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Abstract

Many real-world processes tend to be chaotic and also do not lead to satisfactory analytical modelling. It has been shown here
that for such chaotic processes represented through short chaotic noisy time-series, a multi-input and multi-output recurrent neural
networks model can be built which is capable of capturing the process trends and predicting the future values from any given start-
ing condition. It is further shown that this capability can be achieved by the Recurrent Neural Network model when it is trained to
very low value of mean squared error. Such a model can then be used for constructing the Bifurcation Diagram of the process lead-
ing to determination of desirable operating conditions. Further, this multi-input and multi-output model makes the process acces-
sible for control using open-loop/closed-loop approaches or bifurcation control etc. All these studies have been carried out using a
low dimensional discrete chaotic system of Hénon Map as a representative of some real-world processes.
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1. Introduction

For many years it was generally regarded that chaos
in systems was neither predictable nor controllable and
was to be avoided. However, after the demonstration
of controllability of chaos in systems by Ott et al. [1]
and later by others [2], the interest in this area has
grown. Today there are variety of examples of successful
control of chaotic systems such as that of a Laser system
[3], where not only the system was stabilised but several
fold increase in the efficiency was also achieved, control
of chaotic dynamics of a tumbling satellite [4,5] and con-
trol of arrhythmia of heart [6,7] etc.

Several approaches towards controlling of chaotic
systems have evolved over a period of time and today
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there are three main methods [8] available. The first
may be called open-loop or feed-forward system where
the behaviour of the system is altered by applying a
properly chosen excitation or perturbation or external
action at some chosen time-interval using very little
extra energy. This has been successfully utilized in many
cases often by simply adding a deliberate noise [9]. The
second method is based on stabilisation of an unstable
periodic orbit of the chaotic system using information
from the Poincaré map of the system to arrive at magni-
tude of the perturbation of a control parameter needed
to make a nearby unstable periodic orbit to jump to a
fixed point on the unstable periodic orbit. This method
is known as OGY method. The use of this method has
been successfully demonstrated in cases where the noise
level in the system is low [10]. The basic method requires
waiting for the right orbit to occur on its own before the
control can be affected (activated). However, this may
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not be desirable in process control kind of applications.
Many variations of this method have been reported [11]
and the need for having the analytical model of the sys-
tem for estimation has been overcome. Further, Weeks
and Burgess [12] have shown a method of using Genetic
Algorithms to evolve a Neural Network to control the
chaos, making it easier to apply.

The third method called Pyragas’ [13] method de-
pends upon creating time-delayed feedbacks to the sys-
tem. This method has been successfully applied to the
control of both high and low dimensional chaos. The
basic scheme of the process is similar to that of a Recur-
rent Neural Network (RNN) with time-delayed feed-
back elements [14]. It is also shown that the method is
generally robust and stable against the presence of noise
in the training data.

Further, newer methods of control or modification
of chaos have been added in recent literature. One of
the methods is Bifurcation Control of the system
which has been actively studied for aircraft stabilisation
[15] at the University of Bristol. Another method
based on synchronisation of chaos [16] has been
demonstrated to be a powerful method of managing
chaos and also deriving new values from it. However,
it can be seen that control of chaotic systems generally
allows:

(1) large changes in output parameters with small
changes in input parameters providing the possi-
bility of controlling a chaotic process with mini-
mum of effort and energy,

(2) selection of operating conditions of the processes
in the whole domain of operation in variety of
modes (stable, oscillatory and chaotic etc.), and

(3) modification of the bifurcation conditions and
synchronisation of chaotic systems.

The basic difficulty in controlling chaotic systems
stems from the fact that the analytical models for most
of the chaotic real-world processes are not readily avail-
able and are difficult to construct and also this is likely
to remain a problem in the days to come. Thus, while
a considerable literature [1,2,6,7] exists on controlling
various kind of non-physical iterative systems like
Hénon map, Ikeda map etc. where the mathematical
models do exist, there is very limited literature on con-
trolling real-world chaotic systems.

Useful ideas on the control of chaotic real-world pro-
cesses have also been suggested by several researchers,
wherever analytical models exists for the processes. A
survey of chaos in processes and their control has been
presented by Lee and Chang [17].

Literature also provides many examples of the real-
world chaotic systems that have been observed or con-
trolled through the time-series data of the one of the
output variables. Tsui [18] shows how chaos in bio-mass

system can be studied through its feedback controller
and Sivakumar et al. [19] show how chaos in the rainfall
run-off system of a river basin can be studied. However,
modelling and control of the real-world systems requires
that the approach should be capable of handling
time-series data which is noisy and often only a short
time-series may be available. Considering the fact that
chaotic systems are extremely sensitive to the starting
input conditions, the handling of noise in the system
also becomes an important issue.

Further, it can be seen from the several studies that
the chaotic systems can be generally understood best
through their Bifurcation Diagrams plotted over the
range of the deciding variable. Bifurcation refers to typ-
ical phenomenon in non-linear chaotic systems where
quantitative changes in the system parameter lead to
qualitative changes in the properties such as changes
in patterns of stability and equilibria. While these Bifur-
cation Diagrams can be constructed easily if the system
equations are known, it is difficult to construct these for
experimentally observed systems. A commonly applied
approach is to use time-series data of one of the output
variables and to rely on delay coordinates embedding to
first visualise the attractor [20] behaviour in its phase—
space. Further, if the behaviour of the attractors is visu-
alised in terms of any control input parameter and then
these are arranged one after other with respect to the
same control parameter a Bifurcation Diagram could
be constructed. This is often an impractical proposition
for real-world systems as it requires extensive data.
However, even if the Bifurcation diagram could be con-
structed this way it will not allow combined interaction
of all the system parameters on chaos to be studied.
Thus, the possibility of the understanding at any time
the role of the input variables causing a particular chaos
and the set of input variables trying to suppress it re-
mains unexplored.

It is also seen that the use of artificial neural networks
for identification and control of chemical process
plant has been growing as examined by Tsai [21] and
Prasad [22]. Both feed-forward and Recurrent Neural
Networks have been reviewed by Prasad. The feed-for-
ward neural networks have one or more hidden layers
between the input and output layers and are often
trained through Backpropagation algorithm. The recur-
rent architectures have the time-delayed inputs con-
nected from the output side and it has been observed
that these are better models for evolving systems with
dependence on past.

Further, it is known that a RNN like the one shown
in Fig. 1, when trained on the time-series data of a cha-
otic system can be used to predict either the next one
step or several steps in a recursive mode [23,24]. It is also
known that most RNN architectures have a capability
to suppress noise. Keeping these two properties of
RNNs into consideration it is proposed here to study
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Fig. 1. Recurrent Neural Networks Architecture used in the present
work.

the modelling of real-world chaotic processes based on
available short and noisy time-series data by first train-
ing a suitable RNN model and then allowing this RNN
model to generate a long data series in recursive mode.
The generated data can then be used for constructing
the Bifurcation Diagram (BD) of the process. It is also
proposed that the RNN architecture should be of
multi-input and multi-output type providing a possibil-
ity of directly examining the role of various input pro-
cess parameters on the bifurcation and control of the
process.

Validation of the above proposed framework for
modelling and control of real-world chaotic systems
has been attempted through the following steps:

(1) First, a known low dimensional chaotic system
(comparable to many real-world processes) has
been used to generate time-series data through
one of its output variables and then this data is
used to train a suitable RNN capable of generat-
ing nearly the same series in a recursive mode.
Capability of this RNN to model the chaotic
system has been studied by comparing its output
with real series and in terms of the Lyapunov
Exponents (a measure for the nature of the chaos)
and BDs of the two series.Further, the possibil-
ity of creating the BDs with shorter length of
data corrupted with noise has been examined to
bring the approach close to handling real-world
systems.

(2) Next, the effect of MSE (Mean Square Error) of
RNN and its role in the bifurcation patterns gen-
erated has been studied.

(3) Next, the role of having all the input and output
parameters of the process in the trained RNN
model has been examined towards providing suit-
able control strategies for the process.

2. Building RNN models from short, chaotic
and noisy observed Data

While Coryn et al. [25] have demonstrated the possi-
bility of using RNN for modelling dynamical systems,
there are several issues that are required to be considered
to able to exploit it successfully. These are the issues of
length of data series used, noise in the experimental
data, the architecture and training of a relevant RNN
specially with regards to MSE of the network and the
role of multi-inputs and multi-outputs in the network
ete.

The presence of noise generally degrades the control
environment in any process, but the role of noise in cha-
otic systems is very different. It may lead to new phe-
nomenon like coherence resonance in optical systems
[26], changes in the bifurcation values [27], synchronisa-
tion of chaos [9] etc. These are besides the extreme sen-
sitivity of chaotic systems to starting conditions which
could also be affected by noise. Thus, for systems recon-
structed through the observed data, noise will play an
important role.

Therefore, before observing the role of the above
mentioned factors on real-world systems, it is proposed
to study the effect of these on a well known two-dimen-
sional analytically defined chaotic system of Hénon map
which has also been studied by several investigators e.g.
[12,23,28]. It is also proposed to use Ikeda map (which is
higher dimensional) for some of the studies.

The Hénon map has the regions of stable, oscillatory,
and chaotic operations and has two independent control
parameters affecting the evolution. A typical map is
shown in Fig. 2.

Further, it may be seen that the Hénon map is a dis-
crete system similar to processes that can be observed
through their time-series of data and it can be classified
as a low dimensional chaotic system, which is a condi-
tion similar to many real-world chaotic systems.

The studies here have been divided into three parts:

e Selection of a suitable architecture for RNN to allow
the generation of long series of output values from
any starting point and to also allow the control
parameters to be a part of the model.

e Testing of the RNN models’ capabilities with short
time-series data.

e Modelling of the effect of noise or observational
errors in the generated time-series and input control
parameters through the evolved Bifurcation Dia-
grams of the systems.

2.1. Selection of the RNN architecture

Selection of suitable architectures for RNNs in gen-
eral and RNNs for chaotic systems in particular remains
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Fig. 2. Bifurcation Diagram of Hénon map (a two-dimensional dynamical system); (1)—(1), (2)—(2) and (3)—(3) are the cross-sections that show the
first return maps or Poincaré sections of the Hénon map in three different regions.

an issue. Conventional feed-forward and RNN architec-
tures and their weights can be evolved, as has been re-
viewed by Prasad [22], by using sensitivity of each
weight to output results while training. The number of
weights thus can be minimised. Another example of
evolving the architecture has been presented by Weeks
and Burgess [12]. However, in the proposition here a
conservative rule of thumb [29] criteria (where the hid-

den nodes are of sum of inputs plus output nodes mul-
tiplied by two) has been adopted and no pruning of
weights has been done as the role of even small changes
can be important in extrapolating the evolving outputs
of a chaotic network.

Based on the above propositions, a RNN architecture
as shown in Fig. 3 has been developed to model the
Hénon map. It has been arrived at by experimentation
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Fig. 3. A model of Hénon map represented through a Recurrent Neural Networks for iterative predictions by considering the accessible control

parameters as a part of the inputs to the RNN.
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and is not sensitive to minor changes in the number of
nodes in hidden layers etc. This model has four input
nodes including the two delayed recurrence inputs as
shown in the figure called context inputs and one output
node. There are two hidden layers with 8 and 4 nodes
respectively. It is trained using the standard Backpropa-
gation algorithm. Solid lines in the figure indicate the
training phase of the network and the dotted lines show
the BD construction phase from the trained model. The
model thus developed is tested for predicting the values
in iterative mode away from the starting conditions.

2.2. Modelling Hénon map through its observed data
with a RNN

Hénon map is a discrete chaotic system that can be
expressed in terms of mathematical equations. Most of
the authors have observed Hénon map at one particular
set of control parameters, where it shows chaotic nature;
but have not modelled the whole system. In present
work, the Hénon map is studied with all its control
parameters to simulate the relevant objectives. The
map is described by the following two iterative system
equations:

X, =1-aX2:+0bY, (1)
Y1 =X, (2)

where X,,+1 and 7,4+ are the values of the Hénon map at
(n + 1)th time step, X,, and Y,, are at nth time step and ‘@’
and ‘b’ are constants. The values of ‘@’ ranges from 0 to
1.4 and ‘b’ is taken as 0.3 for this study, but the provi-
sion for varying this value is created.

To model the Hénon map for creating its Bifurcation
Diagram through RNN, first a time-series data is gener-
ated by using Egs. (1) and (2). During the generation ‘4’
is kept constant at 0.3 and ‘@’ is varied from 0 to 1.4 with
increments of 0.01 (including both the values). The ini-
tial conditions of the equations, X; and Y are taken
as 0. For each value of ‘a’ Eqgs. (1) and (2) are iterated
22 times, thereby a total of 3102 patterns are generated.
With this generated data, the proposed RNN model of
the Hénon map is developed.

As mentioned earlier the training of the RNN of the
proposed architecture was carried out using the Back-
propagation Algorithm which is commonly used [29].
The training was stopped when a low MSE level of
0.000001 was achieved and also further reduction did
not happen. Using the network thus trained data was
generated for drawing the Bifurcation Diagram of the
system. Whereas it was observed that the BD generated
was not sensitive to the changes in the architecture of the
network but it was extremely sensitive to the MSE of the
network. Fig. 4 shows a BD generated by this method
(solid line) compared with the actual BD of the Hénon
map. It can be seen that the shape of the BD and the
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Fig. 4. Comparison of the Bifurcation Diagram of Hénon map
generated through the recursive analytical equation with the model
generated diagram where the RNN is trained to MSE of 0.000001.
Initial conditions in each case are b = 0.3, X,, = 0, Y,, = 0 and @ varying
from 0 to 1.4.

value of the Bifurcation point as generated by the
RNN are very close to the real one. Further, the output
series generated from the developed RNN model and
the mathematical equations for the same initial condi-
tions both, are compared in Fig. 5. It can be seen from
this figure that it is nearly in synchronism with the real
one till 25 steps, showing the capability of the model.
It compares favourably with the reported figures in
[30]. It should be appreciated that longer predictions
(through standard computer methods and analytical
models) remain impractical due to extreme sensitivity
of chaotic systems to initial conditions.

It can thus be seen that the predictive capabilities of
the RNN needed for constructing a correct BD can be
obtained by this approach but only at very low values
of MSE of the network. This has been further studied
in subsequent sections.
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Fig. 5. Comparison of the time-series of Hénon map generated
through recursive analytical equation with the model generated values,
where the RNN is trained to MSE of 0.000001 with the initial
condition of a=1.4,b=0.3, X,=0, and Y, =0.
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2.3. Training the RNN models with short multivariate
observed series of data

The proposition that a RNN model can be used for
modelling real-world systems requires that its trainabil-
ity be tested with noisy data from short series. Under
these conditions, its ability to recover the Lyapunov
Exponents, which are measure of chaos in the system
and are calculated by observing the divergence of nearby
trajectories with time, and the accuracy of the generated
Bifurcation Diagrams, may be regarded as tests for the
capability of the procedure proposed.

To validate this idea, a RNN model for the Hénon
map has been trained with gradually increasing numbers
of data points (obtained from the analytical model). Ef-
fort has been made in each case to achieve a fixed MSE
level of 0.000001. Fig. 6 shows the attained values of the
principal Lyapunov exponents with respect to the num-
ber of training data patterns. It has been found that for
example RNN of 4:8:4:1 architecture (the role of archi-
tecture is further discussed in Section 3) trained with
only 60 data points could emulate values close to real
ones. The data series generated from this RNN yields
the values of the first two exponents as 0.3950550 and
—1.48133 comparing favourably with known values
of 0.4180959 and —1.6220686 respectively when a is
1.4 and b is 0.3. It is also seen from Fig. 7 that the Bifur-
cation Diagram generated from this series is very close
to the one generated from longer data series obtained
from the mathematical model.

It may also be observed that since only one step
recurrence RNN model has been used, any two consec-
utive data from relevant input—output pair are enough
to form an input to RNN model and a continuous mul-
tivariate time-series is not needed. This may be helpful in
modelling real-world systems, where continuous obser-
vations are difficult.
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Fig. 6. Evolution of Largest Lyapunov Exponent of Hénon map at
a=1.4 and b =0.3, calculated using the RNN models trained with
different number of patterns.
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Fig. 7. Comparison of a BD of Hénon map generated from the
mathematical model with the BD generated from RNN model trained
with only 60 patterns.

2.4. Estimating the effect of noise on the RNN
models of the systems

The possibility of training a chaotic RNN model with
a short data series or data sets having been demon-
strated, it becomes important to study the effect of noise
on the input parameters, observed time-series of the
data and initial starting conditions of the systems, when
these networks are to be used for predicting future val-
ues away from a starting point. This has been studied
by constructing the Bifurcation Diagrams of the Hénon
map with different type of noise and is shown in Fig. 8.
The BD shown in Fig. 8(a) was generated through the
recursive equations of the system where a noise of zero
mean and uniform distribution was added to the b
parameter of the Hénon map. Fig. 8(b) shows the same
BD when it was generated using a RNN trained on the
data used for Fig. 8(a). It can be seen that the addition
of noise causes scatter in the BD. This is in agreement
with earlier observations reported in [31]. However,
when this noisy data is used to train a RNN and the
BD is plotted from the recursive outputs of this RNN,
the BD is more like original one shown in Fig. 4 and
the effect of noise is largely absent. This implies
that the RNN architecture tends to reject the uncorre-
lated information in the patterns during the learning
phase itself.

Simulations have been further carried out to under-
stand the effect of the noise on the control inputs as well
as on the outputs of the chaotic systems through Hénon
map. For these cases thus, the noise has been added to
both the ‘b’ parameter (equivalent of an input parameter
to a system) of the Hénon map and as well as to the out-
puts of the recursive analytical model. The BD con-
structed through this data is shown in Fig. §(c). Fig.
8(d) shows the same BD when it is generated using a
RNN trained on the data used for Fig. §(c). It is seen
that with this type of noise the BD gets even more dis-
persed but the RNN model is able to recover the shape
once again. However, with this kind of noise the RNN
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Fig. 8. Effect of noise on different parameters of the Hénon map in generating the Bifurcation Diagrams: (a) BD generated through the analytical
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Diagram generated through RNN model trained on the data used in (b).

could not be trained to value of MSE below 0.00018.
Despite this fact the RNN model could be used to con-
struct the BD with the shape and the behaviour close to
the actual BD.

Further, a separate simulation has also been per-
formed to examine the capability of RNN models in
recovering the attractor of the system in the presence
of large Gaussian noise. The role of attractor is impor-
tant in chaotic processes as their time evolution is com-
pletely governed by it, once the starting conditions are
fixed. For this purpose the simulation is carried-out on
the time-series data of Hénon map by adding 8% (equiv-
alent of noise-to-signal ratio of 0.08) Guassian noise
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with zero mean. An attempt has been made to construct
the attractor directly from this time-series and also from
RNN generated data, where the RNN was trained on
the same noisy data. Fig. 9 shows that the RNN based
effort is able to recover the attractor and this is compa-
rable to efforts reported in [30] using this method.

From the above observations, it can be seen that the
RNN model based Bifurcation Diagrams created with
the proposed approach, may have noise robustness at
fairly high levels of noise (typically 3% or more) and
these can be trained to fairly low values of MSE, in spite
of the noise. This shows the suitability of this approach
for handling real-world data from processes.
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Fig. 9. Hénon map attractor created from analytical model, compared with the attractors developed through RNN model (trained on a time-series
data with 8% Gaussian noise), at « = 1.4 with » = 0.3, and initial conditions of X,, and Y,, both being 0.0.
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Fig. 10. The BD of a Hénon map generated through a RNN model
with Gaussian (o, = 0.03) noise added at each time epoch compared
with the BD where a permanent change is done in the one of the
control parameters takes place, in addition to the Gaussian noise. The
zoomed box shows a clear shift in the bifurcation point occurs in spite
of the noise.

To test the susceptibility of initial starting conditions
to random noise yet another simulation has been carried
out where a Gaussian noise (3% equivalent of 0.03
noise-to-signal ratio) with zero mean has been added
to all the input parameters at each time epoch and a per-
manent change has also been made only in one of the
input parameters. This change has the magnitude of
three times the standard deviation of Gaussian noise.
It can be seen from Fig. 10 that the bifurcation point
gets shifted by the same magnitude as it would have
without the noise.

3. Role of MSE of the network in the bifurcation
patterns

The role of MSE could be very different in a RNN
trained to mimic a particular chaotic system compared
to a standard RNN. In general for a feed-forward NN
or a RNN the value of MSE represents the generalisa-
tion capability of the model. A network with a low val-
ues MSE is usually poor in prediction [32] on unseen
data, but good on the trained data as compared to a net-
work with coarse values of MSE, as with the reduction

of the MSE the network starts to memorise. Thus, there
is an optimum value of MSE for training. In contrast to
this when a RNN represents a chaotic system evolving
in time, a very low MSE alone can possibly make it
memorise and represent a particular chaotic system.
This property has been studied here through simulation.
For this purpose the prediction capabilities of the devel-
oped RNN models of Hénon map with different archi-
tectures and trained to different MSE levels have been
tested. It has been found that the architecture of the
model has little effect on the Bifurcation Diagram once
the architecture is not simpler than that of empirically
suggested levels (Section 2.1). A set of Bifurcation Dia-
grams generated with different MSE levels has been
plotted in Fig. 11. The ability of the models to generate
a BD close to the actual BD has been observed with the
MSE levels between 0.0001 and 0.000001. Fig. 12 shows
the patterns of improvement that occur in the prediction
of the bifurcation point from the RNN model with the
reduction in the MSE during the network training. At
MSE level of 0.00003, the Hénon map generated
through the RNN is close to the map generated by the
analytical model.

It can be seen from Fig. 12 that the RNN itself is a
dynamical system and undergoes changes of behaviour
as it is being trained. The MSE of the trained network
influences the model Bifurcation point and other fea-
tures significantly. However, at low MSE levels typically
around 0.00001 it settles down to value close to the ac-
tual values. One such convergence can be seen in Fig. 12.
However, it can be noticed that the overall shapes of
Bifurcation Diagrams (thus the shape of attractors) do
not change with MSE of training and they appear very
early with coarse MSE levels even when Bifurcation
point values etc. are still changing. Thus, the nature of
the chaos in a chaotic system can be learnt easily with-
out the need for hard training of the RNN. This phe-
nomenon of early appearance of attractor appears to
be similar to that identified by [33] as self emergence
of chaos.
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Fig. 11. A comparison of Hénon map BDs generated through RNN
models with various Mean Squared Error (MSE) levels of training.
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Fig. 12. Changes in the Bifurcation point value (Hopf-Bifurcation) with the Mean Square Error in the training of the Hénon map RNN model. With

the decrease in the MSE, the RNN produces values closer to actual values.

However, real-world chaotic systems when observed
through data always have a noise component in obser-
vations and the RNNSs’ capability of modelling this
should be ascertained. For this purpose two different
RNN models were trained by adding Gaussian noise
in one case to only the input parameters, and in the sec-
ond case to both the input and output parameters. It can
be seen from Fig. 13 that the correct value of Bifurcation
point can be recovered in both the cases for up to 3%
noise used for testing.

Further, a comparison of MSE levels needed is made,
with a report from Jones et al. [16],where during the
sychronisation efforts of two low dimension chaotic neu-
ral networks based maps, developed from analytical
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models, it is shown that the MSE levels of the order of
0.000024 were needed for the models. The results ob-
tained here during training of RNN models also show
that the MSE reduction of RNN models to similar levels
is necessary before the RNN models can mimic chaotic
systems.

4. Control of discrete chaotic processes through their
Recurrent Neural Network models

A major hurdle in controlling chaotic processes which
have been observed only through their input and output
data arises due to difficulty of building suitable models
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Fig. 13. Changes in the Bifurcation point value (Hopf-Bifurcation) of Hénon map, with the Mean Square Error in the training of the RNN models
when various percentage of noise are added to the training patterns. (a) When the noise is added to only input parameters, (b) when the noise is added
to both the inputs and the outputs of training data of the RNN models. In both cases Hopf-Bifurcation behaviour is similar.
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from data. It has been shown in the previous sections
that it can be overcome as a suitable models could be
built through RNNs when trained to low MSE levels.
It has also been shown that these RNN models could in-
clude all the necessary input and output parameters of
the system and could be MIMO models and thus could
providing a scope for parameter based control. These
RNN models may further have the capability of reject-
ing observational and random noise in the observed
data.

Besides the delayed feedback and the noise injection
based techniques [13,34] for stabilising chaotic systems,
the general approach of control of chaos relies on either
changing the Bifurcation Point of the system to stable
regions or stabilising the chaos at an unstable periodic
orbit through what are called chaos control techniques.
Both these techniques merit evaluation for process con-
trol. Also techniques which make it possible and even
desirable to operate the process in chaotic conditions,
but in more desirable regions, need to be studied.

In addition, it can be seen that the control of real-
world processes rather than mathematical chaotic sys-
tems, requires further constraints to be considered like:

(a) Real-time implementation of any proposed
method should be possible. Therefore, the compu-
tational requirements when process is being run
should be light.

(b) Number of intermediate steps needed to achieve
the goal from the starting point should be a small
to able to benefit from the change.

(c) Output variations in the system should remain
within some acceptable ranges when the control
is being attempted.

Based on the above observations the following ways
of controlling real-world chaotic process by exploiting
the developed RNN models have been examined:

(1) Control of a chaotic process through its Bifurca-
tion Diagram by moving the process to more
acceptable conditions by changing the bifurcation
points of the system through changes in the any of
the of input parameters of MIMO-RNN model.

(2) Control of chaotic systems in chaotic region
through changing over to more desirable attrac-
tors of the system by changing input control
parameters.

(3) Control of chaotic system with time varying small
input impulses leading to small changes in initial
conditions for stabilisation of the chaotic orbits
on a unstable fixed point of the system by an
approach, using GA and RNN combination. This
may be implemented under conditions where small
changes in basic input conditions to the process
may also take place.

4.1. Bifurcation control of a chaotic system

Once the BD has been constructed for a chaotic sys-
tem from its observed data, the conditions where
behavioural changes occur in the system become visible.
Any change in the inputs (initial conditions) result in a
new Bifurcation Diagram. This process of achieving
control is referred to as Bifurcation Control (BC) in
the literature. The bifurcation control is possible with
changes in either a single parameter or multiple
parameters.

The RNN trained model of Hénon map has the
equivalents of the input and output parameters of a
process. Thus, the input parameters of this map either
singly or in combination can be varied and their effect
can directly be observed on the outputs of the chaotic
process and the bifurcation phenomenon. This approach
is suitable for changing the bifurcation point or alter-
ing boundaries between chaotic, periodic and point
attractor regions of the system as shown in Fig. 14 for
the Hénon map using RNN model. Here a and b are
like input parameters where with the variation in the
bifurcation point as observed on a parameter can be
changed by changing the value of b. This approach is
robust against process noise as has been demonstrated
in Section 2.4 and shown in Fig. 10. Thus, it shows
the possibility that if a RNN process model of the kind
mentioned above has been built, it can be used to
postpone the onset of chaos or for keeping the system
in chaotic condition if so desired using the process
variables.

The limitation of this method may be on the avail-
ability of a suitable process parameter whose values
can be changed significantly without making the process
throughputs or other features unacceptable.

This approach is light in terms of real-time computa-
tional requirements and the desired shift can be obtained
in few steps.

= b=0.3
b=0.2
b=0.1
1.5 - '
=
1.0 4
0.5 -
% 0.0
>
-0.54
-1.0 A
-1.5 | ! ! ‘ . ! !
00 02 04 06 08 10 12 1.4
a

Fig. 14. Change in the Bifurcation point with the input control
parameter ‘b’ of Hénon map.
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4.2. Controlling a chaotic process by driving the system
towards a nearby desirable attractor

The OGY method and its variants rely essentially on
perturbations (both in +ve and —ve directions) to be
given to the input conditions of the system to change
the system evolution without permanently changing
the initial (starting) condition, to stabilise the system
on an unstable fixed point. Thus the shape of the attrac-
tor during the process does not change. However, in
process control application it may be quite practical to
switch to a nearby more desirable attractor in the phase
space to achieve the objective of keeping the process
moving towards stable zone of operation. This becomes
a realisable alternative, as it may be possible to search
and change the attractor in few steps using the RNN
process model.

Most real-world processes as observed in [24] often
have rich array of Bifurcation Diagrams and attractors.
However, the Hénon map which has been selected as a
model for processes has a relatively simple attractor.
Fig. 15(a) shows the starting attractor and Fig. 15(b)
shows another attractor selected through the RNN
model of the process. It can be seen that both are similar
in shape, but since it occupies a smaller area, the process
variations over this will be smaller. This limitation does
not stop from using this attractor to stabilise the process
on an unstable fixed point on this attractor, using the
procedure mentioned in the next section.

It can also be seen that, the switch to a new attractor
cannot be made in one step, as the Recurrent Neural
Network model has two part inputs consisting of the
output in immediate past and the new condition
being specified. Hence, although the new inputs will
finally define the new attractor, it will be reached
iteratively.

This approach requires searches to be made off-line
through the model without disturbing the running pro-
cess, making it a desirable method. Further, since the
operation of the process can be brought to more accept-
able levels of variation in a few steps makes it easy to
implement. However, this can be realised only when
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the process is having a variety of attractors and consid-
erable changes in initial conditions are acceptable.

4.3. Stabilising a chaotic system where input conditions
may change, through a step-by-step GA based search
procedure

As observed earlier, the most successful method of
controlling chaos has been through stabilisation of
unstable periodic orbits using observations on the Poin-
caré section of the chaotic system through what is
known as OGY method. This method works well when
there is little or no noise [10,35] in the system. In this
method it is necessary to wait before applying the con-
trol action till system on its own reaches the vicinity of
the unstable fixed point. Sometimes it may take large
number of cycles to reach the vicinity.

In a variant of OGY method proposed by Weeks and
Burgees [12] to stabilise a process, the need for waiting is
eliminated by training a Neural Network model to cal-
culate the small impulses, to be given to control param-
eters, such that it minimises the difference between the
present and the next state of the plant, which makes
the system drift towards a fixed point. In this approach
the initial conditions (inputs) are to be kept constant
while developing the Neural Networks, which is rather
impractical for the process control application as input
conditions may get unavoidably changed by a small
amounts (above the noise level) and its effects need to
be modelled. Further, in this approach for every attrac-
tor (starting input conditions) a different Neural Con-
troller has to be evolved which makes it a cumbersome
proposition. Therefore, a procedure which takes these
difficulties into account has been proposed, where for
calculations of impulses to be given to the system, is
based on an on-line search procedure with GA working
on the full RNN model with all the process inputs. Thus,
the initial conditions and other unavoidable changes can
be taken into consideration while the on-line stabilisa-
tion procedure is continuing. This procedure illustrated
in Fig. 16. The units on the left side of the figure act as a
controller, consisting of the forward RNN model of the
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Fig. 15. Change in the attractor shape as one of the control parameters (b) of Hénon map changed from 0.3 to 0.1 when parameter « is at 1.4.
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Table 1

Simulation results for stabilisation of Hénon map through GA-RNN searched impulses with and with-out small changes in @ and b parameters

during the process

a and b input No. of random starting  Range of Changes in a and b parameters No. of steps needed to
parameters conditions conditions selected impulses given  during stabilisation achieve stabilisation
Fixed a and b parameters 5 +2% None Between 30 and 250 steps

a (OR) b parameters changed 5
once during simulation

+2% Once at during

stabilisation £3%  Between 35 and 270 steps
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Fig. 17. Stabilisation of chaos using RNN model and GA based searches through the input control parameters ¢ and b of Hénon map with only
small variations from the present value. (a) Perturbations given to a. (b) Perturbation given to b. (c) Time-space evolution of X,,+. (d) Phase-space
diagram of the Hénon map (a = 1.4, b = 0.3) when the control is imposed over the uncontrolled Hénon map attractor.
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process coupled with a GA based search procedure. The
right side of Fig. 16 represents the process model, which
in reality could be replaced with the real plant. Stabilisa-
tion of the process can be started on the attractor visible
from the initial starting conditions of the process.

To test the plausibility of the proposed GA + RNN
approach, simulations were carried-out on the RNN
model of the Hénon map. Five random initial starting
conditions were selected for stabilisation onto the unsta-
ble fixed point. First, the orbits were stabilised keeping
the input conditions unchanged and then the simulation
experiments were repeated by imposing one change in
input conditions during stabilisation procedure.

Impulses given during the simulations were restricted
to £2%, a value above the real plant variations due to
noise etc. which may be typically £1% of the original
parameter values and were applied to both ¢ and b
parameters of the Hénon map. Using the GA based
search criteria of minimising the difference between the
present and the next state of the system it was found that
between 30 and 250 steps were needed to stabilise the
system on the initial attractor.

When a or b parameters were changed by +3%
slightly above the impulse levels, once during the stabil-
isation, between 35 and 270 steps were needed to achieve
the same as shown in Table 1. Time steps evolution and
phase-diagram etc. for a specific case are shown in Fig.
17. From the above figure and table, it can be seen that
the procedure works successfully even when the input
conditions get altered and thus it suggests the possibility
of using this procedure for real-world systems.

While the stabilisation of the Hénon map onto a
unstable fixed point could be achieved in both the cases
of either with or with-out small changes in input param-
eters (¢ and b) during simulation but the need for the
large number of steps to carry this out, and the real-time
computation needed to achieve it may be a hindrance in
the some real process control applications. Further, it
can also be seen that the approach requires actual pro-
cess to be continuously altered through a and b impulses
which may not be practical. However, a plausibility of
stabilising a real-world process with small changes in
input conditions during stabilisation has been estab-
lished, using the proposed approach.

5. Discussion and conclusions

One of the major problems in studying discrete pro-
cesses plants for developing control models is that there
is considerable noise in the observed parameters, and the
plant operating conditions may not be easily changed to
allow a particular study. It has been shown here that,
since only data sets are to be fed to RNN models for
training, and thus the control parameters may be chan-
ged as often as required to run the real plant, without

regard to the modelling problems. This is so because
the RNN models need only two consecutive operating
data points (for one stage recurrence RNN models) to
make one data set. This becomes an issue, if modelling
has to be done through time-series method of analysis.
Further, it has been shown that the noise sensitivity of
RNN architecture to Gaussian noise is high enough
and plant observational and parameter setting errors
may not affect the short term outcomes predicted by
models, in spite of the essential long term unpredictabil-
ity of chaotic systems.

The RNN models based approach proposed here,
does not concentrate only on stabilising the chaotic
orbit on a fixed point or eliminating chaos by changing
the bifurcation point etc., as the model remains relevant
for running the process with the chaos as well. Running
the system under the chaotic condition may even be
desirable [1,13] and the control strategy followed have
to be relevant to this. One approach based on changing
the attractor of the chaotic process has been studied
here.

The proposed strategies of controlling chaos in the
process plants have been tested on a discrete chaotic
system of Hénon map. The mathematical model of
Hénon map has been widely studied in literature, which
helps in assessing the performance of its RNN models.
However, it should be noted that Hénon map has a
chaos dimension of 2 and has only 2 control parameters,
therefore while it may represent adequately some low
dimension real-world chaotic systems, it cannot be used
for generalisation of all chaotic process control prob-
lems. Also, the results reported here remain true only
for Hénon map (within the tested boundaries) and thus
for other similar processes it may taken only as a
plausibility.

The following conclusions have been drawn.

(1) Recurrent Neural Network based models for low
dimensional real-worlds chaotic processes can be
built from their short, and noisy observed data.
These models can then be used for predicting the
future evolution of the process state variables
and constructing the Bifurcation Diagram of the
systems.

(2) The role of RNN model’s MSE in modelling a pro-
cess from its chaotic observed data is an important
factor to be considered. Lesser the MSE the better
are the predictions from the model for construct-
ing Bifurcation Diagrams. When the value of MSE
achieved is below a certain level a stable Bifurca-
tion Diagram of the process can be created.

(3) Through simulation results it is seen that the pro-
posed multi-input and multi-output RNN model
of the process allows the possibility of studying
the effect of any of the input parameters on the
chaotic evolution of the process.
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(4) Through the MIMO-RNN models developed it is
also shown that chaotic systems can be controlled
through their attractors, by changing over to a
nearby more desirable attractor of the process,
using the visualisation and estimation capabilities
of the model.

(5) Plausibility has been established for the control of
a chaotic process whose input parameters change
during operation, a situation close to reality,
through stabilisation on an unstable fixed point
using the proposed RNN and GA based approach.
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