Cogprints

Activation of G protein-coupled receptors entails cysteine modulation of agonist binding

Rubenstein, Lester A. and Lanzara, Richard G. (1998) Activation of G protein-coupled receptors entails cysteine modulation of agonist binding. [Journal (Paginated)]

Full text available as:

[img]
Preview
PDF
4Mb

Abstract

The increase of the affinity of agonists with an increase in pH and experiments using thiol-specific reagents indicate that G protein-coupled receptors contain an ionizable cysteine residue at the ligand binding site. Since treatment of receptors with reducing agents produces functional activation and potentiates agonist stimulation, it is likely that this free sulfhydryl modulates receptor activation. We have derived a two-state acid-base model for cysteine modulation of ligand binding which leads to a description of ligand efficacy. We have shown that pH-dependent binding of agonists is closely correlated with measurements of ligand efficacy at the 5-HT2A receptor. In general, efficacy is determined by the preference of a ligand for the base of the receptor. Efficacy may also be described in thermodynamic terms as the coupling free energy involving a ligand and the acid and base states of the receptor. Molecular modeling of the third transmembrane domain of the 5-HT2A receptor, which contains a conserved cysteine, shows that efficacy is determined by the difference between the electrostatic interaction energies of a ligand with the acid and base forms of the receptor model. The difference in interaction energy between the two forms of cysteine makes the largest contribution to this electrostatic interaction energy difference. Therefore, the cysteine makes the largest contribution to ligand efficacy. Using this approach, we can distinquish between the efficacies of agonists with varying molecular structures and account for the differences between the properties of agonists and antagonists.

Item Type:Journal (Paginated)
Keywords:sulfhydryl, ligand efficacy, thiol, two-state model, receptor theory, signal activation, molecular model, cysteine
Subjects:Neuroscience > Biophysics
Neuroscience > Neural Modelling
Neuroscience > Neurophysiology
Biology > Theoretical Biology
Neuroscience > Neuropharmacology
ID Code:4095
Deposited By:Lanzara, Dr. Richard G.
Deposited On:16 Feb 2005
Last Modified:11 Mar 2011 08:55

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

REFERENCES

1. Strader, C. D., T. M. Fong, M. R. Tota, D. Underwood, and R. A. F. Dixon.

Structure and function of G protein-coupled receptors. Annu. Rev.

Biochem. 63:101-132 (1994).

2. Stephenson, R. P. A modification of receptor theory. Brit. J. Pharmacol.

11:379-393 (1956).

3. Kenakin, T. Efficacy as the molecular property of a ligand. Trends

Pharmacol. Sci. 16:84-85 (1995).

4. De Lean, A., J. M. Stadel, and R. J. Lefkowitz. A ternary complex model

explains the agonist-specific binding properties of the adenylate cyclase-

coupled _-adrenergic receptor. J. Biol. Chem. 255:7108-7117 (1980).

5. Samama, P., S. Cotecchia, T. Costa, and R. J. Lefkowitz. A mutation-

induced activated state of the _2-adrenergic receptor. J. Biol. Chem.

268:4625-4636 (1993).

6. Lefkowitz, R. J., S. Cotecchia, P. Samama, and T. Costa. Constitutive

activity of receptors coupled to guanine nucleotide regulatory proteins.

Trends Pharmacol. Sci. 14:303-307 (1993).

7. Battaglia, G., M. Shannon, B. Borgundvaag, and M.Titeler. pH-dependent

modulation of agonist interactions with [3H]-ketanserin-labelled receptors.

Life Sci. 33:2011-2016 (1983).

8. Hall, M. D, H. Gozlan, M. B. Emerit, S. El Mestikawy, L. Pichat, and M.

Hamon. Differentiation of pre- and post-synaptic high affinity serotonin

receptor binding sites using physico-chemical parameters and modifying

agents. Neurochem. Res. 11:891-912 (1986).

9. Motulsky, H. J., and P. A. Insel. Influence of sodium on the _2-adrenergic

receptor system of human platelets: role for intraplatelet sodium in receptor binding. J. Biol. Chem. 258:3913-3919 (1983).

10. Gende, O. A., M. C. Camilion de Hurtado, and H. E. Cingolani. Efecto de

las variaciones del pH sobre la union de agonistas y antagonistas al

receptor beta adrenergico. Acta Physiol. Pharmacol. Latinoam. 35:205-

216 (1985).

11. Hollis, C. M., and P.G. Strange. Studies on the structure of the ligand-

binding site of the brain D1 dopamine receptor. Biochem. Pharmacol.

44:325-334 (1992).

12. Neve, K. A. Regulation of dopamine D2 receptors by sodium and pH. Mol.

Pharmacol. 39:570-578 (1991).

13. Williamson, R. A., and P.G. Strange. Evidence for the importance of a

carboxyl group in the binding of ligands to the D2 dopamine receptor. J.

Neurochem. 55:1357-1365 (1990).

14. Presland, J. P., and P.G. Strange. pH dependence of sulpiride binding to

D2 dopamine receptors in bovine brain. Biochem. Pharmacol. 41:R9-R12

(1991).

15. Clancy, B. M., and S. Maayani. 5-Hydroxytryptamine receptor in isolated

rabbit aorta: characterization with tryptamine analogs. J. Pharmacol. Exp.

Ther. 233:761-769 (1985).

16. Clancy, B. M. A pharmocological characterization of the

5-Hydroxytryptamine2 (5-HT2) receptor in the isolated rabbit aorta with

tryptamine analogs, and competitive and nonsurmuntable antagonists:

analyses with steady-state and kinetic methods. Thesis, Mount Sinai

School of Medicine: New York, 1987.

17. Bowman, W. C., and M. J. Rand. Textbook of Pharmacology. Blackwell

Scientific Publications, Oxford (1980).

18. Pedersen, S. E., and E. M. Ross. Functional activation of _-adrenergic

receptors by thiols in the presence or absence of agonists. J. Biol. Chem.

260:14150-14157 (1985).

19. Florio, V. A., and P. C. Sternweis. Mechanisms of muscarinic receptor

action on Go in reconstituted phospholipid vesicles. J. Biol. Chem.

264:3909-3915 (1989).

20. Tang, L.-H., and E. Aizenman. Modulation of the N-methyl-D-aspartate

receptor channel by a voltage-dependent sulfhydryl redox process. Mol.

Pharmacol. 44:473-478 (1993).

21. Suen, E. T., E. Stefanini, and Y.C. Clement-Cormier. Evidence for essential thiol groups and disulfide bonds in agonist and antagonist binding to the

dopamine receptor. Biochem. Biophys. Res. Commun. 96:953-960 (1980).

22 Sidhu, A., S. Kassis, J. Kebabian, and P. H. Fishman. Sulfhydryl group(s)

in the ligand binding site of the D-1 dopamine receptor: specific protection

by agonist and antagonist. Biochemistry 25:6695-6701 (1986).

23. Dewar, K. M., and T. A. Reader. Specific [3H]SCH23390 binding to

dopamine D1 receptors in cerebral cortex and neostriatum: role of disulfide and sulfhydryl groups. J. Neurochem. 52:472-482 (1989).

24. Hall, A. S., C. Errol, S. E. Bryson, S. G. Ball, and A. J. Balmforth. Thiol

group identification at or near the agonist binding site of the vascular

dopamine receptor. Eur. J. Pharmacol. Mol. Pharmacol. 226:253-258

(1992).

25. Quennedey, M., J. Bockaert, and B. Rouot. Direct and indirect effects of

sulfhydryl blocking agents on agonist and antagonist binding to central _1- and _2-adrenoceptors. Biochem. Pharmacol. 33:3923-3928 (1984).

26. Mattens, E., S. Bottari, A. Vokaer, and G. Vauquelin. Arginine and cysteine

residues in the ligand binding site of alpha 2- adrenergic receptors. Life

Sci. 36:355-362 (1985).

27. Nakata, H.,J. W. Regan, and R. J. Lefkowitz. Chemical modification of _2-

adrenoceptors: possible role for tyrosine in the ligand binding site.

Biochem. Pharmacol. 35:4089-4094 (1986).

28. Regan, J. W., H. Nakata, R. M. DeMarinis, M. G. Caron, and R. J. Lefkowitz.

Purification and characterization of the human platelet _2-adrenergic

receptor. J. Biol. Chem. 261:3894-3900 (1986).

29. Strauss, W. L., and J. C. Venter. A sulfhydryl group of the canine cardiac

beta-adrenergic receptor observd in the absence of hormone. Life Sci.

36:1699-1706 (1985).

30. Rath, P., P. H. M. Bovee-Geurts, W. J. DeGrip, and K. J. Rothschild.

Photoactivation of rhodopsin involves alterations in cysteine side chains:

detection of an S-H band in the meta I _ meta II FTIR difference spectrum.

Biophys. J. 66:2085-2091 (1994).

31. Probst, W. C., L. A. Snyder, D. I. Schuster, J. Brosius, and S. C. Sealfon.

Sequence alignment of the G-protein coupled receptor superfamily. DNA

Cell Biol. 11:1-20 (1992).

32. Noda, K., Y. Saad, R. M. Graham, and S. S. Karnik. The high affinity state

of the _2-adrenergic receptor requires unique interaction between

conserved and non-conserved extracellular loop cysteines. J. Biol. Chem.

269:6743-6752 (1994).

33. Candelore, M. R., S. L. Gould, W. S. Hill, A. H. Cheung, E. Rands, B. A.

Zemcik, I. S. Sigal, R. A. F. Dixon, and C. D. Strader. Identification of

residues essential for the active conformation of the _-adrenergic receptor

by site-directed mutagenesis, in Biology of Cellular Transducing Signals

(J. Y. Vanderhoek, ed). Plenum Press, New York, 11-19 (1990).

34. Liggett, S. B., M. Bouvier, B. F. O'Dowd, M. G. Caron, R. J. Lefkowitz, and A. DeBlasi. Substitution of an extracellular cysteine in the _2-adrenergic

receptor enhances agonist-promoted phosphorylation and desensitization. Biochem. Biophys. Res. Commun. 165:257-263 (1989).

35. Julius, D., K. N. Huang, T. J. Livelli, R. Axel, and T. M. Jessell. The 5HT2

receptor defines a family of structurally distinct but functionally conserved

serotonin receptors. Proc. Natl. Acad. Sci. USA 87:928-932 (1990).

36. Weber, G. Energetics of ligand binding to proteins. Adv. Protein Chem.

29:1-83 (1975).

37. McSwiney, B. A., and W. H. Newton. Reaction of smooth muscle to the H-

ion concentration. J. Physiol. 63:51-60 (1927).

38. Vyklicky, L. Jr., V. Vlachova, and J. Krusek. The effect of external pH

changes on responses to excitatory amino acids in mouse hippocampal

neurones. J. Physiol. 430:497-517 (1990).

39. Battaglia, G., M. Shannon, and M. Titeler. Guanyl nucleotide and divalent

cation regulation of cortical S2 receptors. J. Neurochem. 43:1213-1219

(1984).

40. Wang, C.-D., T. K. Gallagher, and J. C. Shih. Site-directed mutagenesis of

the serotonin 5-hydroxytryptamine2 receptor: identification of amino acids

necessary for ligand binding and receptor activation. Mol. Pharmacol.

43:931-940 (1993).

41. Ho, B. Y., A. Karschin, T. Branchek, N. Davidson, and H. A. Lester. The role of conserved aspartate and serine residues in ligand binding and in

function of the 5-HT1A receptor: a site-directed mutation study. FEBS Lett.

312:259-262 (1992).

42. Fraser, C. M., C.-D. Wang, D. A. Robinson, J. D. Gocayne, and J. C. Venter. Site-directed mutagenesis of m1 muscarinic acetylcholine receptors:

conserved aspartic acids play important roles in receptor function. Mol.

Pharmacol. 36:840-847 (1989).

43. Wang, C.-D., M. A .Buck, and C. M. Fraser. Site-directed mutagenesis of

_2A-adrenergic receptors: identification of amino acids involved in ligand

binding and receptor activation by agonists. Mol. Pharmacol. 40:168-179

(1991).

44. Strader, C. D., I. S. Sigal, R. B. Register, M. R. Candelore, E. Rands, and R. A. F. Dixon. Identification of residues required for ligand binding to the _-

adrenergic receptor. Proc. Natl. Acad. Sci. USA 84:4384-4388 (1987).

45. Curtis, C. A. M., M. Wheatley, S. Bansal, N. J. M. Birdsall, P. Eveleigh, E. K.

Pedder, D. Poyner, and E. C. Hulme. Propylbenzilylcholine mustard labels

an acidic residue in transmembrane helix 3 of the muscarinic receptor. J.

Biol. Chem. 264:489-495 (1989).

46. Strader, C. D., I. S. Sigal, M. R. Candelore, E. Rands, W. S. Hill, and R. A.

F. Dixon. Conserved aspartic acid residues 79 and 113 of the _-adrenergic receptor have different roles in receptor function. J. Biol. Chem.

263:10267-10271 (1988).

47. Rubenstein, L. A., and R. Osman. The interaction between 5-hydroxy-

tryptamine and tryptophan: a serotonin receptor model. J. Mol. Struct.

(Theochem) 235:321-342 (1991).

48. Fraser, C. M, F.-Z. Chung, C.-D. Wang, and J. C. Venter. Site-directed

mutagenesis of human _-adrenergic receptors: substitution of aspartic

acid-130 by asparagine produces a receptor with high-affinity agonist

binding that is uncoupled from adenylate cysclase. Proc. Natl. Acad. Sci

USA 85:5478-5482 (1988).

49. Zhu, S. Z., S. Z. Wang, J. Hu, and E. E. El-Fakahany. An arginine residue

conserved in most G protein-coupled receptors is essential for the function

of the m1 muscarinic receptor. Mol. Pharmacol. 45:517-523 (1994).

50. Scheer, A., F. Fanelli, T. Costa, P. G. De Benedetti, and S. Cotecchia.

Constitutively active mutants of the _1B-adrenergic receptor: role of highly

conserved polar amino acids in receptor activation. EMBO J. 15:3566-

3578 (1996).

51. Frankel, R. R., T. P. Sakmar, R. M. Graham, and H. G. Khorana. Structure

and function in rhodopsin: studies of the interaction between the

cytoplasmic domain and transducin. J. Biol. Chem. 267:14767-14774

(1992).

52. Gether, U., S. Lin, and B. K. Kobilka. Fluorescent labeling of purified _2

adrenergic receptor: evidence for ligand-specific conformational changes.

J. Biol. Chem. 47:28268-28275 (1995).

Metadata

Repository Staff Only: item control page