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Abstract

Work in safety management often involves classification of events using coding schemes or

�taxonomies�. Such schemes contain separate categories, and users have to reliably choose

which codes apply to the events in question. The usefulness of any system is limited by the

reliability with which it can be employed, that is the consensus that can be reached on

application of codes. This technical note is concerned with practical and theoretical issues in

defining and measuring such reliability. Three problem areas are covered: the use of corre-

lational measures, the reporting and calculating of indices of concordance and the use of

correction coefficients.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Work in safety management often involves classification of events using coding
schemes or �taxonomies�. Often, such schemes contain separate categories, and users

have to choose which codes apply to the events in question. Taxonomies (especially

those which are used �after-the-fact�) typically involve classification of features of a
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system (for example, human behaviours, organisational/environmental factors, or

cognitive factors) 1 which can be examined to help avoid unwanted events in the

future.

Classifying events using taxonomies designed for the purpose is a common

technique in the human sciences (e.g. psychology, sociology, psychiatry) and has

been shown to be highly useful, dependent on certain important criteria. The most

critical of these has usually been called �inter-judge� (Cohen, 1960), �inter-observer�
(Caro et al., 1979) or �inter-rater� (Posner et al., 1990) reliability. Tests of this cri-
terion have usually been simply called reliability studies (Grove et al., 1981). (The

related concept of �intra-rater� reliability refers to a comparison between the judg-

ments made by the same judge about the same data on different occasions.)

Importantly, reliability in event classification is the extent to which independent

users of a coding scheme, taxonomy or similar diagnostic technique can agree on

discrete events to be coded (e.g. Caro et al., 1979). A basic principle of coding

reliability is that agreement refers to the ability to discriminate for individual subjects,

events or cases (e.g. Cohen, 1960; Fleiss, 1971; James et al., 1993). This type of
agreement (consensus on individual codes) is a pre-requisite for the validity and

pragmatic usefulness of a coding device (e.g. Groeneweg, 1996, p. 134; Stanton and

Stevenage, 1998, p. 1746).
2. Using patterns or frequencies as a test of consensus

In safety management there is a tendency to call a consistent pattern of �codes�
from a coding scheme reliable, and to assume that people can agree on which codes

to pick for individual events. For example, Stanton and Stevenage (1998, p. 1740)

define �consistency� thus: �this criterion is the same as inter-rater reliability, i.e. the

degree to which two analysts make the same error predictions�. But equating con-
sistency with inter-rater reliability is misleading. Coding schemes can actually pro-

duce highly consistent data in the absence of independent agreement on discrete

events. Indeed, in the most extreme case, consistent or reliable coding can be dem-

onstrated in the absence of any agreement at all. (This distinction is discussed in

detail by James et al., 1993, p. 306.)

For example, if two coders assign codes to a set of events, and use each individual

code the same number of times overall, coding is highly consistent, i.e. there will be a

rank order correlation of 1 in overall code utilization. If this happens over repeated
trials the coding output is also �reliable�. However, this is not evidence for inter-rater

reliability (as defined above), as the coders may have disagreed on which codes to

assign to individual events. This is why we prefer inter-rater consensus (IRC) rather
1 These have been described respectively as the �external mode of malfunction� (Rasmussen et al., 1981)

or �external error mode� (Isaac et al., 2000); the �general failure type� (Reason, 1990) or �external
performance shaping factor� (Rasmussen et al., 1981); and the �psychological failure mechanism�
(Hollnagel, 1998) or �internal performance shaping factor� (Rasmussen et al., 1981).
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than reliability as a term to denote the capacity of users to independently agree on

classification (Davies et al., 2003).

Wallace et al. (2002, p. 2) provide evidence to show that this is the case (see also

Davies et al., 2003). These authors found a highly consistent pattern of codes from a

root-cause coding system in the nuclear industry despite low reliability (consensus)

between experienced users of the technique (index of concordance¼ 42%; for defi-

nitions as to what constitutes acceptable consensus see Borg and Gall, 1989). In

addition, an analysis of the distribution of codes assigned during the reliability trial

showed there was a strong correlation between these and the usual pattern

(q ¼ 0:837). These data are of general interest because they negate the assumption

that correlations between patterns are evidence for consensus in code or category

assignment. Lack of consensus means predictive and discriminatory utility of the

database is lost. For examples from the literature where correlations and overall

frequencies have been used to test �reliability�, leading to inter-rater consensus being

overlooked, see Kirwin (1988, p. 99), Stanton and Stevenage (1998, p. 1737), and

Groeneweg (1996, p. 229).
The appropriate method for calculating inter-rater consensus is to calculate the

�index of concordance� (e.g. Martin and Bateson, 1993, p. 120). This is done by

applying the formula A=Aþ D, where A¼ the total number of agreements and

D¼ the total number of disagreements. Inter-rater consensus can then be reported as

a figure between 0 and 1 or as a percentage by multiplying by 100, and is often

�corrected� using coefficients such as Cohen�s j (Cohen, 1960) (see discussion below).

However, even where these appropriate measures are used, problems may still arise

in terms of calculation and reporting.
3. Calculating and reporting on indices of consensus

It is usually desirable that an overall �inter-rater consensus� score can be calculated

when there are more than two coders involved in a trial. However, a measure of

consensus should be computed for each pair of coders separately, from which an

average may be computed. Fleiss (1971) outlines clearly how agreement between

multiple raters is to be calculated. Raw agreement arises from �the proportion of

agreeing pairs out of all the . . . possible pairs of assignments� (p. 379).
Problems can arise if researchers try to calculate average agreement for more than

two coders at a time. For example, Stratton et al. (1988) provide reliability data for a

coding system 2 by stating that �. . . a total of 315 . . . statements was extracted and of

these, 220 were identified by independent agreement of at least two of the three raters�
(p. 89) (emphasis added). But if �2 out of 3� people assign a code the agreement for

that case is 33% (two pairs disagree and one agree; see Davies et al., 2003). So in this

case, even if, for example, half the 220 statements in the �two or more� group were
2 This system has been used in an organisational context by Silvester et al. (1999) and Munton et al.

(1999).
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agreed by all three raters, then the total agreement is 56% (the average of 110 trials at

100% and 205 at 33%), which still leaves doubt as to the usefulness of the system.

The safest method with multiple raters is to score the mean of all possible paired

comparisons as outlined by Fleiss (1971).
4. Pre-selecting events

Wallace et al. (2002) report a trial of SECAS (Strathclyde Event Coding and

Analysis System) which was developed for use in the nuclear industry. There were

two distinct parts to the trial. In the first part, events to be coded were identified and
coded independently by raters so that agreement could be tested on both selection

and coding of events. (This process involved coding events directly from reports in

the �natural language� of reporters, not rewritten or summarized reports which can

sometimes be used to make coding easier.)

In the second trial, events for coding were first selected from a sample of reports

by one coder, who then coded those events. These events were then passed on to a

second coder who coded them independently. In this way, agreement (or disagree-

ment) due to the coding scheme could be tested independently from agreement (or
disagreement) as to what constituted a �codeable� event. Agreement was around 20%

higher when the second coder did not have to read whole reports and decide what

events to code. As it is often the case that events to be classified in a reliability trial are

pre-identified (i.e. highlighted in reports before the coding process), we would rec-

ommend factoring in a drop in agreement of at least 10% when users have to identify

events themselves, although it can be conceded that, in practice, events to be coded

are often decided upon prior to any independent use of a system. 3
5. Ambiguity in reporting

Baber and Stanton (1996, p. 126) report high reliability for use of SHERPA

(Systematic Human Error Reduction and Prediction Approach, Embrey, 1986).

However, the data presented in the paper are somewhat ambiguous. The system

involves identifying errors and classifying them using a coding system for error types.

First, it is stated that �Analyst two found 47 errors, 44 of which were found by

analyst one�. This appears at first glance to be evidence for consensual coding (i.e.

agreement on individual cases). However, it is of course possible that an uneven

number of coding attempts were made. Suppose analyst one found 276 errors, of

which 44 matched the 44 (out of 47) coded by analyst two, reliability would then be
3 In addition, trials were carried out on consecutive days, so that �practice� could be evaluated.

Agreement did indeed increase from day 1 (56% for selection and coding; 72% for coding only) to day 2

(66% and 89% respectively). These data show how consensus needs to be continuously evaluated and that

�snapshot� trials can be misleading.
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around 16%. This example shows why clear presentation of results (including the

number of codes assigned by each coder) is essential.

It must be stressed that any implied criticism of those reporting on reliability

(consensus) trials is intended as entirely constructive, as it must be noted that such

data is apparently not available at all for many common techniques. (Wagenaar and

van der Schrier, 1997, evaluated a number of techniques (including MORT (John-

son, 1980); STEP (Hendrick and Benner, 1987); and FTA (Ferry, 1988)) and describe

these techniques as presenting no �inter-rater reliability� data. Further they state that
�there is no real excuse for the lack of reliability testing . . . since it is not difficult to

measure between-raters reliability . . .� (p. 31).)
6. Issues with statistical measures of agreement

Finally, we have come to be concerned with the common use of the j coefficient

(Cohen, 1960, 1968; Fleiss, 1971). This is typically used in the human sciences to

correct the Index of Concordance for agreement �expected by chance�. 4 A discussion

seems wise as to the applicability of this technique for calculating the reliability of

safety management schemes.
In keeping with the distinction outlined above between correlation and consensus

on individual cases, j is used precisely because it can be interpreted �as a measure of

the amount of agreement (as opposed to correlation or association) between two raters

. . .� (Spitznagel and Helzer, 1985 emphasis added). However, j has been extensively

critiqued, and its use in this context is questioned here.

j is a simple formula for correcting the number of categorical agreements between

independent judges for the number of agreements that would be expected purely by

chance. The probability of chance agreement on a single code is calculated from the
probability of each rater using a code relative to the total number of codes assigned

(Cohen, 1960, p. 38). j is then computed as [(A=A þ D)) chance agreement]/

(1) chance agreement) where A¼ number of agreements and D¼ number of dis-

agreements. It is useful to note that Cohen (1960, p. 38) is quite clear as to the

conditions under which j can be used:

(a) the events/scenarios/errors to be coded are independent;

(b) the categories used are independent, mutually exclusive and exhaustive;
(c) the coders operate independently.

Perhaps the most fundamental criticism of j is that the concept of correcting for

�chance agreement� is inherently flawed (Grove et al., 1981; Carey and Gottesman,

1978; Janes, 1979). This is related to violation of the third condition above, inde-

pendence of raters. As Spitznagel and Helzer (1985), put it �the assumption about the
4 Examples of emergent use of j in safety management work include Isaac et al. (2000) and Lehane and

Stubbs (2001).
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independence of errors (i.e. coders� decisions) is probably never correct� (p. 727).
Maxwell (1977) argues that it is absurd to argue that coders start from a position of

complete ignorance, and thus rejects the idea that j can measure agreement relative

to the proportion of cases arising from chance alone.

Another assumption underlying the use of the j statistic is that codes tested will

be mutually exclusive and exhaustive codes. There appears to be a paradox here. One

essentially tests how much overlap and redundancy there is in a coding taxonomy by

calculating consensus (IRC). If trained coders cannot agree on classification then we
would argue that the codes are not functioning as exclusive categories. Yet mutually

exclusive categories are a pre-requisite for j. There is no easy solution here––

developers must simply endeavor to design coding frames where definitions are clear

and choices are absolute. As a guideline here, we would recommend computing raw

agreement (i.e. the Index of Concordance (Martin and Bateson, 1993)) first. j
coefficients calculated on the basis of low raw agreement can be assumed to violate

the principle of mutual exclusivity and should be avoided.

A final problem with j is that it is sensitive to prevalence (also called base rate;
Spitznagel and Helzer, 1985). This issue has been extensively discussed in the liter-

ature on psychiatric diagnosis and epidemiology. In simple terms, the problem is that

j varies not just with consensus between raters but with distribution of cases to be

coded (see Davies et al., 2003). Grove et al. (1981) point out that j is actually a series

of reliabilities, one for each base rate. As a result, js are seldom comparable across

studies, procedures, or populations (Thompson and Walter, 1988; Feinstein and

Cicchetti, 1990; Davies et al., 2003).

Alternatives to j have been proposed. A solution to the prevalence problem was
proposed by Spitznagel and Helzer (1985), who also provide a detailed discussion of

these issues (see also Cicchetti and Feinstein, 1990). Spitznagel and Helzer recom-

mended a statistic called the coefficient of colligation (Y ) (Yule, 1912). Y remains

more stable than j (it is effectively independent of prevalence) for all but high

prevalence rates. However, Lee and Del Fabbro (2002) argue that a fundamental

problem with both j and Y is that they are �frequentist� (in simple terms �10 agree-

ments and 10 disagreements� is treated the same as ‘‘50 agreements and 50 dis-

agreements’’ in the calculation). If a Bayesian approach is adopted (Carlin and
Louis, 2000; Leonard and Hsu, 1999; Sivia, 1996), the observed data are used to

revise prior beliefs. So, as a picture of agreement builds up, changes in frequencies

rather than ratios alters the calculation (i.e. the more actual agreements there are the

higher the coefficient becomes). 5 Davies et al. (2003) recommend consideration of

the BK Coefficient of Agreement for Binary Decisions (Lee and Del Fabbro, 2002)

for correcting raw consensus.
5 A coefficient which is not sensitive to prevalence (RE) was proposed by Maxwell (1977), however RE

is still depends on ratios, and is not sensitive to absolute numbers of observations. Interestingly, Maxwell

argues that it is false to argue that raters start from a position whereby �chance� agreement is a possibility,

and so rejected j where agreement is measured against chance.
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7. Conclusion

The concept of �inter-rater reliability� is essential for a workable taxonomy (e.g.

Groeneweg, 1996, p. 134). We have proposed the term �inter-rater consensus� (IRC)

(Davies et al., 2003) in order to avoid current confusion around the term �reliability�.
We have shown how consensus between users of taxonomies may:

(a) be overlooked (see reviews by Kirwin, 1992; Wagenaar and van der Schrier,
1997);

(b) be examined inappropriately by looking at correlations between overall frequen-

cies of codes assigned (Stanton and Stevenage, 1998; Groeneweg, 1996). (Wal-

lace et al., 2002, show data which demonstrate why this does not provide

evidence for consensus, and outline a method for a consensus trial.)

(c) be reported ambiguously or incompletely.

Recommendations for analysis and reporting have been made, including an
encouragement to consider alternative Bayesian measurements (e.g. BK; Lee and Del

Fabbro, 2002) because of problems with, for example, the j correction coefficient

(Cohen, 1960).
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