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Abstract. Dynamics of arbitrary communication system is analysed
as unreduced interaction process. The applied generalised, universally
nonperturbative method of effective potential reveals the phenomenon
of dynamic multivaluedness of competing system configurations forced
to permanently replace each other in a causally random order, which
leads to universally defined dynamical chaos, complexity, fractality, self-
organisation, and adaptability. We demonstrate the origin of huge, ex-
ponentially high efficiency of the unreduced, complex network dynamics
and specify the universal symmetry of complexity as the fundamental
guiding principle for creation and control of such qualitatively new kind
of networks and devices.

1 Introduction

Any communication system can be considered as a particular case of general dy-
namical system formed by many interacting units. If the system components are
permitted to freely interact without strict external control, then such unreduced
interaction process leads inevitably to complex-dynamical, essentially nonlinear
and chaotic structure emergence, or generalised (dynamically multivalued) self-
organisation [1-3], extending the conventional, basically regular self-organisation
concept. The usual technology and communication practice and paradigm rely,
however, on very strong human control and totally regular, predictable dynam-
ics of controlled systems and environment, where unpredictable events can only
take the form of undesirable failures or noise.

Growing volumes and complication of communication system links and func-
tions lead inevitably to increasing probability of undesirable deviations from the
pre-programmed regular behaviour, largely compromising its supposed advan-
tages. On the other hand, such increasingly useful properties as intrinsic system
creativity and autonomous adaptability to changing environment and individ-
ual user demands should certainly involve another, much less regular and more
diverse kind of behaviour. In this paper we analyse these issues in a rigorous
way by presenting the unreduced, nonperturbative analysis of an arbitrary sys-
tem of interacting entities and show that such unreduced interaction process
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possesses the natural, dynamically derived properties of chaoticity, creativity
(autonomous structure formation ability), adaptability, and exponentially high
efficiency, which can be consistently unified into the totally universal concept of
dynamic complexity [1]. This concept and particular notions it unifies represent
essential extension with respect to respective results of the usual theory always
using one or another version of perturbation theory that strongly reduces real
interaction processes and leads inevitably to regular kind of dynamics (even in
its versions of chaoticity). We shall specify these differences in our analysis and
demonstrate the key role of unreduced, interaction-driven complexity, chaoticity
and self-organisation in the superior operation properties, as it has already been
demonstrated for a large scope of applications [1-8].

We start, in Sect. 2, with a mathematical demonstration of the fact that the
unreduced interaction process within any real system leads to intrinsic, genuine,
and omnipresent randomness in the system behaviour, which can be realised in
a few characteristic regimes and leads to the universally defined dynamic com-
plexity. We outline the change in strategy and practice of communication system
construction and use, which follows from such unreduced analysis of system in-
teractions. The universality of our analysis is of special importance here, since
the results can be applied at various naturally entangled levels of communication
system operation. In particular, we demonstrate the complex-dynamic origin of
the huge, exponentially high efficiency growth of the unreduced, causally ran-
dom system dynamics, with respect to the standard, basically regular system
operation (Sect. 3). Finally, the dynamically derived, universal symmetry, or
conservation, of complexity is introduced as the new guiding principle and tool
of complex system dynamics that should replace usual, regular programming.
The paradigm of intelligent communication systems is thus specified, since we
show also [1, 5] that the property of intelligence can be consistently described as
high enough levels of the unreduced dynamic complexity. This “intelligent com-
munication” is the most complete, inevitable realisation, and in fact a synonym,
of the truly autonomous communication dynamics and its expected properties.

2 Complex Dynamics of Unreduced Interaction Process

We begin with a general expression of multi-component system dynamics (or
many-body problem), called here ezistence equation, fixing the fact of interaction
between the system components, and generalising various model equations:

N N
{Z lhk (ax) + Y Vi (ax: @)

k=0 >k

} ¥ (Q)=E¥(Q) , (1)

where hy (q) is the “generalised Hamiltonian” of the k-th system component
in the absence of interaction, g is the degree(s) of freedom of the k-th compo-
nent (expressing its “physical nature”), Vi (g, q:) is the (generally arbitrary)
interaction potential between the k-th and [-th components, ¥ (@) is the system
state-function, @ = {qo, q1, ..., qn }, F is the eigenvalue of the generalised Hamil-
tonian, and summations are performed over all (N) system components. The
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generalised Hamiltonian, eigenvalues, and interaction potential represent a suit-
able measure of dynamic complexity defined below and encompassing practically
all “observable” quantities (action, energy, momentum, current, etc.) at any level
of dynamics. Therefore (1) can express the unreduced interaction configuration
at any level of communication network of arbitrary initial structure. It can also
be presented in a particular form of time-dependent equation by replacing the
generalised Hamiltonian eigenvalue E with the partial time derivative operator
(for the case of explicit interaction potential dependence on time).

One can separate one of the degrees of freedom, e.g. g9 = &, correspond-
ing to a naturally selected, usually “system-wide” entity, such as “embedding”
configuration (system of coordinates) or common “transmitting agent”:

N N
{ &)+ > [ (ar) + Vo (&)1 + Y Vi %Qz)}W(QQ) =EV (¢, Q),
k=1 1>k

(2)
where now Q = {q1,...,qn } and k,1 > 1.
We then express the problem in terms of known free-component solutions for
the “functional”, internal degrees of freedom of system elements (k > 1):

hi (k) Prny, (@) = €nyPrny, (Qk) (3)

Z Un (§)@1n, (1) P2n, (42) --PNny (av) = an Pn (Q), (4)

where {e,, } are the eigenvalues and {@kn, (¢x)} eigenfunctions of the k-th
component Hamiltonian Ay (g ), forming the complete set of orthonormal func-
tions, n = {n1,...,nx} runs through all possible eigenstate combinations, and
D, (Q) = V10, (1) P2n, (@2) - ©Nny (gn) by definition. The system of equations
for {¢, (§)} is obtained then in a standard way, using the eigen-solution or-
thonormality (e.g. by multiplication by &7 (@) and integration over Q):

70 (€) + Voo ()] %0 (§) + 22 Von (§)¢n (§) = 1¢b0 (£)

[ho () + Vi ()] tn (€) + g Vans () (€) = 1athn (€) = Vio () 0 (), ©)

where n,n’ # 0 (also below), n=ng =E —co, o = E — €y, €0, = Y €nys
&

+Y Vi
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Van (5) = Z
k

¢ = / QP (Q)Vio (46.€) B (Q) . (7)
2

v (€) = / QP (Q)Vit (a1, 1) B (Q) (8)
2q
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and we have separated the equation for ¥ (£) describing the generalised “ground
state” of the system elements, i. e. the state with minimum complexity. The
obtained system of equations expresses the same problem as the starting equation
(2), but now in terms of “natural”, dynamic variables, and therefore it can be
obtained for various starting models, including time-dependent and formally
“nonlinear” ones (see below for a rigorous definition of essential nonlinearity).

We try now to approach the solution of the “nonintegrable” system of equa-
tions (5) with the help of the generalised effective, or optical, potential method
[9], where one expresses ¥, (£) through 1 (£) from the equations for v, (§) us-
ing the standard Green function technique and then inserts the result into the
equation for tg (£), obtaining thus the effective existence equation that contains
explicitly only “integrable” degrees of freedom (&) [1-8]:

ho (§) 1o (&) + Vet (&) tho (§) = n¢o (§) (9)

where the operator of effective potential (EP), Vog (§;7), is given by

Vet (€5m) = Voo (€) +V (&5m) V(&;n)wo(ﬁ):/dﬁ'V(&&/;n)wo(ﬁ'), (10)

2

Vi " Vn / Ox (¢r
Vi g =3 YOOV OVi€)
n.i n Mni — Eno
and {99, (&)}, {n%} are complete sets of eigenfunctions and eigenvalues of a
truncated system of equations:

n’'#n

One should use now the eigenfunctions, {t¢; (£)}, and eigenvalues, {n;}, of the
formally “integrable” equation (9) to obtain other state-function components:

w@=w®%&E/M%®&W@% (13)
2¢
g (6 5 Z wnz’ nz’ (f) (14)
nl ’r)/nll _ 0 )

and the total system state-function, ¥ (qo, q1,...,qn) = ¥ (£, Q) (see (4)):

Q) :Zci

where the coefficients ¢; should be found from the state-function matching condi-
tions at the boundary where interaction effectively vanishes. The measured quan-
tity, generalised as structure density p (£, Q), is obtained as the state-function

Do (Q) + Z@ ) Gni (§) | Yoi (§) (15)
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squared modulus, p (€,Q) = |¥ (¢, Q)| (for “wave-like” complexity levels), or as
the state-function itself, p (§,Q) = ¥ (£, Q) (for “particle-like” structures) [1].

Since the EP expression in the effective problem formulation (9)-(11) depends
essentially on the eigen-solutions to be found, the problem remains “noninte-
grable” and formally equivalent to the initial formulation (1), (2), (5). However,
it is the effective version of a problem that leads to its unreduced solution and
reveals the nontrivial properties of the latter [1-8]. The most important prop-
erty of the unreduced interaction result (9)-(15) is its dynamic multivaluedness
meaning that one has a redundant number of different but individually complete,
and therefore mutually incompatible, problem solutions, each of them describing
an equally real system configuration. We call each such locally complete solution
(and real system configuration) realisation of the system and problem. Plural-
ity of system realisations follows from the unreduced EP expressions due to the
nonlinear and self-consistent dependence on the solutions to be found, reflecting
the physically real and evident plurality of possible combinations of interacting
eigen-modes [1-8]. It is important that dynamic multivaluedness emerges only
in the unreduced problem formulation, whereas the standard theory, including
EP method applications (see e.g. [9]) and the scholar “science of complexity”
(theory of chaos, self-organisation, etc.), resorts invariably to one or another
version of perturbation theory, whose approximation, used to obtain an “exact”,
closed-form solution, totally “kills” redundant solutions by eliminating just those
nonlinear dynamical links and retains only one, “averaged” solution, usually ex-
pressing only small deviations from initial, pre-interaction configuration. This
dynamically single-valued, or unitary, problem reduction forms the basis of the
whole canonical science paradigm.

Since we have many incompatible system realisations that tend to appear
from the same, driving interaction, we obtain the key property of causal, or
dynamic, randomness in the form of permanently changing realisations that re-
place each other in the truly random order. Therefore dynamic multivaluedness,
rigorously derived simply by unreduced, correct solution of a real many-body
(interaction) problem, provides the wuniversal dynamic origin and meaning of
the omnipresent, unceasing randomness in the system behaviour, also called
(dynamical) chaos (it is essentially different from any its unitary version, re-
duced to an “involved regularity” or postulated external “noise”). This means
that the genuine, truly complete general solution of an arbitrary problem (de-
scribing a real system behaviour) has the form of dynamically probabilistic sum
of measured quantities for particular system realisations:

Ny

p(EQ) =Y "p(Q), (16)

r=1

where summation is performed over all system realisations, Ny is their number
(its maximum value is equal to the number of system components, Ny = N),
and the sign @ designates the special, dynamically probabilistic meaning of the
sum described above. It implies that any measured quantity (16) is intrinsically
unstable and its current value will unpredictably change to another one, cor-
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responding to another, randomly chosen realisation. Such kind of behaviour is
readily observed in nature and actually explains the living organism behaviour [1,
4, 5], but is thoroughly avoided in the unitary theory and technological systems
(including communication networks), where it is correctly associated with linear
“noncomputability” and technical failure (we shall consider below this limiting
regime of real system dynamics). Therefore the universal dynamic multivalued-
ness thus revealed by the rigorous problem solution forms the fundamental basis
for the transition to “bio-inspired” and “intelligent” kind of operation in arti-
ficial, technological and communication systems, where causal randomness can
be transformed from an obstacle to a qualitative advantage (Sect. 3).

The rigorously derived randomness of the generalised EP formalism (9)-(16)
is accompanied by the dynamic definition of probability. Because the elementary
realisations are equivalent in their “right to appear”, the dynamically obtained,
a priori probability, «.., of an elementary realisation emergence is given by

1
= — a.=1. 17
Ng z,; (a7)

However, a real observation may fix uneven groups of elementary realisations
because of their multivalued self-organisation (see below). Therefore the dynamic
probability of observation of such general, compound realisation is determined
by the number, N,, of elementary realisations it contains:

N,
o (N,) = e <NT =1,..., Ng; ZNT = Ngce) , Za, =1. (18)

An expression for expectation value, pexp (€, @), can easily be constructed from
(16)-(18) for statistically long observation periods:

pexp (6, Q) =D arpr (€,Q) (19)

It is important, however, that our dynamically derived randomness and proba-
bility need not rely on such “statistical”, empirically based result, so that the
basic expressions (16)-(18) remain valid even for a single event of realisation
emergence and before any event happens at all.

The realisation probability distribution can be obtained in another way, in-
volving generalised wavefunction and Born’s probability rule [1,3,5,8,10]. The
wavefunction describes the system state during its transition between “regular”,
“concentrated” realisations and constitutes a particular, “intermediate” realisa-
tion with spatially extended and “loose” (chaotically changing) structure, where
the system components transiently disentangle before forming the next “regular”
realisation. The intermediate, or “main”, realisation is explicitly obtained in the
unreduced EP formalism [1,3,5,8,10] and provides, in particular, the causal,
totally realistic version of the quantum-mechanical wavefunction at the lowest,
“quantum” levels of complexity. The “Born probability rule”, now also causally
derived and extended to any level of world dynamics, states that the realisation
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probability distribution is determined by the wavefunction values (their squared
modulus for the “wave-like” complexity levels) for the respective system con-
figurations. The generalised wavefunction (or distribution function) satisfies the
universal Schréodinger equation (Sect. 3), rigorously derived from the dynamic
quantization of complex dynamics [1,3,5,8,10], while Born’s probability rule
follows from the dynamic “boundary conditions” mentioned in connection to
the state-function expression (15) and actually satisfied just during each system
transition between a “regular” realisation and the extended wavefunction state.
Note also that it is this “averaged”, weak-interaction state of the wavefunction,
or “main” realisation, that actually remains in the dynamically single-valued,
one-realisation “model” and “exact-solution” paradigm of the unitary theory,
which explains both its partial success and fundamental limitations.

Closely related to the dynamic multivaluedness is the property of dynamic
entanglement between the interacting components, described in (15) by the dy-
namically weighted products of state-function components depending on vari-
ous degrees of freedom (£, Q). It provides a rigorous expression of the tangible
quality of the emerging system structure and is absent in unitary models. The
obtained dynamically multivalued entanglement describes a “living” structure,
permanently changing and probabilistically adapting its configuration, which
provides a well-specified basis for “bio-inspired” technological solutions. The
properties of dynamically multivalued entanglement and adaptability are further
amplified due to the extended probabilistic fractality of the unreduced general
solution [1,4, 5], obtained by application of the same EP method to solution of
the truncated system of equations (12) used in the first-level EP expression (11).

We can now consistently and universally define the unreduced dynamic com-
plezity, C, of any real system (or interaction process) as arbitrary growing
function of the total number of explicitly obtained system realisations, C' =
C (Ng), dC/dNg > 0, or the rate of their change, equal to zero for the unrealis-
tic case of only one system realisation, C (1) = 0. Suitable examples are provided
by C (Ng) = Cyln Ny, generalised energy/mass (proportional to the temporal
rate of realisation change), and momentum (proportional to the spatial rate of
realisation emergence) [1, 5,8, 10]. It becomes clear now that the whole dynam-
ically single-valued paradigm and results of the canonical theory (including its
versions of “complexity” and imitations of “multi-stability” in abstract, math-
ematical “spaces”) correspond to exactly zero value of the unreduced dynamic
complexity, which is equivalent to the effectively zero-dimensional, point-like
projection of reality in the “exact-solution” perspective.

Correspondingly, any dynamically single-valued “model” is strictly regular
and cannot possess any true, intrinsic randomness (chaoticity), which should in-
stead be introduced artificially (and inconsistently), e.g. as a reqular “amplifica-
tion” of a “random” (by convention) external “noise” or “measurement error”.
By contrast, our unreduced dynamic complexity is practically synonymous to
the equally universally defined and genuine chaoticity (see above), since multi-
ple system realisations, appearing and disappearing only in the real space (and
forming thus its tangible, changing structure [1, 3, 5, 8]), are redundant (mutually
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incompatible), which is the origin of both complexity and chaoticity. The genuine
dynamical chaos thus obtained has its complicated internal structure (contrary
to the ill-defined unitary “stochasticity”) and always contains partial reqularity,
which is dynamically, inseparably entangled with truly random elements.

The universal dynamic complexity, chaoticity, and related properties involve
the essential, or dynamic, nonlinearity of the unreduced problem solution and
corresponding system behaviour. It is provided by the naturally formed dynam-
ical links of the developing interaction process, as they are expressed in the
(eventually fractal) EP dependence on the problem solutions to be found (see
(9)-(11)). Tt is the dynamically emerging nonlinearity, since it appears even for
a formally “linear” initial problem expression (1)-(2), (5), whereas the usual,
mechanistic “nonlinearity” is but a perturbative approximation to the essential
nonlinearity of the unreduced EP expressions. The essential nonlinearity leads to
the irreducible dynamic instability of any system state (realisation), since both
are determined by the same dynamic feedback mechanism.

Universality of our description leads, in particular, to the unified understand-
ing of the whole diversity of existing dynamical regimes and types of system
behaviour [1,2,5]. One standard, limiting case of complex (multivalued) dy-
namics, called uniform, or global, chaos, is characterised by sufficiently differ-
ent realisations with a homogeneous distribution of probabilities (i.e. N, =~ 1)
and «, ~ 1/Nyg for all r in (18)) and is obtained when the major parameters
of interacting entities (suitably represented by frequencies) are similar to each
other (which leads to a “strong conflict of interests” and resulting “deep disor-
der”). The complementary limiting regime of multivalued self-organisation, or
self-organised criticality (SOC) emerges for sufficiently different parameters of
interacting components, so that a small number of relatively rigid, low-frequency
components “enslave” a hierarchy of high-frequency and rapidly changing, but
configurationally similar, realisations (i.e. N, ~ Ny and realisation probability
distribution is highly inhomogeneous). The difference of this extended, multi-
valued self-organisation (and SOC) from the usual, unitary version is essential:
despite the rigid external shape of the system configuration in this regime, it con-
tains the intense “internal life” and chaos of permanently changing “enslaved”
realisations (which are not superposable unitary “modes”). Another important
advance with respect to the unitary “science of complexity” is that the unre-
duced, multivalued self-organisation unifies the extended versions of a whole
series of separated unitary “models”, including SOC, various versions of “syn-
chronisation”, “control of chaos”, “attractors”, and “mode locking”. All the in-
termediate dynamic regimes between those two limiting cases of uniform chaos
and multivalued SOC (as well as their multi-level, fractal combinations) are ob-
tained for intermediate values of interaction parameters. The point of transition
to the strong chaos is expressed by the universal criterion of global chaos onset:

An;
Mo _ We ~1, (20)
Anp,  wy

where £ is the introduced chaoticity parameter, An;, we and An, ~ Ae, w,
are energy-level separations and frequencies for the inter-component and intra-
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component motions, respectively. At k < 1 one has the externally regular multi-
valued SOC regime, which degenerates into global chaos as x grows from 0 to 1,
and the maximum irregularity at kK =~ 1 is again transformed into a multivalued
SOC kind of structure at x> 1 (but with a “reversed” system configuration).

One can compare this transparent and universal picture with the existing
diversity of separated and incomplete unitary criteria of chaos and regularity.
Only the former provide a real possibility of understanding and control of com-
munication tools of arbitrary complexity, where more regular regimes can serve
for desirable direction of communication dynamics, while less regular ones will
play the role of efficient search and adaptation means. This combination forms
the basis of any “biological” and “intelligent” kind of behaviour [1,4,5] and
therefore can constitute the essence of the intelligent communication paradigm
supposed to extend the now realised (quasi-) regular kind of communication,
which corresponds to the uttermost limit of SOC (k — 0). While the latter
inevitably becomes inefficient with growing network sophistication (where the
chaos-bringing resonances of (20) cannot be avoided any more), it definitely
lacks the “intelligent power” of unreduced complex dynamics to generate mean-
ing and adaptable structure development.

3 Huge efficiency of complex communication dynamics
and the guiding role of the symmetry of complexity

The dynamically probabilistic fractality of the system structure emerges nat-
urally by the unreduced interaction development itself [1,4,5]. It is obtained
mathematically by application of the same EP method (9)-(14) to solution of
the truncated system of equations (12), then to solution of the next truncated
system, etc., which gives the irregular and probabilistically moving hierarchy of
realisations, containing the intermittent mixture of global chaos and multivalued
SOC, which constitute together a sort of confined chaos. The total realisation
number Ng, and thus the power, of this autonomously branching interaction
process with a dynamically parallel structure grows exponentially within any
time period. It can be estimated in the following way [5].

If our system of inter-connected elements contains Nyt “processing units”,
or “junctions”, and if each of them has ncon, real or “virtual” (possible) links,
then the total number of interaction links is N = nN¢onn Nunis- In most important
cases N is a huge number: for both human brain and genome interactions N is
greater than 10'2, and being much more variable for communication systems, it
will typically scale in similar “astronomical” ranges. The key property of unre-
duced, complex interaction dynamics, distinguishing it from any unitary version,
is that the maximum number Ny of realisations actually taken by the system
(also per time unit) and determining its real “power” Pyo, (of search, memory,
cognition, etc.) is given by the number of all possible combinations of links, i.e.

e

N\ N
P,ey1 < Ng = N! — 27rN(> ~NY >> N. (21)
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Any unitary, sequential model of the same system (including its mechanistically
“parallel” and “complex” modes) would give Peg ~ N B with 8 ~ 1, so that

Preal ~ (Preg)N >> Preg ~ NB . (22)

Thus, for N ~ 102 we have Prea > 10107 > 1010 ~ 10N — 00, which is
indeed a “practical infinity”, also with respect to the unitary power of N% ~ 10'2.

These estimates demonstrate the true power of complex (multivalued) com-
munication dynamics that remains suppressed within the unitary, quasi-regular
operation mode dominating now in man-made technologies. The huge power val-
ues for complex-dynamical interaction correlate with the new quality emergence,
such as intelligence and consciousness (at higher levels of complexity) [5], which
has a direct relation to our intelligent communication paradigm, meaning that
such properties as sensible, context-related information processing, personalised
understanding and autonomous creativity (useful self-development), desired for
the new generation networks, are inevitable qualitative manifestations of the
above “infinite” power.

Everything comes at a price, however, and a price to pay for the above quali-
tative advantages is rigorously specified now as irreducible dynamic randomness,
and thus unpredictability of operation details in complex information-processing
systems. We only rigorously confirm here an evident conclusion that autonomous
adaptability and genuine creativity exclude any detailed, regular, predictable
pre-programming in principle. But what then can serve as a guiding principle
and practical strategy of construction of those qualitatively new types of com-
munications networks and their “intelligent” elements? We show in our further
analysis of complex-dynamic interaction process that those guiding rules and
strategy are determined by a general law of complex (multivalued) dynamics,
in the form of universal symmetry, or conservation, of complexity [1,3,5]. This
universal “order of nature” and evolution law unifies the extended versions of
all (correct) conservation laws, symmetries, and postulated principles (which
are causally derived and realistically interpreted now). Contrary to any unitary
symmetry, the universal symmetry of complexity is irregular in its structure, but
always ezact (never “broken”). Its “horizontal” manifestation (at a given level of
complexity) implies the actual, dynamic symmetry between realisations, which
are really taken by the system, constituting the system dynamics (and evolution)
and replacing the abstract “symmetry operators”. Therefore the conservation, or
symmetry, of system complexity totally determines its dynamics and explains the
deep “equivalence” between the emerging, often quite dissimilar and chaotically
changing system configurations [3].

Another, “vertical” manifestation of the universal symmetry of complexity is
somewhat more involved and determines emergence and development of different
levels of complexity within a real interaction process. System “potentialities”, or
(real) power to create new structure at the very beginning of interaction process
(before any actual structure emergence) can be universally characterised by a
form of complexity called dynamic information and generalising the usual “po-
tential energy” [1, 3, 5]. During the interaction process development, or structure
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creation, this potential, latent form of complexity is progressively transformed
into its explicit, “unfolded” form called dynamic entropy (it generalises kinetic,
or heat, energy). The universal conservation of complexity means that this im-
portant transformation, determining every system dynamics and evolution, hap-
pens so that the sum of dynamic information and dynamic entropy, or total
complexity, remains unchanged (for a given system or process). This is the ab-
solutely universal formulation of the symmetry of complexity, that includes the
above “horizontal” manifestation and, for example, extended and unified ver-
sions of the first and second laws of thermodynamics (i.e. conservation of energy
and its permanent degradation). It also helps to eliminate the persisting (and
inevitable) series of confusions around the notions of information, entropy, com-
plexity, and their relation to real system dynamics in the unitary theory (thus,
really expressed and processed “information” corresponds rather to a particular
case of our generalised dynamic entropy, see [1,5] for further details).

It is not difficult to show [1, 3,5, 8] that the natural, universal measure of dy-
namic information is provided by the (generalised) action A known from classical
mechanics, but now acquiring a much wider, essentially nonlinear and causally
complete meaning applicable at any level of complexity. One obtains then the
universal differential expression of complexity conservation law in the form of
generalised Hamilton-Jacobi equation for action A = A(z,1):

AA AA
Tt |m:const + H (SU, Tx |t-const7t> - 0 9 (23)

where the Hamiltonian, H = H(x,p,t), considered as a function of emerging
space coordinate x, momentum p = (AA/AZ) |i=const, and time ¢, expresses
the unfolded, entropy-like form of differential complexity, H = (AS/At) |z=const
(note that the discrete, rather than usual continuous, versions of derivatives and
variable increments here reflect the naturally quantized character of unreduced
complex dynamics [1,3,5,8]). Taking into account the dual character of multi-
valued dynamics, where every structural element contains permanent transfor-
mation from the localised, “regular” realisation to the extended configuration
of the intermediate realisation of generalised wavefunction and back (Sect. 2),
we obtain the universal Schrodinger equation for the wavefunction (or distribu-
tion function) ¥(x,t) by applying the causal, dynamically derived quantization
procedure [1,3,5,8,10] to the generalised Hamilton-Jacobi equation (23):

o . d
at:H<x,ax,t>w, (24)

where Ay is a characteristic action value (equal to Planck’s constant at quantum
levels of complexity) and the Hamiltonian operator, H, is obtained from the
Hamiltonian function H = H(x,p,t) of equation (23) with the help of causal
quantization (we also put here continuous derivatives for simplicity).

Equations (23)-(24) represent the universal differential expression of the sym-
metry of complexity showing how it directly determines dynamics and evolution
of any system or interaction process (they justify also our use of the Hamiltonian
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form for the starting existence equation, Sect. 2). This universally applicable
Hamilton-Schrodinger formalism can be useful for rigorous description of any
complex network and its separate devices, provided we find the truly complete
(dynamically multivalued) general solution to particular versions of equations
(23)-(24) with the help of unreduced EP method (Sect. 2).

We have demonstrated in that way the fundamental, analytical basis of de-
scription and understanding of complex (multivalued) dynamics of real commu-
nication networks and related systems, which can be further developed in par-
ticular applications in combination with other approaches. The main practical
proposition of the emerging intelligent communication paradigm is to open the
way for the free, self-developing structure creation in communication networks
and tools with strong interaction (including self-developing internet structure,
intelligent search engines, and distributed knowledge bases). The liberated, au-
tonomous system dynamics and structure creation, “loosely” governed by the
hierarchy of system interactions as described in this report, should essentially
exceed the possibilities of usual, deterministic programming and control.
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The dynamics of arbitrary communication system is analysed as
unreduced interaction process. The applied generalised, universally
nonperturbative method of effective potential reveals the phenomenon
of dynamic multivaluedness of competing system configurations
forced to permanently replace each other in a dynamically random
order, which leads to universally defined dynamical chaos,
complexity, fractality, self-organisation, and adaptability.

We demonstrate, within our mathematically rigorous analysis,
the origin of the huge, exponentially high efficiency of the unreduced,
complex network dynamics and specify the universal symmetry of
complexity as the fundamental guiding principle for creation and
control of such qualitatively new kind of networks and devices.

[1] A.P. Kirilyuk, “Dynamically Multivalued, Not Unitary or Stochastic, Operation
of Real Quantum, Classical and Hybrid Micro-Machines”,
E-print physics/0211071 at http://arXiv.org.

[2] A.P. Kirilyuk, Universal Concept of Complexity by the Dynamic Redundance
Paradigm: Causal Randomness, Complete Wave Mechanics, and the Ultimate
Unification of Knowledge (Kyiv: Naukova Dumka: 1997).

For a non-technical review see also: E-print physics/9806002 at http://arXiv.org.

[3] A.P. Kirilyuk, “Dynamically Multivalued Self-Organisation and Probabilistic
Structure Formation Processes’, Solid State Phenomena, 97-98 (2004) 21-26.
E-print physics/0405063 at http://arXiv.org.

Annex I ii
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Generalised dynamic equation for many-body interaction problem:

{i{hk(%ﬁivm (Qk’QI) }T(Q) =E?(Q)

k=0 I>k

or

v(6Q)=E¥(50)

{ ( )+i{ qk +V0k(§ qk)}fzvkl ko ql)

k=1 I>k

The unreduced (nonperturbative) general solution is always probabilistic
(phenomenon of dynamic multivaluedness = intrinsic chaoticity):

N‘Jﬁ
p(£.Q)= Z@pr £.Q)
r=1
@ designates dynamically probabilistic sum over incompatible realisations

Two limiting regimes of complex dynamics:
multivalued self-organisation (or SOC) and uniform (global) chaos

Universal criterion of global (stronq) chaos:
ATh  an

or resonance between the main system motions

Criterion of quasi-regularity (self-organisation): k<1 or x>1.

As network complexity grows one cannot avoid resonance (“clash”), x~1
and therefore essential dynamic randomness becomes inevitable:

Highly complicated interaction networks cannot be close to regularity
Ordinary, unitary dynamic “models’ and approaches are inapplicable

Let’s transform the unitary model defect (system failure)
Into the complex-dynamic system advantage (superior power and qualities)
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Essentially chaotic dynamics gives huge advantage in efficiency

Chaotic network efficiency is determined
by the number of all combinations of links, or

N!=2zaN(N/e)N ~ NN

for N links, where N is usually large itself in afull-scale system

One obtains exponentially big advantage with respect to unitary efficiency
growing only as Nﬁ(,B~1)

This huge advantage is the expression of autonomous creativity
of unreduced (multivalued) interaction dynamics,
with the inevitable “payment” for it by (controlled) chaoticity of results

Intrinsically chaotic operation
with huge efficiency and autonomous creativity/adaptability
IS the new, genuine, rigorously substantiated
paradigm of intelligent, truly autonomous communication

Particular aspects and applications:

(1) Knowledge-based structure of intelligent communication networks
FEASIBLE TODAY, AS SELF-DEVELOPING KNOWLEDGE STRUCTURES (SOFTWARE)

(2) Intrinsically adapted to complex-dynamic problem solution
NATURAL BIO AND ARTIFICIAL BIO-INSPIRED SYSTEMS

(3) Intelligent network (and its users!) becomes more intelligent
KNOWLEDGE-BASED NETWORK SUPPORTS ITS OWN DEVELOPMENT

(4) understanding and development of natural and true artificial
intelligence and consciousness
(GENUINE) MACHINE CONSCIOUSNESS PARADIGM

(5) Universal symmetry of complexity as unified guiding principle

IRREGULAR, BUT NEVER “BROKEN” TRANSFORMATION OF POTENTIALITY INTO
STRUCTURE, OR DYNAMIC INFORMATION INTO DYNAMIC ENTROPY

— COMPLEXITY CORRESPONDENCE PRINCIPLE
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APPENDI X: Mathematical Details

From Perturbative M odel Reduction to Unreduced Problem Solution
Arbitrary interaction process (system) dynamics in terms of the (free) component eigen-modes:

§)+va,<§)wn,<§) =70 (£) @

where the total system state-function is

¥ (G0, GOy ) = P(EQ) = D WG ()P0, (Gp)--- P, (a) an (9N

n=(ng,Ny,...,Ny )

After finding eigen-solutions of the system of equations (A), {y,; (£),77, }»
the general solution of a problemis their combination, such as

Y(£,Q)= D ¥ (E)X(Q) - ©
Inredlity {y, (£),n,,;} are always found from a perturbative approximation:
[0 (&)+Vim (£) 4V (&) [wa (&) =mmn (&) + Vo(£) <Vo(€) < D Vo (£) - (d)

The unreduced general solution of the same problem
isthe dynamically probabilistic sum over redundant system realisations:

Ngg
PEQ=EQR =D %p Q). p(£Q =17 (Q), (A1)

Pn( Q) [ W& Nao( € W (£)

v (£Q)= o' | @o(Q)yi (&) + =
nir - 77r(\)i’ —&no

(A.2)
where {y/(; (&), 77{} are eigen-solutions of the effective equation:
ho(EWo(8) + Ver (& MW (S) = o (S) (B.1)
Von ()2 (&) [ dEWRE Mo €)W (£)
Vet (&7 )Wt (€) = Voo ()t (£) + = , (B2)
M — T — €no
and /% (&), 7 } are eigen-solutions of the truncated system of equations:
E)+ D Vur (E W (§) =1 (&) , 20 (©)
Elementary length Ax = 4 = A7n|, time At = Ax/v,, action A, = Vg At (D)
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APPENDI X: Physical Picture
Dynamic Redundance (M ultivaluedness) asthe Origin of

Causal Randomnessin Arbitrary System with I nteraction.
Dynamic Entanglement of | nteracting Entities & Fractality

I nteraction between two many-body (‘ many-point’) entities (objects):

First Second Dynamically redundant
object object interaction result:
. . incompatible
N points N points system redisations
(modes) Interaction (modes) First Second Third

aO%Q 1 al O® a2 e asOoe
b O><Q 2 bl (® b2 C® b3 ®
®3 clce® c2 Co c3Ce

cCO
(Nx N) combinations
of mode entanglement <4 > <>
(al,82,a3,b1,b2,etc.) < >
U Permanent realisation change
in
N-fold redundance causally (dynamically) random
order

Permanent dynamic instability in any system with interaction
by dynamic feedback loops in the unreduced interaction development:

First Second First Second First Second
object object object object object object

Attraction Attraction Attraction
a% o1 a q 1
b o [ W b o 4& b /‘o—b { 2

: 3 {

Universa fractdlity: First Second First Second
. object object object object
Dynamic (autonomous) j/_
formation
Causal (purely dynamic) _)(
randomness (irregularity)
Intrinsic adaptability 3\
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Knowledge-Based Structure
of Intelligent Communication Networks

(panel extension of thereport at WAC 2004)
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nowleddge-Based Siruciure
of Intelligent Cornrnunication Networes
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PN \
Existing networks are based on hardware tools

regular, rigid structure, nonintelligent behaviour
Inevitable first step of development (now accomplished) k

Knowledge, not tools, is the network purpose b

very limited solution by “advanced” search tools (Google)

K nowledge-based network is the next step

structure guided by (developing) knowledge

permanently changeable, irregular, autonomoudsly adaptable —_—
complex-dynamic interaction, intelligent network

mathematical structure of probabilistic dynamic fractal ;
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“Intelligent Communication Paradigm” (presented here)
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Universal criterion of intelligent operation
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