Cogprints

Electrophysiological Mechanisms of Ventricular Fibrillation Induction

Chattipakorn, Nipon and Shinlapawittayatorn, Kirkwit and Chattipakorn, Siriporn (2005) Electrophysiological Mechanisms of Ventricular Fibrillation Induction. [Journal (Paginated)]

Full text available as:

[img]
Preview
PDF
179Kb

Abstract

Ventricular fibrillation (VF) is known as a main responsible cause of sudden cardiac death which claims thousands of lives each year. Although the mechanism of VF induction has been investigated for over a century, its definite mechanism is still unclear. In the past few decades, the development of new advance technologies has helped investigators to understand how the strong stimulus or the shock induces VF. New hypotheses have been proposed to explain the mechanism of VF induction. This article reviews most commonly proposed hypotheses that are believed to be the mechanism of VF induction.

Item Type:Journal (Paginated)
Keywords:ventricular fibrillation, induction; mechanism
Subjects:JOURNALS > Indian Pacing and Electrophysiology Journal
ID Code:4173
Deposited By:Indian Pacing and Electrophysiology, Journal
Deposited On:14 Apr 2005
Last Modified:11 Mar 2011 08:55

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

1. Erichsen JE. On the influence of the coronary circulation on the action of the heart. Lond Mag Gazette. 1842;2:561-565.

2. Wiggers CJ, Wégria R. Ventricular fibrillation due to single, localized induction and condenser shocks applied during the vulnerable phase of ventricular systole. Am J Physiol. 1940;128:500-505.

3. Mines GR. On circulating excitations in heart muscles and their possible relation to tachycardia and fibrillation. Trans Roy Soc Can. 1914;4:43-52.

4. Han J, Moe GK. Nonuniform recovery of excitability in ventricular muscle. Circ Res. 1964;14:44-60.

5. Kuo CS, Reddy CP, Munakata K, Surawicz B. Arrhythmias dependent predominantly on dispersion of repolarization. In: Zipes DP,Jalife J, eds. Cardiac Electrophysiology and Arrhythmias. Orlando: Grune and Stratton: 1985:277-285.

6. Marques MG, Motta JC, Norgueira RA. The mechanism of atrial flutter. Cardiologia. 1962;40:269-280.

7. Sano T, Sawanobori T. Mechanism initiating ventricular fibrillation demonstrated in cultured ventricular muscle tissue. Circ Res. 1970;26:201-210.

8. Sano T, Sawanobori T. Abnormal automaticity in canine Purkinje fibers focally subjected to low external concentrations of calcium. Circ Res. 1972;31:158-64.

9. Surawicz B, Steffens T. Cardiac vulnerability. Cardiology Clinics. 1973;5:160-181.

10. Moe GK, Abildskov JA, Han J. Factors responsible for the initiation and maintenance of ventricular fibrillation. In: Surawicz B,Pellegrino ED, eds. Sudden Cardiac Death. New York, NY: Grune and Stratton: 1964.

11. Han J, Millet D, Chizonitti B, Moe GK. Temporal dispersion of recovery of excitability in atrium and ventricle as a function of heart rate. Am Heart J. 1966;71:481-487.

12. Koller BS, Karasik PE, Solomon AJ, Franz MR. Relation between repolarization and refractoriness during programmed electrical stimulation in the human right ventricle: Implications for ventricular tachycardia induction. Circulation. 1995;91:2378-2384.

13. Han J. Ventricular vulnerability to fibrillation. In: Dreifus LS,Likoff W, eds. Cardiac Arrhythmias. New York: Grune and Stratton, Inc.: 1973:87-95.

14. Han J, de Jalon PG, Moe GK. Fibrillation threshold of premature ventricular responses. Circ Res. 1966;18:18-25.

15. Anderson JL, Rodier HE, Green LS. Comparative effects of beta-adrenergic blocking drugs on experimental ventricular fibrillation threshold. Am J Cardiol. 1983;51:1196-1202.

16. Bransford PP, Varghese PJ, Tovar OH, Milne KB, Jones JL. Epinephrine reduces ventricular fibrillation threshold and stabilizes fibrillation by reducing cellular refractory period during fibrillation. Pacing and Clin Electrophys. 1993;16:866.

17. Moe GK, Rheinboldt WC, Abildskov JA. A computer model of atrial fibrillation. Am Heart J. 1964;67:200-220.

18. Fabritz CL, Kirchhof PF, Behrens S, Zabel M, Franz MR. Myocardial vunerability to T wave shocks: relation to shock strength, shock coupling interval, and dispersion of ventricular repolarization. J Cardiovasc Electrophysiol. 1996;7:231-242.

19. Behrens S, Li C, Fabritz CL, Kirchof PF, Franz MR. Shock-induced dispersion of ventricular repolarization: Implications for the induction of ventricular fibrillation and the upper limit of vulnerability. J Cardiovasc Electrophysiol. 1997;8:998-1008.

20. Han J, Garcia de Jalon P, Moe GK. Adrenergic effects on ventricular vulnerability. Circ Res. 1964;14:516-524.

21. Frazier DW, Wolf PD, Wharton JM, Tang ASL, Smith WM, Ideker RE. Stimulus-induced critical point: Mechanism for electrical initiation of reentry in normal canine myocardium. J Clin Invest. 1989;83:1039-1052.

22. Knisley SB, Smith WM, Ideker RE. Effect of field stimulation on cellular repolarization in rabbit myocardium: Implications for reentry induction. Circ Res. 1992;70:707-715.

23. Dillon SM, Wit AL. Action potential prolongation by shock as a possible mechanism for electrical defibrillation. Circulation. 1989;80:II-96.

24. Dillon SM. Optical recordings in the rabbit heart show that defibrillation strength shocks prolong the duration of depolarization and the refractory period. Circ Res. 1991;69:842-856.

25. Lee RJ, Liem LB, Cohen TJ, Franz MR. Relation between repolarization and refractoriness in the human ventricle: Cycle length dependence and effect of procainamide. J Am Coll Cardiol. 1992;19:614-618.

26. Kirchhof PF, Fabritz CL, Zabel M, Franz MR. The vulnerable period for low and high energy T-wave shocks: Role of dispersion of repolarization and effect of d-sotalol. Cardiovasc Res. 1996;31:953-962.

27. Tovar OH, Jones JL. Biphasic defibrillation waveforms reduce shock-induced response duration dispersion between low and high shock intensities. Circ Res. 1995;77:430-438.

28. Behrens S, Franz MR. Substrate-trigger interactions: Role of ventricular repolarization. In: Dunbar SB, Ellenbogen KA,Epstein AE, eds. Sudden Cardiac Death: Past, Present, and Future. Armonk, NY: Futura Publishing Co., Inc.: 1997:53-73.

29. Kuo C-S, Munakata K, Reddy CP, Surawicz B. Characteristics and possible mechanism of ventricular arrhythmia dependent on the dispersion of action potential durations. Circulation. 1983;67:1356-1367.

30. Hoffman BF, Cranefield PF. The physiological basis of cardiac arrhythmias. Am J Med. 1964;37:670.

31. Daggett WM, Wallace AG. Vagal and sympathetic influences on ectopic impulse formation. In: Dreifus LS,Likoff W, eds. Mechanisms and Therapy of Cardiac Arrhythmias. New York, NY: Grune & Stratton, Inc.: 1966.

32. Li HG, Jones DL, Yee R, Klein GJ. Defibrillation shocks produce different effects on Purkinje fibers and ventricular muscle: implications for successful defibrillation, refibrillation and postshock arrhythmia. J Am Coll Cardiol. 1993;22:607-614.

33. Shibata N, Chen P-S, Dixon EG, Wolf PD, Danieley ND, Smith WM, Ideker RE. Influence of shock strength and timing on induction of ventricular arrhythmias in dogs. Am J Physiol. 1988;255:H891-H901.

34. Chen P-S, Wolf PD, Dixon EG, Danieley ND, Frazier DW, Smith WM, Ideker RE. Mechanism of ventricular vulnerability to single premature stimuli in open-chest dogs. Circ Res. 1988;62:1191-1209.

35. Wharton JM, Wolf PD, Smith WM, Chen P-S, Frazier DW, Yabe S, Danieley N, Ideker RE. Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation. Circulation. 1992;85:1510-1523.

36. Winfree AT. When time breaks down: The three-dimensional dynamics of electrochemical waves and cardiac arrhythmias. Princeton, NJ: Princeton University Press; 1987.

37. Walcott GP, Walcott KT, Ideker RE. Mechanisms of defibrillation. J Electrocardiol. 1995;28:1-6.

38. Chen P-S, Wolf PD, Melnick SD, Danieley ND, Smith WM, Ideker RE. Comparison of activation during ventricular fibrillation and following unsuccessful defibrillation shocks in open chest dogs. Circ Res. 1990;66:1544-1560.

39. Zhou X, Daubert JP, Wolf PD, Smith WM, Ideker RE. Epicardial mapping of ventricular defibrillation with monophasic and biphasic shocks in dogs. Circ Res. 1993;72:145-160.

40. Usui M, Callihan RL, Walker RG, Walcott GP, Rollins DL, Wolf PD, Smith WM, Ideker RE. Epicardial sock mapping following monophasic and biphasic shocks of equal voltage with an endocardial lead system. J Cardiovasc Electrophysiol. 1996;7:322-334.

41. Chen P-S, Shibata N, Dixon EG, Martin RO, Ideker RE. Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation. 1986;73:1022-1028.

42. Chen P-S, Feld GK, Kriett JM, Mower MM, Tarazi RY, Fleck RP. The relationship between the upper limit of vulnerability and the defibrillation threshold in humans. Pacing and Clin Electrophys. 1992;15:530.

43. Ideker RE, Tang ASL, Frazier DW, Shibata N, Chen P-S, Wharton JM. Ventricular defibrillation: Basic concepts. In: El-Sherif N,Samet P, eds. Cardiac Pacing and Electrophysiology. Orlando: W. B. Saunders Co.: 1991:713-726.

44. Ideker RE, Chen P-S, Zhou X-H. Basic mechanisms of defibrillation. J Electrocardiol. 1991;23 (suppl):36-38.

45. Efimov IR, Gray RA, Roth BJ. Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J Cardiovasc Electrophysiol. 2000;11:339-353.

46. Chattipakorn N, Fotuhi PC, Sreenan KM, White JB, Ideker RE. Pacing after shocks stronger than the upper limit of vulnerability: Impact on fibrillation induction. Circulation. 2000;101:1337-1343.

47. Chattipakorn N, Rogers JM, Ideker RE. Influence of postshock epicardial activation patterns on initiation of ventricular fibrillation by upper limit of vulnerability shocks. Circulation. 2000;101:1329-1336.

48. Chattipakorn N, Fotuhi PC, Zheng X, Ideker RE. Left ventricular apex ablation decreases the upper limit of vulnerability. Circulation. 2000;101:2458-2460..

49. Davidenko JM, Kent PF, Chialvo DR, Michaels DC, Jalife J. Sustained vortex-like waves in normal isolated ventricular muscle. Proc Natl Acad Sci USA. 1990;87:8785-8789.

50. Cabo C, Pertsov AM, Davidenko JM, Baxter WT, Gray RA, Jalife J. Vortex shedding as a precursor of turbulent electrical activity in cardiac muscle. Biophys J. 1996;70:1105-1111.

51. Jalife J, Berenfeld O, Mansour M. Mother rotors and fibrillatory conduction: a mechanism of atrial fibrillation. Cardiovasc Res. 2002;54:204-16.

Metadata

Repository Staff Only: item control page