mind.

� The Operational Stage: Active between the ages of 7-12 years. By this
stage, a child is capable of non-egocentric thought i.e is able to consider
points of view other than its own.
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� The Logical Stage: Active from age 12 years and beyond. The child learns
to grasp fully abstract concepts such as mathematics.

2.2.3 The Successes and Failings of Piaget's Genetic Epis-

temology

Recent experimental research has shown Piaget to be wrong in a number of ways,
due to a mixture of poor experimental technique, poor experimenter/subject com-
munication and an inability to appreciate the full implications of other psychol-
ogists work. These problems have cast doubt on a number of his ideas. It is
important to examine these criticisms to ensure that the more relevant of his
ideas are sound. This task was carried out by Boden [49] and is summarised in
this section.

The main objection levelled against Piaget is that he has underestimated
the cognitive skills of children. For example, the work of Slater, Mattlock and
Brown[16] has demonstrated that babies only four months old show surprise when
one (hidden) solid object apparently passes through, or jumps over, another in-
stead of moving along a connected, unobstructed pathway. This implies that
the four-month-old infant has already developed a perceptual understanding of
physical objects that is characteristic of a Piagetian pre-operational two-year-old.

Piaget also underestimates the degree to which a child's intelligence is domain
speci�c. He believed that intelligence is grounded in a developmental sequence of
domain general structures, implying a number of distinct stages to development.
However a number of experiments[2] have shown this not to be the case. One
example is children su�ering from Williams syndrome, who have good linguistic
skills even though their general intelligence is severely de�cient. If language were
constructed from the same intellectual structures that underlie reasoning, then
such a situation would be impossible.

Following from such evidence, proponents of the 'modularity of mind' psycho-
logical stance argue that there are no general principles of intelligence[18]. This
theory considers the mind to consists of domain-speci�c mental modules that are
inborn, automatic and una�ected by other modules or thoughts at higher levels.
An example of this is the visual cortex, which contains neighbouring columns of
cells genetically pre-assigned to particular functions.

Under the modular regime, learning is seen as the reorganisation of unchanging
semantic atoms, and development - the construction of radically new forms of
representation - is impossible2.

This view can be criticised on the grounds that the developing mind appears
capable of self-organisation over a range of domains. This view is addressed by

2Recently, this approach has been adopted in the programming of neural networks so as
to allow one large problem to be addressed as a collection of smaller, more manageable sub-
problems. These 'Modular Neural Networks' are discussed in section 4.3.
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epigenesis, the aspect of Piaget's genetic epistemology which presents the devel-
oping process of the mind as a self-organising interaction between pre-existing
mental mechanisms and ecologically relevant aspects of the environment.

It is with a wide range of new psychological and biological evidence[3, 47,
49]that the process of epigenesis, and with it the basic idea of structured psy-
chological development, can be shown to be essentially correct. For instance,
Boden[49] presents the case of an infant learning to speak: New-born babies are
sensitive to speech in general, whereas infants and older children show increas-
ing sensitivity to their native tongue and decreasing sensitivity to foreign sounds
and words. This evidence, taken with others mentioned in the references above,
helps justify the dialectical processes of assimilation and accommodation by which
epigenetic development occurs.

A further vindication of the role of equilibration and epigenetic self-organisation
in development, can be seen in the actions of arti�cial life simulations3. In such
simulations the interactions of individual units - individuals in a population each
operating under simple, local rules - can lead to the emergence of new structures
not explicitly pre-�gured in the population. In terms of genetic epistemology, the
interactions of individuals may be considered analogous to the process of equi-
libration between an individual and its environment. Further, from its initial
possession of only a set of simple rules - the genetic structure of the individ-
ual - the interaction process leads to the emergence, through self-organisation,
of fundamentally new structures. Consider, for example, the computer simulated
behaviour of birds, which, although programmed as a set of individuals, self-
organise into ocks when allowed to interact. This is treated in greater detail in
in section 3.3.4.

A strict modular interpretation of the mind does not allow for such a radical
change in macroscopic behaviour.

2.3 Scheme Theory

The process of equilibration central to genetic epistemology allows for extensive
use in computer simulation. The dialectic interaction with the environment is
essentially the same as the mechanism of information feedback by which cybernetic
and AI systems function.

These ideas are taken by Eckblad[19], along with notions such as the 'schema'
of Bartlett[10] and cell assemblies of Hebb[8], to form 'Scheme Theory'.

2.3.1 The Concepts of Scheme Theory

Scheme theory uses the notion of a scheme, conceived as an organised sequence
of operations. These interact with the environment to form a central feature of

3See section 3.3.3.
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a person's behaviour. As with a computer routine, the functioning of a scheme
involves input, internal processing and output operations. Eckblad gives the ex-
ample of a person's habitual way of pouring from a particular jug: The hand is
brought into position, fastens on the handle, lifts, tilts and pours - all the way
guided by visual and tactile feedback from sensory systems. The term 'scheme'
denotes the regular structure of behaviour. In the jug example, the hand travels
along many trajectories from many starting points; there is nevertheless regularity
in the operations performed and the successive subgoals reached.

2.3.2 The Development of a Scheme

The Piagetian idea of equilibrium is central to the way in which schemes develop.
According to scheme theory, a person initially attempts to assimilate a situation by
attempting to �t it in to a known scheme. If the situation cannot be successfully
assimilated, then the person is thrown into a state of disequilibrium, a state which
Eckblad terms 'motivational'. It is in this state that schemes adapt to (accom-
modate) the situation. The accommodation process may progress in a number of
ways, the most relevant to this project being di�erentiation and re-combination.

Di�erentiation involves the creation of a new scheme from the re-programming
of an old scheme. An example of this is the work of Lasky[47]. He compared the
reactions of young and older children when reaching out for an object they could
not see. The former were found to be considerably less put o� if they could not see
their hands than were older children. With di�erentiation theory, 'seen' and 'felt'
objects do not exist separately, nor therefore can the 'seen' hand be di�erentiated
from the 'felt' hand. With development, di�erentiation will occur and the child
will rely on a 'seen' hand to reach a 'seen' object. Older infants, who have made
the di�erentiation, will thus be more put o� than younger ones.

The re-combination of schemes is e�ectively the addition and interaction of
previously di�erentiated schemes which together produce new behaviour.

It is a central assumption of scheme theory that the process of scheme accom-
modation forms new schemes as solutions to developmental problems and organ-
ises them into a hierarchical structure, similar to the lens structure described by
Brunswick[48].

2.3.3 Possible Applications of Scheme Theory in AI

Within scheme theory a fully di�erentiated system can be described as a basis
set of schemes. The discrete and well-de�ned nature of the members of this set
makes them ideal for use as building blocks for computational models of psycho-
logical development. As such schemes may act as a bridge linking Piagean genetic
epistemology to computer simulations of development.

The nature of scheme development depends on the interaction between the
scheme and environment. It is the mechanism of this interaction which must be
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investigated in order to produce any signi�cant results from computer simulations
based upon these ideas.

The next section reviews a number of important approaches at producing AI
and developmental simulations.



Chapter 3

Conventional Arti�cial

Intelligence

3.1 Introduction

Arti�cial intelligence can be broadly described as the science of making machines
think. Examples of this include holding a conversation, playing chess, writing or
translating stories and recognising images. The machines in question are typically
computers; but AI is not the study of computers. Rather, it is the study of
intelligence in thought and action.

Two fundamental approaches to the modeling of AI have emerged, into which
models may be classi�ed:

� Symbol Manipulators - the computer program manipulates symbolic repre-
sentations of knowledge and logical symbols required for formal reasoning.

� Decentralised Models - the computer program manipulates a distributed
array of knowledge data in parallel.

3.2 Symbolic AI

The �rst computer programs to demonstrate the possibility of AI represented
knowledge units in a discrete, symbolic form. These programs then progress
through a series of formal, logical operations upon these symbols in an attempt
to �nd a suitable response.

Arti�cial intelligence, based upon propositional and predicate logic, has been
applied to the problem of producing structured and novel behaviour. A number of
programs, for example 'Racter'[4] and 'Tale-Spin'[5], have been written to generate
novel (literary) stories using two very di�erent approaches within a symbolic
framework. More sophisticated approaches were produced as the inadequacies
of the symbolic approach became apparent. Programs such as 'Day-Dreamer'[7]

14
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were developed which use a system of meta-rules, to allow the generation of further
rules.

3.2.1 A Brief Review of 'Racter'

Both 'Racter' and 'Tale-Spin' address essentially the same problem, although
the former uses a more exible approach. It works by constructing sentences
according to 'syntax directives' using random words and phrases. This is modi�ed
by an ability to adapt phrases used previously to give a sense of continuity.
Initially it produces very novel and unpredictable output, but, with time, is found
to be highly super�cial and produces structures with no meaning. Since there are
there are no semantics behind the output, there is no way for Racter to assess
what it has produced.

3.2.2 A Brief Review of 'Tale-Spin'

Tale-Spin builds a story from a problem and how this problem gets solved. Char-
acters are set up with di�erent goals which they each try to meet by forming
plans and taking appropriate actions. The story is a natural language trace of the
events produced by this process.

The more rigid approach of Tale-Spin uses a reservoir of knowledge about each
character and how they behave. Problems involved in development are solved
using a plan as a template for the action of each character, thereby producing
mainly meaningful stories at the expense of originality. This contrasts with the
behaviour of Racter, which produced original, but meaningless behaviour.

3.2.3 A Brief Review of 'Day-Dreamer'

The rigidity of rule-based systems has led some researchers to advocate 'meta-
rules', i.e. rules which can reason about and create other rules. This was brought
about by programs (such as that of Yazdani[6]) which were found to produce more
inventive stories in unwanted outputs created when the program went wrong,
essentially breaking the rules of the program.

This approach is demonstrated by the program 'Day-Dreamer' which func-
tions according to events in two interacting domains: a 'personal world' and the
'objective world'. Both of these domains are controlled by their own goals, where
events in the objective world can a�ect the personal goals. The program pro-
gresses by 'day-dreaming', that is 'imagining' di�erent objective situations which
lead to the personal goals to be met. Successful plans are abstracted and stored in
memory. When the program next encounters a suitable objective world situation,
these plans can be re-called and applied.

'Day-dreamed' plans can also be adapted to �t into di�erent objective goal
situations by making a number of variable changes. This provides an added
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exibility to the system's behaviour but raises the question of which variables to
alter.

This problem illustrates the main aw with the meta-rule system in that al-
though providing an extra degree of exibility for rules, meta rules themselves
are too rigid. Since rules are predetermined by the meta-rules, such a system
essentially requires knowledge to be programmed a priori, and any rule breaking
is be algorithmically determined. In e�ect this is simply a move from rigid rules
to rigid meta-rules.

3.2.4 Concluding Remarks

The symbolic approach to AI has made the great achievement of showing that
AI is plausible, with computer programs showing characteristics such as learning
and reasoning which were previously the sole domain of psychology. However,
with time, the symbolic approach has been shown lacking. The main di�culty
being the inability to reconcile exibility of response with control. As a result AI
programs have tended to produce either novel behaviour in a meaningless form
or behaviour that is structured but essentially predictable and unimaginative.

3.3 Decentralised AI

Minsky[24] has described the mind as an integrated society of agents each with
its own specialized task, where societies are built by learning from experience.
These ideas have acted to motivate ideas of distributed control as opposed to the
centralised control of previous thinking.

This type of approach provides a source of more exible behaviour, due to the
lack of a central controller present in symbolic systems. Each unit in a decentralist
system acts at a local level and it is only as chains are constructed that high-level
characteristics become apparent. This type of behaviour is called emergent1 since
global, high-level properties emerge without explicit control from the interaction
of many local, low-level actions. This type of approach avoids the structural
limitations imposed by central controllers, and allows exibility as a high-level
property.

3.3.1 Neural Network Models

Neural networks[40, 22, 23], in general termed 'connectionist models', are cur-
rently the main manifestation of decentralised AI models. They are programmed
to mimic actual brain structure, in which knowledge is represented as a dis-
tributed array of data in the form of inter-neuron strengths. Neuron strengths are
altered as the network learns from its mistakes, resulting in it self-organising to

1A more thorough discussion of emergence is given in section 5
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yield solutions to problems posed as input data. This approach has been shown
to be very e�ective in a number of areas; for instance in pattern recognition[11]
and optimisation problems[12]. However, being essentially parallel in nature, pro-
gramming of larger nets on traditional Von-Neumann style, sequential computers
requires large amounts of computer time to run e�ectively. Furthermore, connec-
tionism has not developed su�ciently to allow high-level structure to be formed
to the extent present in more conventional models. An example of this limitation
is illustrated by the behaviour of the connectionist computer model 'Net-talk'[21],

3.3.2 A Brief Review of 'Net-talk'

Net-talk is a three-layer neural network using a back propagation learning algo-
rithm and is capable of learning the conjugation, in the past tense, of English
verbs - both regular and irregular.

With extensive training, the program acts to self-organise, through a series of
three distinct stages, into a form in which it can competently pronounce the past
tense of English words of which it has had no previous experience. However, it
has been observed by, Partridge and Rowe[38], that this pronunciation is limited
to a Southern accent and to develop a di�erent accent, it must be completely
re-trained. As a consequence, the original accent is lost. A shift in a high-level
property such as accent would much less dramatic if the model could develop a
more hierarchical structure. It could then adapt at level appropriate to accent
shift, reducing the need and time required for alteration at other levels.

This point plays an important role in the development of this project, and is
addressed more thoroughly in later sections.

3.3.3 Arti�cial Life Models

A more abstract realisation of the decentralist approach is arti�cial life[20]. Arti-
�cial life - A-life - is the study of man-made systems that exhibit characteristics
of natural living systems. Generally these are in the form of computer simulations
and in particular cellular automata. The biological phenomena modeled by A-life
include, for instance, the ocking of birds[25], the mutual evolution of predator
and prey[13], and the mechanisms of reproduction[14].

The underlying theme behind A-life is that simple local interactions between
the members of a set give rise to complex macroscopic phenomena, again via the
process of emergence. This is essentially the same idea as that of Minsky and it
is felt that many phenomena present in A-life simulations have relevance to the
mechanisms underlying psychological development.

The ocking behaviour of birds provides a good example of the emergence of
global phenomena from a collection of individuals in an A-Life simulation.
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3.3.4 The Flocking Behaviour of Birds

In his simulation of ocking behaviour, Craig Reynolds[25] starts by consider-
ing a large collection of autonomous but interacting objects - individuals in the
population which he term 'Boids'. Each Boid is programmed with three rules:

1. To maintain a minimum distance from other objects in the environment
including other Boids

2. To match velocities with other Boids in its neighbourhood.

3. To move towards the perceived centre of mass of the Boids in the neigh-
bourhood.

These rules constitute the genotype of the Boids system. When the simulation
is started, a collection of Boids released at a random points collect into a dy-
namic ock which ies around environmental obstacles in a very uid and natural
manner. Occasionally the ock break up in to sub-ocks which then re-organise
either to form separate ocks or to reunite into a single ock again. The ocking
behaviour itself constitutes a phenotype of the Boid system.

There are no rules applied at a global level to the system; the only rules stated
are in the form of each Boid's genotype and apply locally, forming individual
behaviour only. As such the system's phenotype is determined by not explicitly by
genotype, but by the reciprocal relation between each Boid and its environment.
Thus, the system's global form - phenotype - emerges from the collective actions
at a microscopic level.

Recalling the mechanism of epigenesis proposed by Piaget and Waddington,
it can be seen that A-life simulations develop in a way essentially the same as that
proposed in psychological development: Human phenotype - manifest as physical
form and psychological nature - is determined not purely by genetic content, but
by the interaction of genetically determined properties and the environment. This
relationship provides evidence that epigenetic assimilation is a plausible mecha-
nism of development and is also a possible way of introducing such development
in a computer simulation.

However, this simulation is limited in that its potential to produce emergent
structures is bounded. That is, ocking is the �nal state of the system, there is no
further emergent behaviour. This limitation has to be overcome for any simulation
of psychology to be successful.

3.3.5 Concluding Remarks

In conclusion, there are two main approaches to the simulation of cognitive pro-
cesses: the conventional, rule-based model and the local interaction-based con-
nectionist model. Although capable of producing structured output, the symbolic
approach has yet to produce a program innovative to any meaningful degree. The
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connectionist approach, on the other hand, is able to produce meaningful innova-
tion but is, at present, is limited to producing relatively un-structured high-level
properties.



Chapter 4

Unconventional AI Models

4.1 Introduction

Considering the constraints of contemporary symbolic and decentralised models of
AI, a number of alternative approaches have been proposed. In these, the problem
of unifying structured output with a degree of meaningful originality has been
addressed in an attempt to produce a more convincing AI. Two contrasting models
are presented in this chapter, the Emergent Memory Models and Modular Neural
Networks. Each presents an approach to producing a structured but exible
solution to a developmental problem.

4.2 The Work of Partridge and Rowe: Genesis

Genesis is a collection of programs with the common goal of producing creative

solutions to a problem, such as the card game Elusis[26]. The programs of which
genesis consists are described as 'Emergent Memory Models'. Each program
uses a collection of agents, small self-contained pieces of code, that cooperate to
construct representations. This method is similar to that of A-life discussed in the
previous section 3.3.3. However, the emergent behaviour produced is harnessed
to a greater extent than in A-life. This is achieved using a selection algorithm
to to remove any emergent structures which are of little use, leaving only useful
structures whose potential is enhanced.

4.2.1 Representational Fluidity in the Model

Partridge and Rowe[38] have suggested that an essential characteristic of any
computational model of an intelligent process is 'representational uidity'. This
requires the knowledge representations contained in a model to be related to as
many others as possible. Only small variations in the relative strength of as-
sociations and minimal variation in the nature of the relational associations are

20
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allowed. As a result, no representational combination can always dominate the
others, but a wide variety of combinations (higher level representations) will be
possible. Furthermore, the more primitive the basic elements of a knowledge rep-
resentation scheme, the more scope there will be in building up representations at
the problem level. As such, representational uidity implies (but does not require)
that the control of the build-up of high-level representations be governed by the
primitive elements themselves and not by some macroscopic master controller.

An example illustrating the role of representational uidity is the 'edge of
chaos' idea for cellular automata, proposed by Langton[47]. Here, the most com-
plex and creative structures are found to evolve from rules that essentially max-
imise the representational uidity of the system.

It is suggested that a computational model of a developmental process should
consist of a set of fundamental units of knowledge which interact in a way that is
dependent, to an extent, on a set of local rules. The interaction and co-operation
of these units in performing a task can form new knowledge units, the variety
and nature of which depend on the nature of the interactions, not on macroscopic
rules.

4.2.2 Credit Assignment in the Model

In order to form these new units in to a macroscopic structure, Partridge and
Rowe employ a credit assignment algorithm, in the form of the 'bucket-brigade'
algorithm, treated further in section 9.3.

The formation of a structured framework of emergent knowledge is of key
importance to a model of this type, if it is to address high-order, more abstract
problems. As such it is required that the model self-organise any emergent knowl-
edge into an accessible, structured form. A similar problem in the context of
arti�cial life has been addressed by the application of genetic algorithms[36] to
select structures most suited to a particular evolutionary environment. Any emer-
gent structures which are of no use are removed from the system, allowing the
remaining structures to thrive. By applying this selection principle to emergent
knowledge structures, only the most useful may be selected, which may in turn
interact to form further higher-order structures. A promising algorithm for this
task is the bucket-brigade algorithm, which attributes credit to any structures
used in a successful chain of events, and discredits those leading to an unsuc-
cessful chain. The solution to a problem is formed as a sequence of knowledge
structures, which may then be used in a further sequence to form higher-order
structures.

The self-organisation into hierarchies of higher-order structures is arguably the
most important feature of this model. It overcomes the limitations of conventional
decentralised models discussed in that it can address problems at a variety of
levels.
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4.3 Modular Neural Networks

Modular Neural Networks are a recent development in the �eld of neural networks.
They work on the principle of 'divide and conquer', a problem is split up by the
network into a collection of smaller sub-problems on which separate parts of the
network - 'modules' - operate. This allows each module to specialise for each
particular sub-problem.

4.3.1 Justi�cation of this Approach

The main justi�cation for the rationale of Modular Neural Networks is illustrated
by Haykin[39], who considers the approximation problem as addressed by con-
ventional neural networks. The approximation of a prescribed input-output may
be realised using two di�erent methods: a local method that captures the under-
lying local structure, such as radial-bias function networks, or a global method,
for example a back propagation perceptron, that captures the underlying global
structure of a mapping. The advantage of the former is its speed and ease of
learning, whilst the latter requires much less memory to operate.

The use of a modular architecture is an attempt to combine the advantages of
each of these two methods and capture the underlying structure of an input-output
mapping at an intermediate level of granularity.

Justi�cation of Modular Neural Networks can also be found in neurology,
outlined in section 2.2.3, that derive from observations of the architecture of the
vertebrate nervous system. However, because of the newness of this approach, it
is unclear how the limitations of the 'modularity of mind' stance will a�ect the
development of such systems in reality.

4.3.2 The Advantages of Modular Networks

The nature of a modular architecture o�ers a number of advantages over more
traditional neural networks:

1. Speed of Learning. If a complex function can be broken down into a set of
smaller problems, then a modular network has the ability to discover the
decomposition. Accordingly, it is able to learn a set of simpler functions
faster than a multi-layer perceptron can learn the starting function.

2. Data representation. The ability to spilt a complex task into smaller, more
manageable units allows for a greater understanding of the approach and
progress of the network in learning. By comparison, multi-layer networks
are very much black-box mechanisms.

3. Physical constraints. In the human brain, there is a limit to the number of
neurons that can be accommodated in the available space. Ballard[27] has
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hypothesised that to represent a space of dimension k requires Nk=Dk�1

neurons, where N is the number of just noticeable di�erences in each di-
mension of the space, and D is the diameter of the receptive �eld of each
neuron. To accommodate such large numbers in a �nite brain size, it is
suggested by Ballard that the brain adopts a modular structure, and that
the brain uses a coarse code to represent space. Likewise, it may be argued
for the arti�cial neurons in a neural network.

This last point raises some interesting thoughts. Clearly a multi-dimensional
space cannot be represented in full in a real or arti�cial system. However, im-
portant regions in that space may demand speci�c responses form a system. The
mapping of these regions to the desired module occurs during training. However,
as the complexity of the mapping increases, for instance stringing a sequence of
modules together to form a new skill, the size of the network must also increase.
A problem with this is that, in general, network size is determined a priori, a fact
which bounds the e�ectiveness of the network at tacking such problems.

This is similar to the problems faced by the analogous psychological theory
outlined in section 2.2.3, in that the predetermined architecture of modular sys-
tems bounds the potential for development.

4.4 Conclusion

A contrast is evident between the two approaches illustrated in this chapter is
their approach to the formation of emergent knowledge hierarchies.

The approach of Genesis is to form a sequence of structures into an emergent
higher-order structure, using the bucket-brigade algorithm. This forms a speci�c
solution, as a trajectory through phase space, to a problem from the many pos-
sible. A sequential hierarchy is produced, in which a problem may be addressed
at a number of levels in the sequence.

Modular Neural Networks attempt to produce an expert system in a limited,
pre-de�ned region of phase space - a module. These modules can be connected
in a hierarchical manner, a priori, to address problems at a number of levels in
parallel, rather than sequentially as in Genesis.

The combining of these two approaches may provide a mechanism capable
of producing the type of behaviour associated with psychological development.
Genesis is the more exible, spanning the whole of problem space to give a speci�c
solution. The modular approach forms an expert, a general solution, in a pre-
determined region of space. Using the dialectic argument characteristic of Piaget,
these two may be combined such that neural network modules may be associated
with Genesis-like emergent structures. The requirement to de�ne the function
of each module a priori is replaced by a system which allocates each module a
speci�c solution about which it must generalise.
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It is felt that this approach will also allow problems to be addressed at various
levels, utilising the hierarchical features of both models.



Chapter 5

Emergence and Hyperstructures

5.1 Introduction to the Concept of Emergence

Emergence describes the ability of certain many-bodied systems to produce fun-
damentally new structures by means of non-linear interactions these systems are
known as 'complex systems'. Several examples of emergent phenomena have been
covered in section 3.3.3.

The process of epigenetic assimilation described earlier, shares many impor-
tant features with emergent systems. Primarily, both produce fundamentally new
structures and behaviour through interactions with their environment. This indi-
cates that psychological development - which, according to scheme theory, involves
the creation of new structures of thought - may have its origin in the fundamental
laws of nature. An understanding of emergent behaviour is of great value when
attempting to understand its role in psychology. Such an understanding would
also enable the successful inclusion of such behaviour in a computer simulation.

Considering the conclusions of the previous section, the identi�cation of any
emergent structures formed by a computer simulation would go some way to
advancing the aims of the current project. This is because emergent structures
must be identi�ed by the system before any neural networks can be associated
with them.

5.2 Towards an Understanding of Emergence

Emergence has been interpreted in a number of ways[20, 28, 29], from the con-
sideration of various di�erent emergent phenomena. Three main interpretations
have precipitated:

� Computational Emergence

� Thermodynamic Emergence

25
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� Emergence relative to a Model

5.2.1 Computational Emergence

Computational emergence is the view that complex global forms can arise from
local computational interactions. The result is a 'bottom up' computational ap-
proach which is highly compatible with decentralist ideals outlined in section
3.3. The assumption is made that a systems microscopic properties determine
its macroscopic nature, but not vice-versa. An example of such behaviour is
turbulence in simulated uid ow[31]: a uid is modeled in a computer as a
cellular automaton. The uid is considered to be made from a collection of au-
tonomous cells, each obeying simple local rules. From these microscopic rules, the
macroscopic phenomena of turbulence is found to emerge in a variety of di�erent
situations.

One particular problem that arises from this approach is the lack of an ade-
quate de�nition of what an emergent computation is and how it is distinct from a
non-emergent computation. There is no criteria by which an arbitrary phenomena
may be considered emergent. This places a fundamental limit on the understand-
ing of emergent phenomena when considered from the 'computational emergence'
point of view.

5.2.2 Thermodynamic Emergence

Thermodynamic emergence arises from the consideration of self-organisation in
physical, dynamic systems and in particular how physical systems produce stable
and complex structures far from thermodynamic equilibrium. Such emergent
phenomena are considered equivalent to attractors in dynamical systems theory.
Many examples can be found in biology; the evolution of DNA from a 'primordial
soup' and the emergence of auto-catalytic chemical networks are but a few.

As yet, however, the question of how to connect thermodynamic theories of
structural stability with the appearance of new behaviour in the system is un-
known.

5.2.3 Emergence Relative to a Model

This describes emergence in terms of the deviation of the behaviour of a physical
system from an observers conception of it. Emergence, then, involves a change in
the relationship between the observer and the physical system under observation.

This approach is essentially how emergence in the previous two descriptions
has been determined in practice in the absence of a formal criteria. For example,
emergent phenomena in cellular automata are determined in practice by observing
physically the state at a given point in time and comparing it to later observations
of the system. Similarly, in thermodynamics, DNA is considered to be emergent
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simply by observing biological complexity and comparing it to observations of
substance akin to 'primordial soup'. Thus the 'emergence relative to a model'
model provides a working de�nition of emergent phenomena and is, for this reason,
considered to be the most valuable interpretation.

5.3 A Mathematical Formalisation of the 'Emer-

gence Relative to a Model' Model

A mathematical formalism has been proposed by Nils Baas[32, 33] in an attempt
to de�ne emergence from the 'emergence relative to a model' approach. This may
be summarised as follows:

Consider a set of primitive objects - '�rst-order structures' - denoted fS1
i g,

and an observational mechanism, Obs1, to 'evaluate, observe and describe the
structures fS1

i g'.
A general procedure is then required to construct a new set of structures -

second-order structures - fS2
j g from fS1

i g. To this end, the observation mechanism
is applied to the members of fS1

i g.
Using the properties derived from the observations, Obs1(fS1

i g), a set of in-
teractions Int1 may be de�ned. By subjecting members of fS1

i g to Int1, a new
structure is obtained:

S2 = R(S1
i ; Obs

1(fS1
i g); Int

1) (5.1)

where R is the construction process resulting from the interaction Int1 and S2

is a second order structure. Second order structures may be observed by a new
observational mechanismObs2 (it may be equal to, overlap, or disjoint fromObs1).
According to Baas, emergence may now be de�ned thus:

P is an emergent property of S2 i�

P 2 Obs2(fS2
i g)andP 62 Obs2(fS1

j g) (5.2)

5.4 Hyperstructures

The idea of emergence is used by Baas to form the theory of 'hyperstructures',
in which emergent phenomena self-organise into levels. Each successive level
emerges from the interactions of previous, introducing new interactions which in
turn help form further structures. Hyperstructures will form as long as new units,
with new properties, are being produced by the interactions of lower levels.

An example of hyperstructure formation is the emergence of biological molecules
from lower order molecules, cells from biological molecules and organisms from
cells. Thus a living organism may be considered to be a hyperstructure, formed
as a result of a wide range of di�erent interactions over successive levels.
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By introducing a selection algorithm - a macroscopic rule - to the emergent
process, it is possible to select only useful structures and thus control, to an extent,
the type of hyperstructure formed. In the above example a genetic algorithm is
applied by nature, selecting the organisms that are best able to survive in their
environment.

This is fundamentally similar to a number of theories in developmental psy-
chology, chiey Piaget's learning through stages, concerned with the acquisition
of intelligent behaviour[30]. Intelligent behaviour is acquired through a series of
stages, each stage forming the essential building blocks of subsequent stages. For
example, a child learns to walk through the stages of standing, assisted tottering,
tottering and �nally walking, each stage must be mastered before the child can
successfully attempt the next. This allows the coordination of domain-speci�c
structures into more general domains.

5.5 Conclusion

The phenomenon of emergence presents interesting parallels with psychological
theories discussed earlier. An understanding of the former may therefore shed
light on the behaviour of the latter. Such an understanding is, in part, presented
as hyperstructure theory, which gives a perspective on the nature of emergent
phenomena, in particular their ability to self-organise into hierarchies to produce
further emergence.

The formalisation of the mechanism of emergence presented provides a method
to enable the identi�cation and classi�cation of emergent structures. If this method
can be incorporated in a computational model, then it will allow the association
of neural network modules with emergent structures within a computer program.
This would provide a way of realising the the ideas presented in section 4.4.



Chapter 6

The Problem of Bipedal Motion

6.1 Why Consider Bipedal Motion?

The problem of acquiring the skills to allow a simple bipedal machine to walk has
been chosen to test the ideas discussed in this project.

This problem in particular has been chosen for a number of reasons:

� Learning to walk is an important skill to which a great deal of time is
devoted during a child's development.

� The means by which a child progresses in learning are easily observed and
as a result, are well documented.

� The process is found to progress through a series of stages, where each
stage must be mastered before progressing to further. For example before
learning to walk, a child must learning to �rst stand and to balance.

� Development occurs through a mixture of inherited skills and feedback from
the environment.

It can be seen that the process is congruent with the Piaget's notion of learning
by stages, and epigenesis.

6.2 AI models of the Development of Bipedal

Motion

Making a bipedal machine walk is a di�cult problem and making it learn to walk
is even more so. There have been a wide range of approaches to this problem
with varying degrees of success.

Considering the di�culty of this problem, coupled with newness of the ideas
proposed, it is felt that it is wise to �rst address an important sub-problem - that
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of rising and balancing. This may be compared with the inverse problem, which
presents the situation in which a mass at the end of a rigid, pivoted, rod must be
balanced in an inverted, unstable, position.

6.3 The Inverse Pendulum Problem

The upright standing position is is an unstable position for the human body to
be in and requires constant monitoring and adjustment of posture.

The inverse pendulum problem has been addressed by several AI models in
a variety of ways. The methods of more recent models include the use of fuzzy
logic[42], genetic algorithms[43] and neural networks[44]. They all invariably suc-
ceed in their primary objective - attaining a balanced position - but generally
form domain speci�c solutions. As a result, placing the pendulum in a situation
outside the training domain, for example giving the pivot a velocity, inevitably
requires retraining of the system, usually negating previously learned material1

This is the same limitation shown by Net-talk in section[21], when attempting to
change accents.

A more detailed look at one particular approach illustrates the limitations of
contemporary, decentralised approaches to this problem.

6.3.1 Control of an Inverse Pendulum Using Neural Net-

works

Saravanan[44] presents a multi-layer neural network to control an inverse pendu-
lum without a priori knowledge of its dynamics. The network is trained using an
evolutionary programming algorithm, a stochastic optimisation technique which
mimics the process of biological evolution. It acts as follows:

1. A population of N trial solutions is created, each taken as a pair of real
valued vectors, (~xi; ~�i); 8i 2 f1; :::; Ng, with their dimensions corresponding
to the number of weights and biases in the neural network.

2. Each weight vector is applied to the network and it's �tness - de�ned as the
number of time steps before the pendulum crashes - is recorded.

3. Each member generates one o�spring, (~x0i; ~�
0

i), as follows:

~x0i(j) = ~xi(j) + ~�i(j):N(0; 1)

~�0i(j) = ~�0i(j):e
(� 0:N(0;1)+�:N(0;1))

1This phenomena is called temporal crosstalk and is covered in section 6.3.1.
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where j is the jth component of the vectors, N(0; 1) is random noise in the
range (0,1) and � , � 0 are constants.

4. The �tness for each o�spring is calculated

5. The �tness of ten randomly selected trial solutions from the set of parent
and o�spring solutions are selected. Each of these are compared with the
�tness of the rest. If the randomly chosen solution performs worse in this
comparison then the solution to which it was compared received a 'win'.

6. The N solutions with the most wins are selected to be parents of the next
generation.

7. Proceed to step 1 until an acceptable solution is discovered.

This method is found to be capable of controlling an inverse pendulum. The
main points of interest are the model's ability to �rstly generalise and secondly
to adapt to new situations.

The conditions presented to the fully trained model to test its ability to gen-
eralise were presented as positional perturbations within the training domain.
Results showed that it is able to generalise to a reasonable degree, in that starting
from a random point within the training range, the network could balance the
pendulum on average half of the trials.

No direct data is given on the model's ability to adapt to new situations, that
is to perturbations outside the training domain. However inferences may be made
from the nature of the learning algorithm used.

An important drawback of a multi-layer neural network of this type is the
e�ect of temporal crosstalk. This term may be explained by consideration of the
neural network mentioned above: it is �rst trained on a a particular task and then
made to change to a di�erent one. Ideally, the network would learn the second
task without its performance being unnecessarily impaired with respect to the
�rst. However, Sutton[45], using the back propagation learning algorithm, has
shown that this is not the case and that the learning of the second task destroys
the original knowledge. The network may learn both tasks by training initially
using a mixture of the two although at the cost of taking much longer.

It has been suggested by Jacobs and Jordan [46] that this problem is a fea-
ture of all multi-layer perceptrons and they advocate the use of Modular Neural
Networks as a solution. The ability of such networks to partition parameter space
in to distance regions allows di�erent expert networks to learn a control law for
each region.

6.4 A Model of a Simple Bipedal Machine

To address the developmental problems faced by a child learning to walk, a simple
model of a bipedal machine is proposed. This takes the form of a computer
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Figure 6.1: The Physical Con�guration of the Bipedal Machine

simulation, written using Modula-2. The simulation places a stick-man �gure
in a two-dimensional Euclidean space. Important factors such as oor friction,
gravity, oor reaction force and conservation laws, are all present.

The construction of the machine is illustrated in 6.1.
The machine consists of three 'limbs' connected to a central pivot which rep-

resents two legs and a central body trunk. Masses are attached to the ends of
each limb, upon which gravity, oor friction and reaction act. The equations gov-
erning the machine's 'physical' evolution are a series of non-linear second-order
partial di�erential equations, the solution to which are approximated using Eulers
method.

The limbs are controlled using four muscle groups: two connect the body to
each leg (F1,F2), and two adjust each leg length (F3,F4). Control of the machine
is through the contraction and relaxation of these muscles. The size of the model is
of the order of magnitude of a real person, with simulated limb lengths of 1 metre
each. Muscle contractions are updated from a 'brain' module at a rate of the order
of milliseconds in subjective time (this is also of the same order of magnitude of
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human reaction rates). This provides a reasonably realistic simulation in which
to test the ideas discussed previously.

The change the machine's physical con�guration over time is displayed as
trajectories through phase space. The dimension of this space represents the
number of degrees of freedom of the machine. The total space in which the
machine operates is reduced to selected degrees of freedom which best illustrates
it's behaviour.



Chapter 7

Addressing the Problem of

Bipedal Motion

An arti�cial intelligence system has been programmed to act as the mental system
to control a bipedal machine. The aim is to provide a system that produces a
solution to the problem of learning to walk as an emergent, hierarchical structure.

The approach taken is based upon the conclusions of section 4.4. Here it was
proposed that a mixture of contemporary methods would be the way forward. The
problem is addressed initially by an Emergent Memory Model, capable of span-
ning phase space to produce a exible, speci�c solution to a given sub-problem
in the from of sequence of structures - schemes. This solution is then identi�ed
by the system and associated with a neural network module to act as an expert,
capable of generalising about the solution. This generalisation occurs in a re-
stricted subspace of relevance. From this approach, it is felt that a exible but
hierarchically structured solution will result.

To realise these proposals, it is necessary to bring together important features
of both scheme and hyperstructure theory. Schemes are important in that they are
legitimate, exible psychological objects and may be considered to be formed from
neural network modules. The formalisation of emergence given in hyperstructure
theory provides a potential means by which the system can identify any emergent
structures in order to develop them further.

7.1 Representing Information in the System

The systems representation of its physical con�guration and its environment are
modeled as points in a multi-dimensional phase-space which spans the machines'
physical degrees of freedom. This gives the system the ability to represent, and
thus address, any physical situation presented to it.

Although this approach is chosen on practical grounds, there is evidence[35] to
suggest that spatial representations have a vectorial form in the nervous system.
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7.2 The Role of Schemes in the AI System

As outlined in section 2.3, the concept of a scheme may be used as a representation
of a psychological structure, controlling the regular structure of a physical action.
Schemes may be produced in practice by mapping a set of sequential, controlled
muscle contractions to a set of labels in the AI system's memory. Each scheme
performs a unique physical action by repeating a particular set of muscle actions
when activated.

By applying the principles of hyperstructure and scheme theory, it is felt that
a solution to the problem of learning to walk can be produced as an emergent
hyperstructure, constructed from scheme units. This may be achieved by a pro-
cess similar to that of epigenesis: The starting set of schemes may be considered
analogous to the machine's genotype - a set of pre-programmed instructions. Any
development of the machines mental abilities - the formation of it's phenotype
- is derived from the interaction of the pre-programmed schemes with the envi-
ronment. From these interactions, new structures may be formed, as emergent,
second and higher order schemes. This may be achieved in a way similar to the
accommodation process in scheme theory, treated with in more detail in the next
section.

If these new schemes can be identi�ed and added to the set of �rst order
schemes, then further interactions may lead to further emergence and yet higher-
order structures produced. The result is the formation of a hyperstructure of new
schemes, each level based upon the previous and each expanding the machines
skill repertoire. These new schemes have new properties and, unlike modules in
modular mind theory, are not programmed a priori to operate in a given domain.

Once identi�ed as distinct, these emergent schemes may be associated with a
neural network, as mentioned above. This will allow the broadening of the scheme
from a speci�c solution to a more general one.

7.3 Motivation, the Driving Force of Develop-

ment

The system acts according to it's position with respect to a 'motivating con�g-
uration', which represents the ideal state for the machine to be in. The use of
motivation is consistent with scheme theory, which uses the idea in the activation
of schemes as part of a learning process.

Motivation, represented as a point within the models multi-dimensional phase
space, acts to attract the machine to a certain con�guration. This form is equiv-
alent to extrinsic motivation as described by Eckblad[19], in that it represents an
external, environmental driving force. This is a crude representation analogous
to, for example, some desired object being presented to a child: the child assess
its position with the object and adjusts as best as it is able to reach it.
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In practice, the motivating point corresponds to the upright balanced position.
The machine is initially con�gured to a bent over, standing position. This con-
stitutes a variation on the inverse pendulum problem, as the system must act to
get the machine from bent over to upright. Attaining and maintaining an upright
position is an essential part of the process of learning to walk.

7.4 The Nature of Scheme Development

In practice, scheme development occurs by initially endowing the mental system
with an innate knowledge of how its body works. This is described as a basis set
of simple schemes which map a set of muscle contractions to their e�ects on the
body in a given context. This set constitutes the fundamental building blocks of
further mental structures and their analogous physical skills. From hyperstructure
theory, we may consider this basis set to be a collection of �rst order structures.

The basis set is produced by starting the machine in a standing con�guration
and applying a small force to each muscle in turn and all their combinations.
The e�ects of each muscle contraction upon the body are recorded in a variable
array along with the context - the body's con�guration under which the force was
applied - and the nature of the applied force. Each of these arrays represents a
member of the basis scheme set.

When fully initialised and running, the system consists essentially of three
units:

� The selection of the scheme to activate.

� The interaction of the chosen scheme and the environment.

� The new scheme construction, when a string of activated schemes have a
successful outcome.

Each of these stages is related to the processes of both psychological develop-
ment and hyperstructure formation, highlighted in the following sections. These
relations are important since they are of use in later sections.

7.4.1 The Mechanism of Scheme Selection

The selection of a scheme to activate is an essential feature. The use of a basis
scheme set restricts the search space to only twelve schemes, simplifying the search
process.

In practice, the system considers it's current state (it's position in phase space),
it's desired state (it's motivation point in phase space) and the means by which
it may progress from it's current state (it's basis scheme set).

From this information, a scheme must be selected which has been found to best
move the system through phase space towards the motivating point. This process
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is similar to both the assimilation process in scheme theory and the observation -
Obs - mechanism in hyperstructure theory. A person is likewise attempts to �nd
the best action for the situation by assimilating its surroundings.

7.4.2 The Mechanism of Scheme Interaction

Once selected, a scheme becomes activated and interacts with the environment in
the form of a series of muscle actions, in an attempt to move the system's state
towards the motivating point. Due to non-linearity of the system's physics, this
interaction may act, if the scheme is applied out of context, to shape the scheme
into a new form and take the system away from where it wants to go.

In scheme theory, if the result of a scheme activation do not match those
expected then the person will go into a state of disequilibrium. In disequilibrium,
a person attempts to construct a new scheme to deal with the new situation in
hand.

The interaction between an activated scheme and the environment is equivalent
to the interaction - Int - mechanism in hyperstructure theory.

7.4.3 The Mechanism of New Scheme Formation

The system goes into disequilibrium if a new situation is encountered, one in
which the system has not been before or in which previously chosen schemes were
found to fail. Scheme failure is de�ned, at present, as when a scheme that takes
the system away from the motivating point. In this situation a new, successful
scheme must be constructed. This is achieved using a building block process in
which a series of smaller scheme units are strung together to make a new scheme.

Correctly assigning credit to the building blocks which produce a working
new scheme is of key importance to the successful outcome of the construction
process and has been addressed in a number of ways. It is essentially the same
as the accommodation process in scheme theory. In this, an unsuccessful scheme
is altered and adapted until a new, successful scheme is produced.

From the point of view of hyperstructure theory, this process can be considered
analogous to the construction function, R, given in equation 5.3.



Chapter 8

Preliminary Work

8.1 Introduction to the Ideas Behind the First

Model

To test the ideas presented so far, a simple model has been produced to manipu-
late the schemes mentioned. In this model, schemes are selected by choosing the
scheme n, say, which most e�ectively spans the distance in phase space between
the body's current state and it's desired state, using the formula:

Scheme chosen = Min(n) j ( ~M � ~C)� ~�S(n) j

where, ~M is the motivating state, ~C is the current system state and ~�S(n) is
the vector distance spanned by scheme n. This is a simple selection algorithm
with no consideration being given to past experience in a given state.

Once chosen, a scheme is activated and acts upon the machine via its corre-
sponding muscle action. The resulting state is judged to see if it is successful,
using the formula:

(j ~M � ~I j � j ~M � ~F j) > 0, Scheme is successful

where ~M is the motivating state, ~I is the machine's state before the scheme acti-
vation and ~F is the machine's state after the scheme activation. If successful then
the scheme is coordinated into a larger scheme structure otherwise the process of
scheme selection repeats. This acts as a crude approximation to the accommoda-
tion process. If the system falls over as a result of its action, then it is returned
to its original position, with new scheme structures intact. A owchart of this
program is given in �gure 8.1:
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part of a newly formed scheme?

scheme to the end of  the
new scheme creation.

Start constructing a new

part of a newly formed scheme?

End the new scheme.

Yes No

No

Yes

Generate a basis set of schemes to act as basic units of motion.

If physical system crashes then reset it’s position to the starting state.

Find a scheme which best gets the system to the motivational state.

Activate the chosen scheme.

Did the scheme move the system closer to the desired state?

NoYes

Was the previous scheme activated Was the previous scheme activated

Add the current

scheme using the current

scheme as the first.

Figure 8.1: Flowchart Representation of the Preliminary Program
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8.2 Results and Conclusion

Using this method, the model was unable to reach a balanced position. This has
been attributed to two factors inherent in the model:

Firstly, the means by which a scheme is chosen takes no account of the context
- i.e the position in phase space - in which the scheme was created. As such,
schemes may appear to be the best choice when considered out of context, but
when applied may act in unexpected ways. As a result, the selection process
becomes unreliable with useful schemes becoming replaced with schemes which
are outwardly attractive, but have essentially useless properties in that context.

Secondly, once a bad scheme is chosen, it cannot be removed easily. For
example, if a successful scheme is replaced by an unsuccessful one, the unsuccessful
scheme will still be judged to be better than the original by the selection algorithm.



Chapter 9

Program 1: Linear Context

Considering the failings of the model presented in the previous chapter, it is felt
that two important features are missing:

� Consideration of the context in which a scheme is formed.

� A form of credit assignment to schemes depending on their performance.

9.1 Association of a Context to Each Scheme

One way to associate a context to each scheme is to index each activated scheme
with a unique label - a context - which relates it to a unique point in phase space.
This allows the consideration of the suitability of each scheme for a speci�c task,
given its past performance in that context.

9.2 Assigning Credit to Schemes

Credit may be assigned to schemes by associating each scheme in each context a
variable corresponding to it's suitability of activation - it's favour. The value of
the favour depends on the individual schemes performance and the performance
of the schemes to which it leads. The reasoning behind this is that an activated
scheme may produce desirable behaviour in the short term, but may inevitably
lead to an undesirable situation later on. Thus credit must be assigned not only on
initial scheme success, but on the success of subsequent schemes. An algorithm
to achieve this can be found in the form of the bucket-brigade algorithm, as
demonstrated by Partridge and Rowe in section 4.
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9.3 The Bucket Brigade Algorithm

The Bucket Brigade algorithm, as described by Holland[41] and Goldberg[36], is
designed to assign credit to a sequence of operations. The di�culty, as mentioned
above, is to credit operations far down a sequence from an outcome to which they
contribute. To this end, each operation1 is assigned a variable - it's favour - which
is adjusted by the actions of the Bucket Brigade algorithm.

The favour of an arbitrary operation at a time t+1, Si(t + 1) is given by the
equation:

Si(t+ 1) = Si(t)� Pi(t)� Ti(t) +Ri(t) (9.1)

where Ri(t) is an increase in favour if a later scheme is deemed successful, Ti(t)
is a general reduction in favour to 'prevent free-loading' and Pi(t) is a reduction
in favour when an operation is initially selected. The resulting action produces a
chain of operations linked by high favour ratings.

This algorithm needs some adjustment to complement the hierarchal nature of
operation (scheme) formation of the proposed program. This adjustment replaces
the two favour reduction terms with a term that is invariant with regards to the
order of scheme hierarchy.

9.4 Justi�cation of the Use of the Bucket Brigade

Algorithm

It has been shown, through extensive simulation[37] that the bucket brigade al-
gorithm does work in practice. The use of the bucket brigade algorithm in the
proposed simulation can be justi�ed on a number of grounds:

Hebb[9] proposed a method of human learning at the cellular level which
results from the strengthening of the connections between frequently �red neuron
cells. This mechanism forms a concise rule based on neurobiological evidence. It
may be expanded and rephrased as a two stage rule:

� If two neurons on either side of a synapse (connection) are activated simul-
taneously then the strength of that synapse is selectively increased.

� If two neurons on either side of a synapse are activated asynchronously, then
that synapse is selectively weakened or eliminated.

The bucket brigade algorithm is consistent with this method of learning, which
learns through the strengthening or atrophy of connections between schemes. Fur-
ther evidence of the associative nature of learning at the level of the neuron is given
by Gallistel[35].

1In Holland's case each operation is represented as a classi�er - a string of simple rules which
guide a system's behaviour.
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9.5 Program Structure

Each distinct situation the system has been is stored in memory as a series of
steps from the starting con�guration. To each of these steps is associated a set of
variables corresponding to the 'favour' of each member of the basis scheme set in
that context.

The scheme with the highest favour is selected, the value being updated reg-
ularly via the Bucket Brigade algorithm given in 9.5.3. When assimilating, the
system checks to see if it's situation it is in matches that of any known context,
where each context in memory represents a unique situation. Context is remem-
bered simply as a series of steps form the starting point. If this is true then the
situation is assimilated, otherwise it must be accommodated.

Accommodation occurs in two ways: if assimilation fails because the situation
the system is in is unknown, then accommodation occurs simply by adding a
new step to the end of the context series with a standard set of scheme favour
values. If failure is due to the malfunction of an activated scheme in a known
context, then accommodation occurs by changing favour values of the scheme and
its predecessors, via the Bucket Brigade algorithm. A owchart diagram of the
program is given in �gure 9.1.

9.5.1 The Consequence of a Successful Scheme Activation

If a new scheme is activated and succeeds in moving the system towards the
motivating point, then it is added to the end of a chain of previously successful
schemes via an increase in its favour. Each time a new scheme is added to this
chain, the favour of rest of the chain is increased by a constant amount. If the
chain eventually succeeds in attaining the goal i.e. reaching the motivating point,
then it is formed into a new scheme. This new, higher-order scheme may then be
used to form further chains and so on.

Due to the hierarchical nature of the structures produced by the system, favour
changes to a high-order scheme structure will a�ect the lower-order schemes from
which it is formed. On the assumption that a high-order scheme is formed from a
set of one-degree-lower schemes activated more than once, n times say, then each
time a scheme of order m is activated, the favour of a typical constituent �rst-
order scheme will be adjusted, raised by a constant amount, of the order of nm

times. As a result, the favour of schemes in an m order structure will increase by
an order of m whenever that structure is involved in the construction of further,
successful structures.
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9.5.2 The Consequence of an Unsuccessful Scheme Acti-

vation

If a particular scheme in a chain is found to be unsuccessful, i.e. if it takes the
system away from its motivating point, then its favour is reduced, discouraging
its further activation at that point. If new schemes activated at that same point
also fail, then it is desirable to change the scheme structure further back down
the scheme chain. To allow this problem to be addressed at each level in the
scheme hierarchy, the favour values of the schemes in the chain must be reduced
in the same manner as they were built up, that is, as an exponential function of
hyperstructure order. This is achieved by decreasing favour values by an amount
�F . The value of �F is given by the equation:

�F = ek:f(n) (9.2)

where f(n) is a function - denoted the frustration - of each context, n, in a scheme
series and k is a constant. The value of frustration at a particular context step
in the series increases with each successive failure of assimilation at that point.
When assimilation �nally does occur, the frustration returns to 0, the default
value. Thus a particular problem, posed as a di�cult point in phase space to
assimilate, will be addressed at points of increasing hyperstructure order approx-
imated as an exponential function of scheme number. In practice, when faced
with a di�cult problem a scheme series will change at exponentially increasing
points along its length, i.e at points increasingly distant from the problem.

9.5.3 Formal De�nition of the Bucket Brigade Algorithm

The Bucket Brigade algorithm may be written as follows: If the last scheme
x(m); 8m 2 fintegersg in a new series of schemes2 x(n); 8n 2 f1; :::; mg is suc-
cessful, then the scheme favours associated with the series F (x(n)) are updated
according to the equation:

F (x(n)) = F (x(n)) + 10

and f(x(m)), the frustration function, is updated according to:

f(x(m)) = 0

Otherwise, scheme favours are updated according to the equation:

F (x(n)) = F (x(n))� ek:f(x(m))

also, f(m), is updated according to:

f(m) = f(m) + 1

2A Bucket Brigade series as opposed a context series.
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Generate a basis set of schemes to act as basic units of motion.

Yes No

leading up to the last scheme by leading up to the last scheme by

If previous attempt in present context

an amount that increases exponentially  with n

which favour was decreased, to 1.

failed then reset the exponential factor n, by
Reset body configuration and increase exponent n

a constant amount. Increase context step by 1.

No

Yes

Compare the present context with those in memory.

Find scheme which has the highest favour rating in the present context

Is system in a known context?

Create a new context by adding a further step
to the context series.

Did the scheme move the system closer to the desired state?

Activate chosen scheme and update the present context.

Increase the favour of all the schemes in the series. Decrease the favour of all the scheme in the seriess

if a satisfactory scheme is not found in that context.

in last context step. Reset context to the starting conditions.

Figure 9.1: Flowchart Representation of the First Program.
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9.6 Understanding the Layout of Results Pre-

sented

The results taken from program 1 are presented as a series of frames taken at
various stages of development. Each scheme path is presented as a trajectory in
a phase-space restricted to the Cartesian machine 'head' velocities and vertical
position degrees of freedom. Each frame shows the qualitative nature of the scheme
developed in which the trajectory of the scheme at that time is plotted along with
the previous trajectories from which it developed. Thus, following the frame
sequence of the results (the correct method shown in �gure 9.2) illustrates how a
scheme develops over time.

The last frame in the sequence - frame 9 - shows the �nal scheme structure in
it's �nal form.
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Frame 1 Frame 2 Frame 3

Frame 4 Frame 5 Frame 6

Frame 7 Frame 8 Frame 9

START

END FINAL SCHEME

STRUCTURE

Figure 9.2: Diagram Showing How to Successfully Read the Results Given.
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9.7 Results From Program 1

Results are presented in �gure 9.3 as a collection of frames showing various stages
of scheme development.

The value of k was varied and was found, as expected, to control the rate at
which the Bucket Brigade algorithm works its way back along the scheme series.
It may be possible to optimise the time in which a solution is found by way of
altering the value of k. However the optimal value is almost certainly fragile.
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Figure 9.3: A Series of Plots of Scheme Structure for Program 1 at Various Stages
in Development.
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9.8 Discussion of the Results From Program 1

The program was successful in that it found a means by which to balance the
inverse pendulum represented by it's head. The progress of the system can be
seen in the results. Firstly, the system rises much to fast and begins to topple
over immediately (frame 1). With time, this rising is slowed to a more controlled
rate and by frame 7 the rate of rising is so slow that the system passes close to the
motivating point. Further frames show the system attempting to improve further,
resulting in an oscillation about the point. With further training, the duration
of this oscillation increases, although the system always loses balance eventually.
Does this behaviour constitute the formation of an emergent structure?

9.8.1 A Mathematical Analysis of the Results

By applying hyperstructure theory to the results obtained, it is possible to identify
and classify any emergent structures produced. This is an important process as
future development of the program requires it to identify emergent structures
itself. Let the set of �rst order structures - the initial basis scheme set - be
denoted by:

fS1
i1
g

An observation mechanism - Obs1 - is chosen to determine the properties of the
set of �rst order structures fS1

i1
g.

The observation mechanism acts upon the set of scheme favours in a series
to determine the best schemes to take the system from the origin towards the
motivating point:

Obs1(fS1
i1
g)

Once selected, each scheme is activated and interacts with the physical envi-
ronment, represented by the interaction mechanism:

Int1

This interaction results in the alteration of the set of scheme favour values. This
occurs through the action of the Bucket Brigade algorithm and is denoted by the
function R producing a new set of �rst order structures:

S1
i2
= R(S1

i1
; Obs1; Int1)

As this process repeats, a new observation mechanism is applied - Obs2 - which
is used to observe any second order structures present.
Obs2 may be de�ned as a function to 'determine the schemes that will reliably
take the system directly from the starting point to a region within one scheme
activation of the motivating point'.
If P is a property of subsequent scheme structures such that:

P 2 Obs2(fS1
in
g); butP 62 Obs2(fS1

im
g)
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then
fS1

in
g � S2 (9.3)

where S2 is a second order structure of which P is an emergent property. In this
case, the property P may be interpreted as the ability to take the system to an
upright position - i.e. to solve the inverse pendulum problem for a �nite time.
The initial basis set of schemes and their initial favours cannot move the system
to the upright position without failing at some stage, as demonstrated by earlier
stages of the results. However, after su�cient training, the schemes are shown
to have acquired this property. Thus equation 9.3 holds for a value of n of 255
attempts, and the second-order scheme structure, S2

1 , may interpreted as a scheme
to control rising motion. If the �rst scheme in the second-order scheme structure
is activated, necessarily starting from the initial con�guration, then the system
will inevitably be taken to the upright position.

This shows that the solution to the above variation on the inverse pendulum
problem may be considered to be an emergent structure.

9.9 Conclusion

It may be concluded that the inclusion of a �xed frame of reference - a context
- for the scheme sequence combined with the use of the Bucket Brigade credit
allocation algorithm produces successful results. As shown above, the application
of hyperstructure theory makes clear the solution to the inverse pendulum problem
is formed as an emergent, second order structure.

However, the solution does not provide a stable solution over time, as the
system inevitably topples over at some point. This is due to the context being
sequential in nature, the sequence inevitably comes to an end.

The solution is speci�c to the initial starting position as this is used as the
only external reference point. If the system is started from a new, di�erent
point, it's behaviour cannot be relied on to �nd the target point without further
training. This behaviour is comparable with that of neural network solutions
to such problems, which require retraining when the system is put into a novel
situation. At present, each scheme favour is indexed from a one-dimensional
sequence, itself indexed in space from the initial starting con�guration. As such,
if a scheme favour in the sequence is changed, via the action of the Bucket Brigade
algorithm then all subsequent schemes will act out of context. This has the e�ect
of destroying knowledge built up in the old context which may have been of
use later. To produce a more robust solution, each scheme in the scheme series
should be indexed to the region in space in which it is activated. This will form
a bijective mapping between the favour of a scheme and the region in space in
which the scheme operates, preserving all useful knowledge built up.

This will potentially allow the production of a wider range of emergent struc-
tures. It is an essential part of hyperstructure theory that a number of emergent,
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second-order structures are produced in order to form still higher-order structures.
In the context of learning to walk, the machine must learn to balance and shift
weight to one leg before apply both to balance on one leg. The skill of balancing
on one leg can thus be conceived as being an emergent phenomenon constructed
from the interaction of balancing and weight shifting with the environment.



Chapter 10

Program 2: Multidimensional

Context

As outlined in the previous chapter, a sequential method of referencing schemes
is ine�cient: When an alteration (accommodation) takes place at some point in
a scheme context chain, all subsequent information in the series is negated.

It is felt that a more sophisticated, and realistic, approach to the process of
scheme referencing is necessary in order to allow a system to make a more robust
association between schemes and the situation in which they are successful. As a
result, a much larger proportion of useful knowledge would be retained.

To achieve this, each scheme selected is no longer associated with a one-
dimensional context, based upon it's position in a series, but with the region in
the phase space representing the system's state at that time. This matches each
scheme with the (practically) unique physical situation in which it was selected.

In practice, the system checks to see if it's position in phase-space lies within
a small radius around each of the contexts it knows i.e. contexts with which it
has associated a scheme suitable for activation. If this is so, then the situation
is assimilated, otherwise it must be accommodated. Assimilation causes afore-
mentioned scheme to be activated, moving the system through phase space. In
keeping with the dialectic thinking of Piaget, a more sophisticated accommoda-
tion process has been produced in tandem with assimilation. Accommodation
occurs in two ways: if assimilation fails because the situation it is in is unknown,
then the context is added to memory with a standard set of scheme favour values,
which it then assimilates. If assimilation fails because the scheme activated fails
to move the system towards the motivating point, then accommodation is made
by the alteration of the schemes favour value via the Bucket Brigade algorithm.
The second process is the same as that described in the previous section, where
the sequence of activated schemes is remembered and credit altered throughout
the series according to the success of further schemes.

A owchart diagram of the program is given in �gure 10.1.
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Generate a basis set of schemes to act as basic units of motion.

Yes No

Increase the favour of all schemes

leading up to the last scheme by

a constant amount.

Decrease the favour of all schemes

leading up to the last scheme by

an amount that increases exponentially

if a satisfactory scheme is not found.

If previous attempt in present context

failed then reset the exponential factor by

which favour was decreased.

Reset body configuration and increase exponent.

Did it move the system closer to the desired state?

Activate chosen scheme.

Yes
Create a new context.

NoIs system in a known context?

Compare position in phase space with known contexts.

Find scheme which has the highest favour rating in the context.

Figure 10.1: Flowchart Representation of the Second Program
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10.1 Justi�cation of this Approach

To justify this approach it is necessary to consider it from a variety of viewpoints.

Considering Neurology

Electrical methods, newly developed for investigating neurobiology, have shown
certain nerve cells to have very speci�c tasks in perception systems. One example,
in a study of the visual system of cats, has shown that certain neurons react
speci�cally to the presence of inclined features in one particular part of the �eld
of vision[51]. Other studies in biology have shown that there is a lateral interaction
mechanism which depends on the distance between neurons receiving signals from
receptor cells[52]. Together these acts to cluster neurons which perform similar
functions together spatially1.

This indicates that the human brain copes with di�erent situations using dif-
ferent clusters of neurons, where physically close neuron clusters self-organise to
deal with tasks that are physically close in the real world.

This evidence complements the approach of associating schemes with the re-
gion in phase space in which they operate. This may be considered analogous
with the association of neuron clusters with the circumstances - position in phase
space - in which they are activated.

Considering Psychology

The approach bears resemblance, although highly simpli�ed, to the early part of
the sensorimotoric stage of development as described by Piaget: starting with a
set of basic reex actions, a baby progresses through six sub-stages sequentially,
each one an essential epistemological preparation for those that follow. The �rst
sub-stage involves the spontaneous activation of various reex actions, such as
crying, grasping and moving the eyes and head. It consists of interacting sensory
and motor processes that manifest the same general structure on each occasion
of use. This is broadly analogous to the training stage of the system in which a
set of muscle actions are combined to form a fully di�erentiated scheme set.

The sub-stage two baby continues to exercise many of its reexes and en-
large their scope. In general these exercises act to gradually form a coordination
between the baby's perceptual and motor systems.

Although driven by an extrinsic motivating force, the arti�cial system is also
learning to coordinate what it perceives in phase space and what it does via its
selection of scheme. Thus the linking of the point in phase space to the scheme
chosen is in general consistent with psychological theory.

1For further experimental evidence supporting this view see[35].
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10.2 Results From Program 2

Results are presented in �gure 10.2 as a collection of frames showing various stages
of scheme development. As in section 9.7, results are presented as trajectories
in a phase space restricted to the Cartesian head velocities and vertical position
degrees of freedom. A series of eight of these plots is given at various stages of
development, showing the changes in the form of the scheme over time. The last
frame in the sequence shows the �nal scheme structure.
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Structure Of The Final Scheme After 94 Attempts
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Figure 10.2: Series of Plots of Scheme Structure for Program 2 at Various Stages
in Development
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10.3 Discussion of the Results From Program 2

Although both successful, the most striking di�erence between these results and
those from the previous programs is that the present system is able to balance
after much fewer failed attempts. This is attributed to the di�erent way in which
context is handled and in particular the more complete description of context
inherent in the second model.

In the �rst model, the memory of past events (the success of scheme activa-
tions) is referenced by the number of steps (scheme activations) taken from the
starting position. Due to the multi-dimensional nature of events, the model's
memory retains information which may not be of future use and acts to bias fu-
ture decisions. For example, if the Bucket Brigade algorithm changes a scheme
favour in the middle of a chain, schemes beyond that point are made irrelevant
but are still present.

It is relatively easy to remove this problem in this particular situation; once a
di�erent scheme is activated due to the action of the credit assignment algorithm,
then the memory of events beyond that step can be reset to their default values.
This makes further choice of schemes unbiased with respect to past choices at the
equivalent stage. However, in doing this, information which could under other
circumstances be of use later, may be destroyed, particularly if perturbations to
an established and homogeneous scheme are applied early in it's activation.

A further di�erence is that the skill of balancing is now stable in time. This
contrasts to the previous model which eventually toppled.

Clearly, referencing the favour of each scheme to its position of activation in
phase space is a useful technique, increasing the model's functional e�ciency by
retaining a greater quantity of useful information.

10.3.1 A Mathematical Analysis of the Results

By applying hyperstructure theory to the results obtained, it is possible to identify
and classify any emergent structures produced. Let the set of �rst order structures
- the initial basis scheme set - be denoted by:

fS1
i1
g

where each of S1
i1
is a member of the set of all schemes and their favours.

An observation mechanism - Obs1 - is chosen to determine the properties of
the set of �rst order structures fS1

i1
g

The observation mechanism acts upon the set of scheme favours in phase
space to determine the best schemes to take the system from the origin towards
the motivating point:

Obs1(fS1
i1
g)
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Once selected, each scheme is activated and interacts with the physical environ-
ment, represented by the interaction mechanism:

Int1

This interaction results in the alteration of the set of scheme favour values. This
occurs through the action of the Bucket Brigade algorithm and is denoted by the
function R producing a new set of �rst order structures:

S1
i2
= R(fS1

i1
g; Obs1; Int1) (10.1)

As this process repeats, a new observation mechanism is also applied - Obs21 -
which is used to observe any second order structures present.
Obs21 may be de�ned as a function to 'determine the schemes that will reliably
take the system directly from a known point in space to the motivating point'.
If P is a property of subsequent scheme structures such that:

P 2 Obs21(fS
1
in
g); butP 62 Obs21(fS

1
i1
g) (10.2)

then
fS1

in
g � S2

1 (10.3)

where S2
1 is a second order structure of which P is an emergent property. In

this case, the property P may be interpreted as the ability for the machine to rise
to an upright position. The initial basis set of schemes and their initial favours
cannot move the system to the upright position without failing at some stage,
shown by the earlier stages of the results. However, after su�cient training,
results show that the system has acquired this property. Thus equation 10.2
holds, and the second-order scheme structure, S2

1 , may interpreted as a scheme to
control the rising motion. If the �rst scheme in the second-order scheme structure
is activated, necessarily from the starting from the initial con�guration, then the
system will inevitably be taken to the upright position.

A third Observation mechanism may be applied: Obs22.
Obs22 may be de�ned as a function to 'determine the schemes that act directly
to keep the system perpetually within one scheme activation of the motivation
point'.
The property P may be interpreted as the ability to balance. Considering the
initial basis set, results indicate that they cannot obey this criteria. This can
be seen by the initial scheme failure, i.e. toppling over of the system, near the
motivating point in the early frames of the results. However, again after su�cient
training, the system is able to balance and the resulting emergent schemes do
in fact exhibit the property P . This implies that equation 10.2 holds for the
observation mechanism Obs22 and that the second second-order scheme structure,
S2
2 , may be interpreted as the scheme which controls balance.
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10.4 Conclusion

Referencing context as a position in phase space produces better results than the
sequential context used in the previous section.

The results produced were more robust to change, giving more rapid learning,
and formed a stable solution in time to the problem of balancing. This stable
solution results from the formation a second emergent scheme structure in addition
to the 'rising' scheme formed in both programs. This scheme controls balancing
and is stable in time, using a context that is referenced by the system's position
in phase space.

This shows that a solution to the above problem in the form of two, second-
order, emergent structures. This is an important development considering the
single emergent structure produced in the previous section.

These new structures have the potential to be the building blocks for yet higher
order emergent structures. For example, the system can now generate a scheme
which can control balance, (the use of which will form an essential building block
of an emergent model of bipedal motion.

The ability to make generalisations is of key importance to the production
of higher order structures. To walk, the balancing scheme must generalise with
respect to the context in which it is activated. For instance the machine must still
balance equally well with one leg swinging as it does when both legs are �rmly
on the oor. This is not yet possible with the system produced so far, which is
restricted to speci�c solutions to initial conditions. The task of introducing an
ability to generalise is discussed in the following chapter.

The new, emergent schemes are referenced to distinct regions of space and
operate in a way that is conceptually similar to the operation of 'modules' in Mod-
ular Neural Networks, and the ideas of 'modularity of mind' theories, discussed
in sections 4.3 and 2.2.3. However there are a number of important di�erences.

Firstly, the schemes - 'modules' - in the present model are emergent whereas
each module of Modular Neural Networks is programmed a priori. As a result,
there is an added dimension of exibility present in the current system.

Secondly, because of the large number of neurons needed to address large
problem spaces, neural network modules must be restricted to small regions of
problem space. This contrasts with the approach used here, in that schemes
address the whole of problem space, building a speci�c solution through a process
of trial and error.

Finally, schemes produce speci�c solutions to problems from given initial con-
ditions. This contrasts with expert systems produced in a neural network module
which, to an extent, generalise solutions to new situations presented in it's sub-
space.



Chapter 11

Future Research and Conclusion

11.1 Concluding remarks

A simple system to model a developmental process has been successfully produced.
It is consistent with accepted psychological and neurological theory, and has been
observed to develop a two-stage solution to the problem of balancing an inverse
pendulum. Thus an essential factor in the process of learning to walk has been
learnt, in a way that provides new skills that are essential to further development
- the ability to rise and balance.

Development occurs in the system through an epigenetic process of system-
environment interaction. This leads to the formation of emergent structures.
These structures have been classi�ed according to their observed function using
hyperstructure theory notation. This classi�cation groups the structures accord-
ing to their function and the system can be observed to develop structures that
deal with particular task, for example balancing and rising. These new struc-
tures may be coordinated into yet further structures and so on giving subsequent
solutions a hierarchal structure.

The structures produced are similar to the modules discussed in sections 4.3
and 2.2.3. Important di�erences exist, which are highlighted in table 11.1 below.
It is felt that these two approaches can be brought together to enable the schemes

Scheme Module

Unable to generalise Can generalise to an extent
Develops in all space Develops in a small subspace

Flexible structures produced Rigid structures produced

Table 11.1: Table Outlining the Main Di�erences Between the Schemes Produced
and Modules

produced in the �nal chapters to solve problems and develop further.
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11.2 Future Work

To develop further towards the goal of learning to walk, it is essential that the
system learns to make generalisations about any emergent skills. This will enable
it to use those skills outside the circumstances in which they were formed, so as
to be of use in the construction of new schemes.

The ability to make generalisations in complex situations is exhibited by neu-
ral networks, as shown in section 6.3.1. If these systems can be associated with
emergent schemes, then it may be possible to introduce an ability to form general-
isations about that particular skill in the bounded subsystem in which it operates.
For example it may be possible for a neural network to generalise the balancing
scheme to moving frames of reference.

A further development necessary is the expansion of the motivation mechanism
to take the system beyond the stage of standing and balancing.

These ideas, coupled with the achievements of this project, should allow the
support of a complex developmental process such as learning to walk.
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