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Abstract 

 

Humans make mistakes in our decision-making and probability judgments. While the 

heuristics used for decision-making have been explained as adaptations that are both 

efficient and fast, the reasons why people deal with probabilities using the reported 

biases have not been clear. We will see that some of these biases can be understood as 

heuristics developed to explain a complex world when little information is available. 

That is, they approximate Bayesian inferences for situations more complex than the 

ones in laboratory experiments and in this sense might have appeared as an adaptation 

to those situations. When ideas as uncertainty and limited sample sizes are included in 

the problem, the correct probabilities are changed to values close to the observed 

behavior. These ideas will be used to explain the observed weight functions, the 

violations of coalescing and stochastic dominance reported in the literature. 

 

Keywords: Rationality, Heuristics, Evolution, Bounded Rationality, Bayesian 

Inference, Adaptation, Weight functions, Decision Making 
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1. Introduction 

 

Suppose you are one of our ancestors, without any access to all knowledge mankind 

would accumulate in the next hundred thousand (or few million) years. It doesn’t matter 

here if you are already a human or an ape or even some earlier ancestor. What matters is 

that you probably can’t depend, when using your problem solving and decision making 

skills, on much more than what you observe and the little information you can obtain 

from the other members of your specie, by whatever communication means are 

available to you. If spoken language is not fully developed yet, the information you will 

get from your equals will most likely be very limited by human standards.  Even if you 

are already a modern human, you would certainly not have access to all the information 

we have today and you have not learned anything about the rules of probability. But you 

must find ways to deal with uncertainty and, if you have ways to make predictions 

about the outcome of your actions, this might improve your survival chances. That is, if 

you have some way to analyze the world and come up with a description as close to the 

correct workings of your environment as possible, using your observations and what 

other people tell you about the frequency some events happen, that might prove to be a 

useful tool and a good adaptation, as long as the benefits you will obtain from it are 

greater than the costs associated with this tool, even if this tool is not perfect. 

 In other words, what you really need is a set of abilities that will allow you to 

obtain answers as close as possible to the correct evaluation, given your data. That is, 

answers close, but not necessarily equal, to those a full rational being would get. Of 

course, those abilities have to work well in the environment where you have to survive. 

If those abilities will fail in the laboratory tests your descendants will perform, but work 

 3



reasonably well in the complex problems you have to face, you are well adapted. Your 

descendants, when studying the mind they inherited from you might start to worry about 

what means to be rational and how and when their minds stop following the rules for 

rationality, but that is their problem. If getting closer to the correct rational behavior 

means more extra effort than the improved return from better decisions will provide, it 

won’t be a good adaptation to do better than you are already doing. 

But if you are one of the descendants, you might want to improve your decision 

making abilities, knowing what you should do and how you tend to think, including 

possible errors your brain is prone to make. And you will want to find explanations to 

why you actually think the way you do. While studying the problem of how a person 

should make a decision, Von Neumann and Morgenstern (1947) have shown it is 

possible to define rational behavior in a decision-making process as the behavior that 

chooses the alternative that will provide the highest expected utility return, given the 

probability distribution for the future events. Savage (1954) extended that result by 

introducing and developing the idea that what a rational being actually does is not 

maximize the expected utility by using a non-existent objective probability distribution, 

but maximize by using her subjective probability for the future events. Theses ideas 

have been developed into a full decision-making normative theory of rational behavior, 

where a rational agent will use Bayesian rules to update her knowledge and, given that 

knowledge, choose the best alternative (for a good review of many important results, 

see, per example, Bernardo (1994)). 

This means, among other things, that rational agents must be able to analyze 

every piece of information available in order to obtain probabilistic evaluations of the 

possible consequences of their decisions, so that they can choose the correct action that 

maximizes their utility. In practice, a rational being would have to have a perfect 
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memory and be able to perform any required calculations in basically zero time, what is 

certainly impossible. Real humans, on the other hand, have to make their decisions 

using brains that are limited both in the speed and in the amount of information they can 

deal with. Departures from the normative utility-maximizing behavior should therefore 

be expected and there are several known examples of different “mistakes” done by 

people in their decision-making process. These mistakes have been observed in 

laboratory experiments, from the violations of the cancellation principle observed in the 

Allais' (1953) and Ellsberg's (1961) Paradoxes to the effects of framing, observed by 

Tversky and Kahneman (1981), among others.  

Since our brains have to deal with these limitations, it is reasonable to assume 

that evolution would have provided us with heuristics that, although certainly not the 

same as full rationality, would be efficient given the limitations in our brain power and, 

for most problems of evolutive importance, capable of providing answers basically as 

good as possible to those of complete rationality. That is, humans probably use rules of 

thumb that allow them to make fast decisions, but that are subject to biases under some 

conditions. Simon (1951) proposed that we work with a bounded rationality, a concept 

that was later developed by a number of researchers, as reviewed in Gigerenzer and 

Selten (2001) or Selten (2001). Since any successful heuristics has to deal with the 

limits of our brains, they should be fast and frugal, as proposed by Gigerenzer and 

Goldstein (1996), but any rule of thumb we use also needs to be a good approximation 

to the results of complete rationality, at least for most of the problems our ancestors had 

to solve. Martignon (2001) has compared the decision-making heuristics with the 

optimal models of complete rationality, showing that there are circumstances where the 

fast heuristics can perform very well. Some models have shown that there are fast, 

surprisingly accurate heuristics for the problem of looking for the best action when there 
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are many different aspects to be considered and weighted in the decision process (see, 

per example the works of Hertwig (1999) and Selten (1998)). 

On probabilistic biases, there have also been some results showing that there are 

efficient heuristics. Per example, Gigerenzer and Hoffrage (1995) have shown that 

people are capable of dealing better with frequencies than probabilities in a typical 

Bayesian problem, what makes sense since the problems dealt with by our ancestors 

would probably be related to the frequencies of observed events, certainly not with the 

mathematical laws of Probability. Kareev et al (1997) have noticed that the use of small 

samples can make the detection of correlation easier, providing an efficient heuristics 

for the problem of association between variables. However, there are still many other 

mistakes made in human judgment that have been left unexplained as good 

approximations to real problems, per example, the weighting functions (as per example, 

in Prospect Theory observed by Kahneman and Tversky, 1979), or the evaluation of 

compound events probabilities, as observed by Cohen et al. (1979), or the observation 

of conservatism on the update of opinions, made by Phillips and Edwards (1966). 

As a consequence, there has been a recurrent critique of the heuristics program 

(Gilovich and Griffin (2002) have written a review about those critiques) based on 

arguments that say that human beings cannot be that dumb. Pinker (1997) has also 

proposed that any biases in human reasoning about probabilities should be due to the 

fact that our ancestors needed only a talent to work with frequencies and not real values 

of probabilities and it was indeed observed that humans have a tendency to work better 

with frequencies, as noted above. However, as we will see, simply accepting a statement 

about the observed frequency as the estimate for that frequency does not take into 

account several aspects of the complexity of inferential problems in the real world our 

ancestors had to deal with. In particular, this would completely ignore the fact that any 
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inference is subject to uncertainty, even more so those made by our ancestors from the 

limited number of observations they were available to collect for each problem. 

We will see that the problem of the probabilistic biases can be understood as an 

adaptation, in an environment where there is uncertainty, errors, deception and a need to 

learn. In this sense, it is possible that our brains are actually correcting the probability 

values to values that would represent a better prediction in natural environments, but not 

necessarily in laboratory experiments or math classes. Special attention will be given to 

explaining the weighting functions , that change the stated value  of the probability 

of an event to . Those functions are used in many theories describing human 

probability decisions, as per example, Prospect Theory (Kahneman and Tversky, 1979), 

Cumulative Prospect Theory, CPT (Kahneman and Tversky, 1992), as well as in models 

that describe paradoxes of CPT, such as transfer of exchange theory (Birnbaum and 

Chavez, 1997), or gains decomposition theory, by Luce (2000) and Marley and Luce 

(2001). All these models can be described as a general class of configural weight 

models, where the weight of a possibility can depend also on the other possibilities 

available. A good, recent review of these models, comparing their predictions with 

many experiments can be found in Birnbaum (2005).  

w p

( )pw

We will see that the way we deal with probabilities, regardless of which 

descriptive theory is actually correct, might be closer to rational Bayesian inference than 

one would expect from the literature, where our decision skills are often described as 

erroneous. We will see that the laboratory findings are consistent with the hypothesis 

that our brains are built to work as if the stated values were actually obtained from 

observations of a small sample of results. Adaptive Probability Theory, APT, will be 

presented as the idea that our brains have a way to deal with probability that might have 

been efficient problem solving for real problems with limited data, although it does fail 
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when tested in laboratory with probabilities known exactly, something that wouldn’t 

have happened to out ancestors. This article will show that APT can explain the 

observed S-shape of the weighting functions and we will see the ideas contained here 

are also able to explain the problems with coalescing and stochastic dominance 

violations that are in conflict with CPT. We will also see that the observed results that 

the weighting functions are not so well defined in the regions close to certainty can 

actually be seen as a simpler version of a sensitivity analysis. We will also propose 

possible explanations for the compound events probability problem and the 

conservatism biases. 

The approach in this article will be neither normative nor descriptive, but an 

attempt to explain how the observed behavior concerning probabilities can be an 

approximation to the rules of decision making and an adaptation to solving the problems 

our ancestors had to deal with. In this sense, it should be noticed that I am not proposing 

that people do think exactly like the approximations bellow, only that APT provides 

reasonable approximations to rational decision making under the circumstances our 

ancestors lived. And, since APT is actually compatible with the observed laboratory 

biases, it is quite possible that this is the reason why we deal with probability the way 

we do. Whatever the real computations our brains do is a different problem, dealt with 

by the several descriptive theories available.  

 

2. Detecting Relationships and Small Samples 

If detecting true relations is important enough that detecting relations where 

there are none is an acceptable price to pay, a heuristics that allows for fast recognition 

of present correlations, as the one proposed by Kareev et al (1997), would be quite 

useful. Per example, if one has to choose between two possible actions, A and B, and 
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there is no a priori reason why one would lead to the best outcome with higher 

probability, simply flipping a coin is as useful as a device to make the decision as any 

other. However, if there is any covariate that has been observed before and this variable 

can help predicting the best course of action, it would be advantageous to detect it as 

soon as possible. In that sense, the observation that small samples actually can help on 

this detection provides a good example of a possible successful heuristics for dealing 

with probabilistic evaluations. 

However, this early detection can certainly presents problems. It is easy to notice 

that this will lead to a number of wrong conclusions, especially false detections of 

correlation where none is present. Per example, if a sample with 6=n  observations for 

two uncorrelated variables is used, quite often, the sample will provide evidence that 

there is correlation and it won’t be rare that this evidence will get strong. A simple 

simulation, where samples were obtained for two variables obeying a uniform 

distribution between 0 to 1 were generated independently and the observed correlation 

calculated. After 10,000 pairs of samples were generated, one can see the curve is 

higher near the correct value of 0, but it does not decrease very fast. As a matter of fact, 

almost 32% of the samples observed had a correlation (negative or positive) of 0.5 or 

higher. For samples not so small, per example, for 20 pair of points, that number drops 

reasonably fast to only about 2.5% and more than 60% of the observed correlations lie 

between -0.2 and +0.2. Kareev’s results, however, are mostly important for the very 

small regions, for values of  under 8, showing that the early detection would work 

best if humans would actually use quite small samples. If, on one hand, using small 

samples help an early detection of correlates, without much trouble, on the other hand, 

using an uncorrelated variable to help with a decision process where one has no 

information available is not much different from flipping the coin, since it will basically 

n
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provide a random choice. If that is the best one could do, picking a wrong covariate will 

provide a result as good (or as bad) as anything available and increasing the chances of 

detecting a true correlate with less work, that is, with smaller costs, is actually a very 

good adaptation, even though it will lead to wrong decisions. It shouldn’t be such a 

surprise, therefore, that people can be convinced by too weak evidence when no better 

alternatives are available.  

 

3. Inference on Probabilities in Limited Samples 

In the experiments that suggested that humans use weighting functions in their 

decision making process, the scientist would present people with the details of different 

bets they could choose from.  Those bets differed by assigning different probabilities to 

different rewards and, usually, the probability value  (or simply Ap p , as we will use 

from now on) that a certain outcome A  would obtain was supposed to be known for 

certain. From a mathematical point of view, there was no uncertainty on the value of p , 

since the subsequent random draw would use exactly that value for chance and, 

therefore, our brain should use this information as a parameter known with certainty. 

However, in the environment where human minds developed, be it, from an evolutive 

point of view, the jungle where our ancestors lived, or, from a personal point of view, 

the environment where children are raised, certainty about the chances of an outcome is 

not something that will happen often, if at all. More likely, one has to infer, from a 

sample with finite size of previous observations, what is the probability that some event 

will happen again. In this sense, our minds would, in most daily situations, away from 

laboratory testing, arrive at much better results if this uncertainty was taken into 

account. 
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If the mind of a person is built to consider all probability evaluations as subject 

to error, as it is actually the case in real life problems, the information contained in p  

will be used to update her believes on the probability of outcome A, after some prior 

expectation about general probabilities. Therefore, it is reasonable to assume that the 

average probability will be a function of the stated probability, and that function can be 

called a weighting function . The correct way to update the prior knowledge is 

using the Bayes Theorem. For that, a model of how the information is obtained is 

necessary. 

( )pw

3.1 Estimating from a binomial likelihood 

Of course, if there is no uncertainty, the correct inference is that the stated value 

of  is the real one. But that would never have happened to our ancestors. For them, all 

they had were observed frequencies and they’d have to deal with the uncertainty 

associated to that. If, in  observations, the outcome she was interested about was 

observed 

p

n

s  times, that is, the observed  frequency was ns  and if one takes into account 

the uncertainty, this becomes a classical problem of binomial inference on the 

probability of an event. The binomial likelihood is ( ) ( ) sns pppsl −−∝ 1|  and, since we 

are looking for easy heuristics, one should choose the easiest approach, or the conjugate 

prior. Or, in other words, the prior should be a Beta distribution with parameters  and 

 (average equal to 

a

b )( baa + ), given by ( ) ( ) 11 1 −− −∝ ba pppf  (for more details, check 

Bernardo, 1994). Since the posterior distribution is obtained, aside the normalization 

constant, by multiplying the likelihood and the prior, it will still be a Beta, with 

parameters  and , with an average value given by  sa + snb −+

ban
pna

ban
sa

++
+

=
++

+
=µ      (1) 

No integration is actually necessary, if the mean is all one is interested about. 
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Notice that, if one only hears a probability statement,  is not known. Therefore, 

even in the simplest case, where the stated value  is supposed to be the observed 

frequency in a finite sample, if the sample size n  is not known previously, it must be 

integrated out from a priori distribution for , something that might be quite difficult to 

specify. If one knew the sample size, Equation 1 would provide the average estimate for 

the probability, that is, . In the previous section, we have seen that often humans 

use a small value for , at least when looking for covariates. There is no reason to 

believe this would be different now. It seems reasonable to assume that  can not be too 

large, since our ancestors would, for most problems, not have a very large sample of 

observations to draw their conclusions from. 

n

p

n

( )pw

n

n

Therefore, we need some reasonable and solid assumptions about . For a fixed 

sample size, Equation 1 provides a weighting function that is a straight line, but no 

longer the  line. However, for a fixed value of n , values of  close enough to 

0 or 1 cannot be realistically achieved. Of course, it is also true that most values of  

are not possible for any size of the sample, and this observation could be related with 

human inability to distinguish with close values of . We have to keep in mind that 

what we are looking for is not a rigorous mathematical analysis, but a good heuristics 

that should approximate the rigorous analysis fairly well is some cases. Still, it is clear 

that, in order to observe a very unlikely event (or, equivalently, the non-occurrence of a 

very likely event), the size of  can not be small and must increase. An evaluation of a 

probability of 0.5 can be done (subject to error) with a small sample size, per example, 

6, however the same sample size would never be able to predict a chance of 1 in 1,000. 

Therefore, we will assume that  is a function 

n

( ) ppw = p

p

p

n

n ( )pn  of the probability p  for a good 
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heuristics and it is also reasonable to assume that ( )pn  diverges as or . 

Given such a function, the value of 

0→p 1→p

( )pw  becomes determined uniquely for each .  p

Of  course, this is only a reasonable choice and not a demonstration. Still, values 

around 50% can mean simply that the person stating the value has no information at all 

about the problem, that is, there is a chance the sample size would be basically zero in 

that region. As the probability goes to one or zero, the person is actually saying she 

knows something about the problem and, at the very least, the chance that  is zero 

becomes smaller. In average, that means that our evaluation for n  must increase as we 

go from the 50% towards the near certainty regions. 

n

Figure 1 about here 

Figure 1 shows the resulting weighting curves for the cases where  and 

, where 

γ−∝ tn

( )tn ln∝ ( ) ( pppt −= 1;min ) , compared  to the curve proposed for the observed 

data by Prelec(2000), as well as the rational choice ( ) ppw = .  The proportionality 

factor for the sample size dependence to p  was chosen for all of the curves so that 

, an arbitrary value that provided shapes close to those described in the 

literature. For larger sample sizes 

( ) 45.0 =n

( )5.0n , the results started to become closer to the 

 curve too fast, as the data soon become stronger than the priori. This seems to 

indicate that our brains are working with the hypothesis that the sample sizes used for 

inference are rather small. The parameters for the priori distribution were taken to be 

 and , chosen as to provide the largest possible variance (given the 

constraints  and ) compatible with the observation that the fixed point where 

 is actually close to 

( ) ppw =

1=a 1−= eb

1≥a 1≥b

( ) ppw = ep 1= , instead of 5.0=p . The uniform prior, 

representing no prior knowledge, would be given by 1== ba  and this is the one we 

would expect to be the one used, since the problem is symmetric on the estimation of p  
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and . We will return to the reasons why our brains might be working to approximate 

a different prior later. Of course, if this value was close to the average value of the 

probabilities humans had to estimate, this would be more than enough, but, as we will 

see, other reasons are also possible. 

p−1

It should be noted that the case where 1=γ  corresponds to the case where the 

sample size increases fast enough so that an unlikely event is always expected to be 

observed, even for extreme values of p . This is not true for values of γ  smaller than 

1.0, although those values do provide a result closer to the observed curves. The fact 

that  does not increase fast enough for the curve observed in human reasoning can 

be understood as how much the data is considered trustworthy. Larger sample sizes 

mean the data is more important than the priori. Therefore, if there were some 

possibility of error or deception in the data, it would be a reasonable heuristics to assign 

it less strength by means of a smaller sample size and it seems reasonable that, if a too 

extreme probability was stated for our ancestors, that was probably due to exaggeration 

instead of observation. That is, it is reasonable to assume that 

( )pn

( )pn  for an efficient 

heuristics might not increase as fast as it should, from a mathematical point of view. 

3.2 Close to certainty behavior 

Figure 2 about here 

Another interesting feature to observe is the behavior of ( )pw  as , since 

that is the region where  the sample size is not increasing fast enough. The behavior of 

the inferences as one gets close to certainty is shown in Figure 2. While the different 

curves agree reasonably well in the uncertainty regions, the ratio between the inferences 

obtained with different functions 

0→p

( )pn  and  ( )pm  will only go to 1.0 when  goes to 

zero if the both sample sizes  and 

p

( )pn ( )pm  go to infinity at least as fast as curves 
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where γ  is strictly above 1.0. Since this doesn't seem to be the case for our reasoning, 

that ratio will actually diverge as p  goes to zero or to one, and the actual value of the 

inference becomes too sensitive to the choice of the prior model for . That is, by 

not been able to assign exact values for 

( )pn

( )pw  for different values of probability (the 

difference between 1 in a million or 5 in a million depends on the context), our brains 

might be adopting an heuristics based on the fact that a sensibility analysis in this region 

will show that the values are approaching zero at very different speeds. Different priors 

will lead to different inferences, meaning the results obtained are not robust and, 

therefore, the value of  in this region is not so well defined in the sense of how fast 

it actually approaches zero. 

( )pw

 

4. Coalescing and Stochastic Dominance Violations 

The results of the previous section  agree with the observed behavior when a bet 

with only two possibilities is proposed to people. If three or more possibilities exist, 

new effects have been observed, as per example, violations of coalescing and stochastic 

dominance, that can be explained by some of the descriptive theories, but not all of 

them (in particular, CPT predicts that coalescing should be respected). As we will see, if 

one has to estimate probabilities with uncertainty, these properties can be explained in 

the same way we have explained the weighting functions in the previous section, by 

assuming our brains were built with heuristics that approximate rational behavior under 

certain circumstances. 

4.1 Coalescing  

Coalescing is the property that says it should be indifferent if a possible result 

with a certain probability and return is split into two, with the same return for both 
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possibilities and total probability equal to the original split probability. That is one 

should consider that the two following bets, A={$10,0.90; $100,0.10} and 

B={$10,0.90; $100,0.05; $100,0.05} (where each pair is a possible result, with the first 

number providing the return and the second, the probability of obtaining it), are equally 

desirable, since they are the same bet. 

In order to test if people do obey coalescing, Birnbaum (2005) presents an 

experiment where each participant had to choose between two bets, A and B, and then 

made the choice between the bets A’ and B’, that were the same as A and B, except that 

they were presented with the alternatives that provided the same return coalesced, as we 

can see in Table 1. 

Insert Table 1 about here 

If a person respects coalescing, if she chose A over B, she should necessarily 

choose A’ over B’. However, people showed a consistent tendency to choose B over A 

and A’ over B’ (almost half of the participants did switch from B to A’). Since this 

choice does contradict rationality, this seems to be another serious mistake in human 

reasoning. 

However, this is not necessarily so. Notice that in one case we have two 

possibilities and in the other three possible outcomes. With three possible outcomes, if 

our brain is again considering, without our knowledge, that there is uncertainty in the 

probabilities, we need to obtain an approximation for the problem where we have to 

estimate  and  (the third will just be p q qp −−1 ). This is analogous to the binomial 

problem and it a simple extension of it will suffice. If one made  observations, from 

where 

n

x  cases were observed to match the first possibility (probability ), , the 

second and , the last one,  we would have a likelihood 

p y

z ( ) ( ) yxnyx qpqppsl −−−−∝ 1|  

and the easiest prior to use would be a extension of the Beta function to more variables, 
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that is, a Dirichlet function, given by ( ) ( ) 111 1, −−− −−∝ cba qpqpqpf . Notice that we have 

one extra parameter and now the uniform priori will be given by , that 

provides equal initial chances, 1/3, to each case. Notice that this is close to the average 

value we had to use to fit the curve in the last section, meaning that our brain might be 

using a priori close to the one proposed there because it was built to work with 

problems where there are not only two excluding possibilities, but three. 

1=== cba

 Once more, the expression for the average values for  and  have a very 

simple analytic expression, once the integration is done and are given by 

p q

( )

( )
cban

qnb
qw

cban
pnapw

+++
+

=

+++
+

=

     (2) 

Supposing again that  is estimated from the most extreme probability, that is 

from 

n

( qpqpt − )−= 1,,min , one can choose again  and estimate the weighted 

probabilities for each of the prospects in Table 1. It can be thought that, since we have 

more possibilities, that, by itself should be enough to require a larger sample size and 

this is an issue that still needs to be explored further. For this example, it is assumed that 

only the probability values influence the sample size. One still has to choose a value for 

γ−∝ tn

γ . Table 1 shows that values around 0.3 to 0.7 are good matches, but one can see from 

Table 2 that 0.3 provides a better match to Prelec function. Also, one has that, in this 

specific example, one must have γ  less than 0.3966 if the observed results are to be 

explained. 

If one takes 3.0=γ  (an arbitrary value compatible with the observations), the 

results for the weighting functions and the expected returns r  can be seen in Table 2. In 

this case, the choices are actually B over A and A’ over B’, meaning that people will not 

obey coalescing. The priors were taken to be uniform in both cases. 
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Table 2 about here 

At first sight, these results might seem strange, but they can be easily explained. 

First, since the second choice bets had one less possibility, the priors mean different 

things for each of them (they do mean the same if one decides to take  and ). 

But, more important, since the sample size was chosen to depend on the extreme value, 

it is different in each case and it is actually smaller for the A’ prospect, since it has less 

extreme probabilities. 

1=a 2=b

4.2 Stochastic Dominance 

Stochastic dominance means that one bet clearly dominates the other, providing 

results that are, at worst, equal to the second bet, the second should never be chosen 

over the first.  Again, following an example of Birnbaum (2005), if one has 

G={$96,0.9; $12,0.1} and G+={$96,0.9; $14,0.05; $12,0.05}, it is easy to see that G+ 

clearly dominates G, since the only difference between the two is that the 10% branch 

of G bet was split into two possibilities, one paying the same amount and the other 

increasing the amount of money paid. However, if one repeats the analysis of the 

previous section, the extreme probability in G is 0.1 and in G+, 0.05, meaning that G+ 

will be analyzed as if resultant of a larger sample and, therefore, the weight function for 

the best unaltered result will be larger. The weighted expected returns are, this way, 

 and . Again, our analysis of the situation indicates that, if there 

were uncertainty, G would not dominate G+ and G+ might be considered to provide a 

better expected return. For the worst bet proposed in Birnbaum, G-={$96,0.85; 

$90,0.05; $12,0.5}, where the largest possible outcome was split into two branches, one 

with lower return, one has a return of 

85.74=Gr 68.79=+Gr

48.81=−Gr , better not only than G, but also G+, 

despite the fact it is dominated by both other bets, agreeing once more with the 

observed violations of rationality. 
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5. Other Heuristics 

APT can certainly be extended to other situations where humans seem to make 

probabilistic mistakes. Per example, Cohen et al. (1979) reported that people tend to 

overestimate the probability of conjunctive events. If people are asked to estimate the 

probability of a result in a two-stage lottery with equal probabilities in each state, their 

answer was far higher than the correct 25%, showing an average value of 45%.  

This calculus is certainly wrong from a probabilistic point of view, where 

independence can be assumed and the value 0.5 is actually known for sure. However, if 

one was actually unsure of the real probability and only thought that, in average, the 

probability of a given outcome in the lottery was 50%, the independence becomes 

conditional on the value of . The chance that two equal outcomes will obtain is given 

by  and, since 

p

2p p  is actually unknown, one has to integrate it in order to have an 

average estimate for that, getting, for a uniform priori, 31.1
1

0

2 =∫ dpp . 

An alternative way to understand it, is to notice that, if one considers the two 

draws as one at a time, instead of both results, the first result should be used as 

inference about the real probability and we'd have, from assuming initially an uniform 

priori (50% chance), that the probability of the same result happening the next time 

would actually be, in average, 2/3, meaning that the compound probability of two equal 

results would be altered to 1/3. That is, for real problems where only conditional 

independence exists, the result is not the correct 25% for the situation where p  is 

known to be 0.5 with certainty. Of course, if the uncertainty in the priori was smaller, 

the result would become closer to 25%. 
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Furthermore, if the conditional independence hypothesis is also dropped, the 

predicted results can become even closer to the actual observed behavior. And in many 

situations, especially when learning about some system where not much is actually 

known, even conditional independence might become a too strong assumption. 

Suppose, per example, that our ancestors wanted to evaluate the probability of finding 

predators at the river they used to get water from. If a rational man had a prior uniform 

distribution for the chance the predator would be there and, after that, only one 

observation made an hour ago where the predator was actually seen, the average chance 

a predator would be by the river would be increased, as above, to 2/3. However, if he 

wanted to go to the river only an hour later again, the events would not be really 

conditionally independent, as the predator might still be there. The existence of 

correlation between the observations implies that the fact the predator had been spotted 

earlier should make it more likely to observe it there again, increasing the probability 

from 2/3. That is, the observed estimate around 45% can be at least partially explained 

as someone trying to make inferences when the concepts of independence or even 

conditional independence do not necessarily hold. 

It is important to keep in mind that our ancestors had to deal with a world they 

didn't know how to describe and model as well as we do nowadays. It would make 

sense for a successful heuristics to include the learning about the system in study and, in 

that sense, the notion of independent sampling for similar events might not be natural in 

every case, as we have just seen. When faced with the same situation, not only the 

previous result can be used as inference for the next ones, but also it might have 

happened that some covariance between the results  existed and this might be the origin 

of the conjunctive events bias. 
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Another observed bias that can also be explained as a heuristics adapted to 

estimating probabilities in real, complex problems is conservatism. Conservatism can be 

defined as the fact that people seem to update their probability estimates slower than the 

rules of probability dictate, when presented with new information. That is, given their 

prior estimates and new data, the data is given less importance than it should and the 

subjective probabilities, after learning the new information, changes less than it should. 

This heuristics can be at least partially explained if one includes in the description of the 

problem the possibility that the new information can be erroneous or deceptive. If the 

probability of deception, including here also errors, is sufficiently large, the value of 

new data should be challenged and the estimates should actually change slower than the 

simpler calculation, not including this possibility, would show. This, of course, does not 

mean that people actually distrust the reported results, at least, not in a conscious way. 

Instead, it is the heuristics that work inside our brains that might have evolved in a 

world where the information available was subject to all kind of errors. Notice that the 

same effect seems to be happening for the assumed sample sizes for extreme 

probabilities, since it does not grow as fast as it should.  

 

6. Conclusions 

We have seen that a number of probabilistic heuristics used by people can be 

explained by APT, that is, the idea that our minds might be adapted to a world far more 

complex than that of laboratory experiments or Probability classes and that our brains 

somehow are built to deal with probabilities that are uncertain. These heuristics were 

shown to be actually close to the results of Bayesian inferences, under the right 

circumstances, despite the fact that, in laboratory situations, where the probabilities are 

supposed to be exact, they do provide wrong answers. The weighting functions (as in 
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CPT or in configural weight models) can be understood as equivalent to a problem 

where the person who listens to a stated probability value believes that this value is 

actually an observed frequency, obtained from a finite and small sample, as long as 

some reasonable assumptions about the sample size as a function of the probability are 

made. It was shown that, since the heuristics is very sensitive to the prior for the sample 

size when one gets close to certainty, it is natural that the weighting functions will be 

uncertain in those regions. Since a small sample size can a good solution when 

obtaining information has a cost, it is reasonable that our mental processes would 

assume that stated probabilities were actually observed frequencies subject to sampling 

error and try to correct this. However, it should be clear that the calculations done above 

are not necessarily those performed by our brains, they only show that our biases are 

actually a better approximation than previously thought. 

We have also seen that the observed violations to CPT can also be explained and 

that APT can explain why people violate coalescing and stochastic dominance. 

Although both rules are good normative rules, the laboratory tests assume that 

probabilities are known with certainty, an assumption our brains seem not to be built to 

work with. Under uncertainty, the sample size becomes an important factor and splitting 

probabilities can change the evaluation of the sample size used, therefore affecting all 

reasoning. If our brains are built to approximate these results, they actually should 

violate those principles, although it is still true that the laboratory observations are 

mistakes in our reasoning. Evolution does not provide the best possible solution, only 

one that works well in the environment where our ancestors lived. 

The application of the idea that what human mind does is to analyze problems as 

an inference problems subject to errors, deception, and where independence is not 

assumed, was also capable of providing a possible explanation on the conjunctive 
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events as well as the conservatism biases, making it clear that the probabilistic biases in 

human decision-making is completely compatible with the evolutionary point of view. 

The laboratory observations and the descriptive theories can be better explained as a 

result of adaptations to a complex world. All the heuristics seem to work with the 

supposition that the world is actually more complex than the one tested in laboratory 

experiments, that is our brains is probably better adapted to real life than to laboratory 

problems, as one should expect. In this sense, these heuristics might have provided our 

ancestors with an efficient brain, capable of evaluating chances in a competent way, but 

not necessarily capable of performing correct probability calculations.  

Adaptive Probability theory is a way to explain why we make the errors we 

make, showing they are actually good heuristics for real problems. It is neither a 

completely descriptive theory nor normative, since it uses the prescriptions of rational 

behavior to obtain reasonable approximations that we have seen match the observed 

behavior. In that sense, it is a theory to answer not how we do, but why we do it. More 

complete comparisons with the existent descriptive models are currently being prepared 

and tests to check how close APT actually described human behavior are being planned. 
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A: 85% to win $100 

     10% to win $50 

      5% to win $ 50 

B: 85% to win $100 

     10% to win $100 

      5% to win 7 

A’: 85% to win $100 

     15% to win $50 

B’: 95% to win $100 

     5% to win 7 

 

Table 1: Bets used by Birnbaum (2005) to test coalescing. Instead of presenting 

the bets as frequencies, as in the test reported, they are presented here as probabilities, 

for ease of comparison with the equations. 

 

 

 

 

 

A:  and  
127.0)05.0(
164.0)10.0(
709.0)85.0(

=
=
=

w
w
w

4.85=r B: 
127.0)05.0(
164.0)10.0(
709.0)85.0(

=
=
=

w
w
w

 and 2.88=r  

A’:  and  24.0)15.0(
76.0)85.0(

=
=

w
w

0.88=r B’: 14.0)05.0(
86.0)95.0(

=
=

w
w

 and 0.87=r  

 

Table 2: Weighted probabilities and expected returns for the bets for 3.0=γ  and 

uniform priors. 
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Figure 1: Weighting functions as a function of the stated probability, for the expected 

utility case compared to the logarithmic curve as well as the curves for a few values 

ofγ . The functional shape proposed by Prelec(2000) is also shown for comparison. 
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Figure 2: Behavior of the weighting functions as . 0→p
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