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Abstract

In this paper I discuss connections between self-directedness, integration and higher

cognition. I present a model of self-directedness as a basis for approaching higher

cognition from a situated cognition perspective. According to this model increases in

sensorimotor complexity create pressure for integrative higher order control and learning

processes for acquiring information about the context in which action occurs. This

generates complex articulated abstractive information processing, which forms the major

basis for higher cognition. I present evidence that indicates that the same integrative

characteristics found in lower cognitive process such as motor adaptation are present in

a range of higher cognitive process, including conceptual learning. This account helps

explain situated cognition phenomena in humans because the integrative processes by

which the brain adapts to control interaction are relatively agnostic concerning the

source of the structure participating in the process. Thus, from the perspective of the

motor control system using a tool is not fundamentally different to simply controlling an

arm.
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1 Introduction: self-directedness and higher cognition

The account of self-directedness presented here1 is a conceptual model of some generic

characteristics of the relationship between lower cognition, understood as basic sensory

and motor control processes, and high order cognition, understood as including

conceptual and strategic reasoning. The model does not attempt to explain specific

human abilities such as language or ‘theory of mind’, but focuses instead on the

relationship between executive cognition and learning processes. I argue that the more

general cognitive processes characterised by the model are central to higher cognition,

and very likely play an important role in the kinds of language phenomena that interest

                                                  
1 The account of self-directedness was originally developed in collaboration with Cliff Hooker. See
Christensen and Hooker, 2000; 2002. It has also been influenced by the work of Mark Bickhard.
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integrationist linguistics. The model has been developed from what can be broadly

characterised as a situated cognition perspective, however it follows a general

constructivist schema with influences that date as far back as pragmatism (James, 1997)

and William Whewell (Butts, 1989), and it also draws heavily on contemporary cognitive

neuroscience.

Situated cognition research has emphasised the importance of distributed, locally

coordinated action systems and the interactive structuring of behaviour.2 As such, it has

represented a major break with the traditional, almost universal assumption within

cognitive science that action is distinctively (and largely exclusively) explained by internal

cognitive systems that can be functionally characterised abstractly in terms of

representational computation. However there have long been doubts that the complete

rejection of internal representational control advocated by some proponents of the ‘New

AI’3 would be adequate for higher cognition.4 Situated cognition has demonstrated that

there is deep continuity in the organising principles for adaptive behaviour across a

range running from simple insects to complex ‘real world’ problem solving in humans.

But a balanced, systematic approach to cognitive science must explain both similarities

and differences, and situated cognition principles currently offer little insight into the

basis of major cognitive differences.

Given that most would agree that the situated cognition paradigm is incomplete, we can

distinguish between two main kinds of strategies for approaching higher cognition in the

light of situated cognition. One is a conservative strategy, emending the traditional

representational approach to cognition to accommodate some of the known features of

situated cognition phenomena, but focusing on classical ideas about symbolic cognition

to explain higher cognitive abilities, such as a possible need for stable symbols to permit

information processing that ‘goes beyond the present’.5 The other strategy involves

extending situated cognition principles to develop a more radical re-theorisation of higher

cognition. This can include representation, but remaining continuous with situated

cognition requires a systems orientation that is likely to treat representation as one

embedded feature of a broad array of processes. This is the approach I am taking, and it

arguably offers the best way of capturing the complex mixture of similarities and

differences across diverse forms of cognition.

                                                  
2 See e.g. Brooks, 1991; Clark, 1997; Pfeifer and Scheier, 1999. Braitenberg (1984) is a seminal
influence on autonomous agent robotics.
3 Especially Beer, 1995; 2000; Brooks, 1991; Hendriks-Jansen, 1996; van Gelder, 1995; 1998
4 E.g. Kirsh, 1991; Clark, 1997.
5 See e.g. Prinz and Barsalou, 2000; Markman and Dietrich, 2000; Sterelny, 2003.
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Symbolic processes are clearly an important feature of higher cognition; however

focusing primarily on symbolic issues carries with it certain kinds of problems. Basing

explanations for higher cognition largely or exclusively on representational models

leaves the similarities with lower cognition unaddressed, and so the major explanatory

challenge posed by situated cognition is largely sidestepped. Higher cognition, no less

than lower cognition, involves complex, multidimensional dynamical processes. This is

well demonstrated in contemporary real-time strategic management problems such as

piloting an aircraft (Hutchins, 1995), and it is also arguably likely to be prominent in the

problems characteristic of the evolution of cognition, including foraging, hunting, fighting

and social cognition, where multiple factors have to be integrated into real time decision

making. Higher cognition did not evolve in libraries, even if the Western intellectual

tradition to a significant degree did.

Moreover it is hard to understand how classical symbolic cognition can effectively mesh

with distributed dynamical processes. It has inherent, systematic difficulties coping with

complex, multidimensional, real-time phenomena. All inputs have to be coded

symbolically before they can enter the cognitive stream, and cognitive operations on

representations of dynamic multidimensional information face the problem of

combinatorial explosion. Contemporary advocates of a ‘representational’ approach to

higher cognition  (in my terms, the conservative strategy) often disavow old-style

computationalist cognitivism, but this then fails to address the question of how

representation participates in cognitive processes, at best offers an incomplete approach

to meaning, and is possibly misconceived. The problem is that algorithms are required to

guarantee that the representational output of a cognitive process is determined by the

representational input, so retaining a classical or quasi-classical conception of

representation whilst abandoning algorithms creates major puzzles about meaning and

cognitive process. Dietrich and Markman (2000, p.8) claim that representation and

algorithms go hand in hand, and the connection is indeed hard to break.

Arguably the only way forward here is to directly tackle the problem of cognitive process.

Focusing on representation in the absence of process is not a viable research strategy

even on its own terms because there is no way to adequately specify meaning without

taking into account the process context in which the representations occur.

Constructivism provides a natural way to approach this issue from a non-formalist

perspective, by systematically investigating how higher cognitive processes emerge from

and are embedded in lower cognitive processes. Older paradigms such as pragmatism

and Piagetianism can provide helpful guidelines for such a project, and there are also

potentially fruitful connections to pragmatics-oriented approaches to language.
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Recent cognitive neuroscience research has the potential to have a major impact on

these issues. It is developing sophisticated integrative ‘systems’ and cross-disciplinary

methodologies6 and is producing models of high level cognitive phenomena such as

conceptual organisation and strategic cognition. Yet outside of a few high profile

examples, such as Damasio’s (1994) somatic marker hypothesis and the ‘mirror neuron’

findings (Rizzolatti and Arbib, 1998), awareness of this research in the wider cognitive

science and philosophy community is still comparatively limited. For those interested in

situated cognition cognitive neuroscience constitutes fertile ground. Although of

necessity it is primarily laboratory-based, the systems oriented picture of cognition it is

developing meshes reasonably well at a general level with the distributed approach of

situated cognition.

There is thus a promising connection between situated cognition, cognitive neuroscience

and evolutionary neurobiology. Animals capable of higher cognition such as apes and

humans have evolved, through several intermediary stages, from invertebrates with the

kind of simple highly distributed sensorimotor systems that behaviour-based robotics has

imitated with some success. So a natural way to extend situated cognition is to take into

account the elaborations and extensions of the basic ancestral form of sensorimotor

organisation. The self-directedness model I am presenting here attempts to capture

broad features of this elaboration, and can be divided into three main components:

(i) Basic characteristics of self-directedness. At the most fundamental level the

problem for all adaptive action is to bring needs and opportunities into

alignment. Reactive architectures solve this problem by responding to

contingencies with ‘built in’ actions, where the efficacy of these actions is based

on higher level evolutionary processes or, in the case of a robot, a design

process. Self-directedness arises through the addition of integrative processes

that provide ‘onboard’ means to improve the coordination between actions,

opportunities and requirements, allowing the agent to act in a more flexible,

‘proactive’ way. The general pressure driving the evolution of cognition is the

need for integrative context sensitivity when modularised reactive rules cease to

be effective. There are three fundamental functional capacities involved in self-

directedness: anticipation, evaluation and action modulation, which together

provide a basis for flexible goal-directed behaviour. The self-directedness model

takes an incremental extension approach to understanding the basis for these

capacities, in contrast with a hybrid approach that postulates two distinct kinds

of functional system: one distributed, one based on some form of symbolic

representation. Specifically, the self-directedness model proposes that

increasing flexibility occurs through incremental increases in integration across

                                                  
6 See e.g. Arbib et al., 1998.
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subsystems, permitting a given action to be influenced by an increasingly broad

range of environmental and internal factors. Simple neuronal mechanisms for

habituation, for example, can be elaborated into memory systems that facilitate

more complex forms of anticipation. Likewise, integration between anticipative,

perceptual and action systems can serve to inhibit responses incompatible with

current goals.

(ii) Complexity management. Increasing sensorimotor complexity is required for

finely targeted, complex action. But sensorimotor complexity in turn brings with

it a cluster of management problems that create further pressure for integration.

The problem of dynamic coherence concerns the fact that complex action

depends on the coordination of activity of multiple systems within the organism

and being sensitive to multiple factors in an environmental context. Other

problems stem from this: the sensorimotor system must be self-calibrating to

cope with stochastic variation and adapt to changing functional circumstances.

The large number of degrees of freedom of a complex sensorimotor system

imposes a requirement for a progressive development incorporating extensive

experience-dependent plasticity. Since many systems contribute to any given

activity, development and learning require active credit assignment for localising

success and error to specific components of the system together with

appropriate modification. Collectively these problems impose a requirement for

integrative, high order regulation, which is the platform on which cognition is

based.

(iii) Context learning. Integrative regulation gives rise directly to higher order

information processing. One of the central pressures driving higher order

information processing is context learning: learning about the circumstances in

which action is performed. Context learning plays a role in solving complexity

management problems, and involves integrating information from multiple

heterogeneous lower order information processing mechanisms and

constructing organised, generalised, flexibly retrievable knowledge. From an

information processing perspective no special new representational system is

required for this. Rather, increased integration itself is substantially responsible

for generating higher order information by performing a range of information

processing functions, including ambiguity reduction, success and error

localization, abstraction, the formation of predictive models and

conceptualization. The processes involved in this are arguably central to higher

cognition.

It is hardly surprising that the complex information processing involved in cognition

involves a great deal of integration. However it is less obvious that integration itself is a



6

fundamental information processing mechanism. To appreciate some of the basic

reasons why integration plays a central role in cognition to consider a key difference

between biological systems and formal symbolic systems. The theory of formal symbolic

systems was developed as an extension of the axiomatic-deductive method, and

involved the regimentation of deductive steps in terms of logical rules taking into account

only the syntactic form of statements (Sieg, 1999). The goal was to develop a formal

representation of mathematical proofs, and these kinds of systems achieve logical

precision by building precision in at the bottom level. Reflecting this, the hardware

tolerances required for physically implementing an elaborate formal computational

system are extremely strict, and modern computers are a triumph of precision

engineering.  Biological systems, however, are built out of an extraordinarily

heterogeneous array of sloppy, unreliable components that largely originated for other

purposes. They achieve reliability through redundancy and mutual coordination, using

something like a ‘velcro’ principle to achieve a systemic strength out of many individually

unreliable connections. This has some very interesting similarities to William Whewell’s

‘consilience’ model of scientific knowledge, in which the robustness of a theory or

hypothesis is based on the way it unites many individually uncertain inductions (Butts,

1989). On the position I am developing here this parallel is no accident: higher cognition

faces some of the same thematic problems as biological organisation more generally,

and has its roots in bio-regulation.

One of the most basic forms of information processing functions performed by

integration is ambiguity reduction (see figure 1).

When the ‘meaning’ of a signal is ambiguous for a receiver it can use information about

context to disambiguate the signal, and the more sources of information about context

that the receiver has the greater its potential ability to reduce ambiguity. This principle is

extremely simple yet powerful, and appears to be exploited in cognition at a massive

level. Interactions between adjacent cells in the primary visual cortex help resolve the

orientation of a line stimulus. Integration in a higher visual area such as MT can resolve

information about the speed and direction of a stimulus. Integration across sensory

R
S

C

Figure 1: C: context, R: receiver, S: signal
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modalities such as vision and hearing can also be involved in determining both the

location and identity of a stimulus, which is the basis of the ventriloquist illusion (de

Gelder and Bertelson, 2003). In addition to early perception, integration also plays a role

in ‘top down’ cognitive processing involving higher knowledge. For example knowledge

about conversational context can influence phoneme perception (Bowers and Davis,

2004; Remez, 2000), and contextual knowledge also plays an important role in memory

recall (Neisser, 1997). Integration in the brain reaches its greatest extent in the prefrontal

cortex, which is involved in ‘executive’ control processes, playing a general role in

assembling task-specific information and regulating overall brain activity in accordance

with current goals and context (Miller, 2000).

The standard interpretation of signal-receiver relationships deriving from information

theory is that the receiver is using the signal as a basis for representing the state of the

sender. However a much broader range of functional relationships are possible and

appear to occur in cognition. A more fundamental biological functional relation is where

the receiver is ambiguous about what to do next and uses the signal as a constraint to

modify its activity. In this paper I will avoid so far as is possible issues of fundamental

semantics, but a more general point can be made. The very simplicity of integration –

essentially, the use of multiple constraints to shape action – allows it to play a role in a

broad range of functional relations, and permits considerable agnosticism concerning the

source of the constraints. This allows cognition to be progressively built up during

evolution out of many neural systems initially specialised for disparate functions, and for

the ready incorporation of experience-derived information during development and

learning.

In what follows I present evidence in support of the self-directedness model, focusing on

complexity management and context learning to argue that low order integrative

information processing provides a constructive platform for higher cognition. I do not

examine the general features of self-directedness any further here; for a broader

discussion see Christensen and Hooker (2002).

2 Complexity management

Intelligent, context-sensitive behaviour has obvious adaptive advantages: improved

targeting of action gains higher returns and reduces the costs accrued by misses, whilst

the ability to perform more complex action opens up new kinds of opportunities. But

complex, context-sensitive action requires a complex sensorimotor system, and

complexity considerations alone impose substantial constraints on the organisation of

cognition. One of the most fundamental constraints is that high functional complexity

requires both diversity and coherency: the system should be able to generate functional
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states that have a large number of component states, these functional states should

show high coherency, and the system should be able to rapidly shift between diverse

functional states.7 Arguably, a balance of modularity and integration is the only way to

achieve this because functional complexity involves high regional heterogeneity coupled

with high global coherency. The gross architecture of the mammalian nervous system

illustrates this principle: action for a mammal typically involves a coordinated suite of

activities ranging from the activation and inhibition of specific muscle groups through to

the generation of perceptual expectations and modulation of affect and arousal state.

Simply performing a movement towards a sensory target presents major coordination

requirements, including transforming information from the reference frame of the

perceptual modality, such as a head-centred reference frame in the case of audition,

through to motor reference frames centred on the body or limb. This creates a

requirement for integration between perceptual and body information, and in humans

and monkeys the posterior parietal and premotor cortices have been shown to be

involved in mediating this (Cohen and Andersen, 2002; Hoshi and Tanji, 2000).

One of the coherence requirements for a complex heterogeneous functional system is

that it should be self-calibrating, which in turn requires integration, plasticity and self-

regulation. Cross-calibration of spatial mapping in visual, auditory and motor systems in

owls provides an example.8 As reviewed in Knudsen (2002), owls are capable of very

precise auditory localization, achieved in the face of considerable difficulties. Individual

owls vary in the shape of their head and ears, and as an owl develops it may experience

hearing loss and changes in its nervous system. As a result the auditory system must be

calibrated based on experience using cross-correlation with visual and motor

information. Experimental evidence shows that the spatial mappings have high levels of

plasticity. An owl that has one of its ears plugged will initially mislocalize sound sources

towards the direction of the open ear, but recovers accurate localization after some

weeks of experience. Owls also regain accurate spatial localization ability after the

imposition of prismatic spectacles that displace the visual field. Owls learn to orient so

that they see the sound source through the spectacles, and also adjust their flight and

strike behaviour.

Experience-based functional modification can be more extensive than just calibration,

however. Complex sensorimotor systems face what is referred to as the degrees of

freedom problem: with many kinematic, dynamic and other degrees of freedom they

                                                  
7 This formulation has some similarities to logical depth in algorithmic complexity theory (Bennett,
1985). Collier and Hooker (1999) develop an analysis of complexity in open and biological
systems that draws on logical depth. Tononi and Edelman (1998) and Tononi et al. (1998) apply a
similar principle to understanding consciousness.
8 For a general review of cross-modal plasticity see Bavelier and Neville (2002).
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possess astronomical state possibilities, yet effective control rests on finding a small

subset of these possibilities. Since full search of the space is impossible, particularly

given the constraints of real-time interaction, the most plausible explanation for how

effective control is achieved is via ‘bootstrapping’ processes in which an initial set of

‘seed skills’ provide basic competencies at birth that are elaborated into locomotor and

manipulation skills based on experience (see e.g. Giszter et al., 2001). The animal

begins its life with simplified motor possibilities and interaction problems, and the control

architecture functionally adapts to achieve simple interaction skills. As these are

mastered new degrees of freedom open up and functional control organisation is refined

progressively. Human adults show the same progressive development when they

acquire novel complex skills: they initially simplify the problem by holding many of the

control parameters constant while they attempt to perform the task. Later refinement

occurs by exploring variation in the parameters initially held constant (Ivanchenko and

Jacobs, 2003).9

The degrees of freedom problem suggests that cognitive systems require high levels of

plasticity and powerful mechanisms for self-regulation. There is a great deal of evidence

that such regulated plasticity exists, here I will cite just a few examples. Hsieh et al.

(2001) show that the brain areas engaged during speech perception differ between

English and Chinese speakers, suggesting that the functional neural circuits involved in

speech perception are significantly shaped by linguistic experience. There is also

evidence for anatomical and functional differences in the brains of professional

musicians as compared with non-musicians (Münte et al., 2002). In a review of the

neuropsychological literature on brain damage, Stiles (2000) argues that the traditional

view—that plasticity is a transient reactive phenomenon permitting the recovery of a

maturational program after insult—should be replaced by a view of normal cognition as

stabilised plasticity. Plasticity extends through life and is the basis for neural

development as an active, constructive process.10

Understanding the nature of the regulation that shapes plastic processes into useful

functional organisation is therefore a crucial issue. Again, sheer complexity imposes

substantial constraints and a requirement for extensive integration. Adaptive

development and learning requires that the parts of the system that contribute to

success and error should be modified appropriately, but for a complex sensorimotor

                                                  
9 For related developmentally oriented perspectives see also Bickhard, 1992; Karmiloff-Smith,
1992; 1998; Quartz and Sejnowski, 1997; Smith and Thelen, 1993. Vygotsky and Piaget are of
course the major intellectual ancestors for developmental approaches to cognition.
10 For a sample of the range of current research on brain plasticity see the following reviews:
Berardi et al., 2003; Ewing-Cobbs et al., 2003; Krubitzer and Kahn, 2003; Rosenzweig, 2003;
Ungerleider et al., 2002.
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system engaged in complex interaction localizing the sources of success and error is far

from trivial (referred to in learning theory as the credit assignment problem). The strategy

described above of simplifying the initial problem and adding complexity through

progressive development is only one part of the solution, since it reduces but does not

eliminate the credit assignment problem.

Determining success and error requires integrating a number of broad sources of

information, including physiological state, body configuration, motor state and perceptual

information about the environment. The information processing is therefore highly

complex and involves many neural systems; here I will briefly outline some of the

evidence on reward, emphasising integrative and higher order reward processing.11 The

orbitofrontal cortex and amygdala are involved determining the type and magnitude of

reward. For instance the orbitofrontal cortex assembles visual, taste, olfactory and touch

information about reward value (Rolls, 2000). Neural systems that are involved in

processing higher order reward information include the dopaminergic system, which

appears to produce a reward prediction error rather than specify reward per se (Schultz,

2000).12 The medial orbitofrontal and ventromedial prefrontal cortices also process

generalised reward and risk information (Bechara et al., 1994, Bechara et al., 1997), as

does the anterior cingulate cortex (Allman et al., 2001). For instance some neurons in

the orbitofrontal cortex respond to relative value: it has been shown in monkeys that in

the presence of any two food types they fire in response to the more preferred food

(Schultz, 2000). The anterior cingulate cortex has been shown to be involved in

monitoring conflict between responses (Bothvinick et al., 1999) and response selection

(Turken and Swick, 1999), and, along with the medial prefrontal cortices, to respond to

winning and losing streaks, thus suggesting that it is involved in processing extended

reward expectations (Akitsuki et al., 2003). Such complexity is to be expected on the

basis of the credit assignment problem: information processing that is both wide-ranging

and fine-grained is required for isolating specific components of reward value and

behaviour and relating them to one another.

The predictive properties of the dopaminergic system point to a need for active

information processing for credit assignment in a complex system (in this case active

processing of temporal relations). Other evidence for this comes from motor control

research. The generation of error information for reaching movement requires the

integration of goal, motor command and proprioceptive information. In order to

compensate for errors during self-generated movement it has been argued that an

internal model is required that predicts the action consequences based on an efference

                                                  
11 For a general review of reward systems see Schultz, 2000.
12 See also Montague and Sejnowski, 1994; Schultz et al., 1997; Suri et al., 2001.
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copy of the motor command (e.g. Wolpert et al., 1995). However Blakemore et al. (1998)

show that the efference motor command copy and a single internal model are not

enough; effective prediction also requires a model of the context in which the action

occurs. This indicates an important general principle of credit assignment: in sufficiently

complex situations passive rules are inadequate for effective credit assignment, active

information processing such as context estimation may be required to disambiguate the

significance of incoming information.

The final aspect of complexity management I will discuss concerns the role of

hierarchical control organisation. Classical control hierarchies, which emphasise top-

down regulation, face an informational bottleneck because all command information

must flow from the top. Avoiding such bottlenecks was one of the major reasons for

shifting to parallel distributed architectures within robotics (Brooks, 1986; 1991).

However the integration requirements of a complex sensorimotor system generate a

need for hierarchy (see Brooks, 1997). An animal engaged in rapid complex interaction

with the environment needs to be capable of organism-wide parametric setting of

functional systems to current and expected interaction circumstances, which includes

active focus on the major interaction parameters and suppressing or otherwise ignoring

currently irrelevant information. This requires integrative higher order control. To adapt

an example from Giszter et al. (2001), a cat that is about to pounce on a mouse should

focus on the overall balance and preparation required for the leap, not become

distracted by an obstacle that brushes its leg.

The gross organisation of the vertebrate motor system exhibits a hierarchy of layered

competencies rather than the strict top down hierarchy of traditional AI systems. Central

pattern generators in the spinal cord produce much of the coordination required for basic

activities such as walking (Dietz, 2003), whilst higher neural structures contribute

refinement and goal-directedness (Gazzaniga et al., 1998; Giszter et al., 2001). This

helps avoid informational bottlenecks because it reduces the amount of information that

must flow up and down the hierarchy. However it remains a substantial problem to

understand just how this works. The continuous multidimensional kinematic and dynamic

properties of the motor system must somehow be organised so as to permit higher level

processes that organise action into discrete units that can be arranged into ensembles

and sequences for complex flexible action such as object manipulation. Loeb et al.

(2000) argue that one mechanism for forming units is for higher controllers to learn

muscle co-activation synergies. Johansson (1998) outlines another mechanism, in which

the formation and retrieval of internal models mediates between planning processes and

motor implementation.
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To summarise this section, the requirements of complexity management impose

substantial constraints on the organisation of cognition. A balance of modularity and

integration is required in order to produce behaviour that is both diverse and coherent.

Stochastic variation requires that a complex heterogeneous functional system should be

self-calibrating, which in turn creates a requirement for significant plasticity and self-

regulation. The degrees of freedom problem means that highly complex functional

organisation can only be constructed via a progressive development process that

incorporates information from experience. This requires very high levels of plasticity and

powerful forms of self-regulation, which in turn places emphasis on the credit assignment

problem as a central issue. Many neural systems are involved in this, and evidence from

motor control suggests that in some circumstances credit assignment requires active

information processing in the form of predictive models of action and context. The

demands of larger scale coherence in action require high order control that manages

tactical and strategic coordination problems. However such higher control processes

must be able to interface effectively with lower systems. Again, motor control evidence

suggests that this is in part an active process, involving the grouping or ‘unitization’13 of

lower dynamics and the formation of predictive models that mediate between planning

and motor systems.

To summarise the summary, complexity considerations suggest that cognition is

integrative, active, and involves the construction of high order information.

3 Context learning

Context can have a range of effects on learning. If an animal learns a response

association in a particular context and it is presented the stimulus in a very different

context, response to the stimulus is normally significantly reduced (Gluck and Meyers,

2001: ch.7). Similarly an animal that is conditioned to a stimulus in context X, then has

the conditioned response extinguished in a second context Y, will regain the response if

the stimulus is presented again in context X (Bouton and King, 1983; Pearce and

Bouton, 2001). The context serves as an occasion setter providing information to the

animal about how it should respond to the stimulus. In mammals this kind of sensitivity to

context appears to depend on the hippocampus: rats with a lesioned hippocampus will

respond at the same level when a conditioned stimulus is presented in a new context

(Gluck and Meyers, 2001: ch.7).

                                                  
13 I borrow the term from perceptual learning (Czerwinski et al., 1992; Schyns et al., 1998). The
Schyns et al. research is discussed below.
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Defining context learning is not a simple matter since the phenomenon has to a

substantial degree been characterised indirectly via its effects on associative learning.

Indeed, perhaps the most straightforward way to interpret context learning is to view the

‘context’ as a bundle of stimuli that come to be used as conditional predictors of reward

in the same way as the orthodox associative relationship – i.e., as ‘just another CS’.

However there is evidence that this is not correct as a general picture, and that

information about context has a modulatory effect on associative learning but is not itself

always governed by reward association (Pearce and Bouton, 2001). The definition of

context learning I will adopt here is correspondingly broad, namely as any kind of

learning about the setting within which action occurs.

However hard it may be to define, context learning opens up a broad spectrum of

information processing possibilities. It is a fundamental mechanism for promoting

response flexibility because it permits different responses to a single type of stimulus in

different circumstances. For example, in an experiment by Collett and Kelber (1988,

discussed in Gallistel, 1994) honeybees were trained to visit two huts in succession.

Inside the huts were identical, containing two blue and two yellow cylinders in a square

formation. In one hut a sucrose reward was placed between the yellow cylinders, whilst

in the other hut it was placed between the blue cylinders. Despite the fact that there

were no perceptual cues inside the huts to differentiate them the bees would search in

the appropriate place in each hut, suggesting that they used broader information about

the context of each hut to solve the problem.

Context learning is also useful for resolving other kinds of uncertainty, such as when the

stimulus is perceptually ambiguous. Collett et al. (1997) examined the ability of orchid

bees to locate individual flowers in their range. Bee vision has poor resolution, a plant

may look different when approached from different angles, and different individual plants

may look very similar. The study found that bees are able to use local landmarks as

contextual clues to guide their behaviour, helping to explain how they can resolve the

ambiguity in recognising a specific plant. Collett et al. hypothesise that the bees

recognise a plant-in-context through a dynamic process in which contextual landmarks

prime the memory of the plant as the bee approaches the location. They also point out

that the ability to use context information to influence the performance of arbitrary tasks

has implications for the organisation of the mediating neural systems: context

information must both be broadcast widely across the bee brain and be able to be

focused on a restricted set of neural sites (ibid., p.350).

The capacity of context learning to facilitate uncertainty reduction points to a wider role

for it in making the credit assignment problem tractable. Identifying what went wrong (or

right) may depend on tracing relationships beyond what is immediately perceptually
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obvious. As Schultz et al. (1997) observe, a rat that reaches a dead end in a maze may

have made the incorrect choice several turns previously. Unless it can associate the

outcome with the actual turn that leads to the dead end it cannot learn the maze. In

general, the more extensive and differentiated the contextual information that a learner

can bring to bear on a learning problem, the greater its chances are of being able to

localize sources of success and error in the problem. Amnesiac patients are able to learn

simple associative tasks but they are impaired at trial and error learning, which may be

explained by the fact that they are unable to acquire enough context information to

disambiguate successful from unsuccessful trials (Gluck and Meyers, 2001: ch.7).

Rich contextual information also allows an animal to respond flexibly to environmental or

motivational changes. The classic evidence for this comes from the ‘cognitive map’

experiments of the 1930s and 40s. In the latent learning paradigm (Blodgett, 1929,

described in Tolman, 1948) rats are first exposed to a maze for a number of days (in the

range of 6 to 10), but not rewarded. During this period the behaviour of the rats appears

random, however in the next phase of the experiment a food reward is placed at the end

of the maze leading to a marked change of behaviour. The rats begin to run the maze to

reach the food with low error rates. This indicates that during the non-rewarded period

the rats have been acquiring contextual information about the organisation of the maze

(a ‘cognitive map’). The rats can then use this information to guide their behaviour when

they are motivated to do so. Indeed, in some versions of the experiment such rats show

lower error rates than rats that have been rewarded from the beginning of their exposure

to the maze, indicating that unrewarded exploration can be a more efficient process for

acquiring maze information than goal-directed learning (Tolman and Honzik, 1930). This

is possibly because they acquire contextual information more widely and experience less

reward-interference as they learn the relational features of the context. Their ‘cognitive

map’ would then be more detailed, integrated and stable.

Another experimental paradigm demonstrates more directly flexible response to

changing motivational circumstances (the experiment is by Spence and Lippitt,

described in Tolman, 1948). Rats are exposed for several days to a simple Y-shaped

maze in which one arm of the Y contains water and the other arm contains food. In the

initial phase the rats are satiated for both food and water prior to exposure to the maze.

In the second phase of the test the rats are divided into two subgroups, one of which is

made hungry and the other thirsty. When the rats are then reintroduced to the maze the

hungry rats go directly to the arm that contains food, whilst the thirsty rats go to the arm

that contains water.

At this point it is worth mentioning some (comparatively) recent criticism of the claim that

animals have cognitive maps. In an influential paper Bennett (1996) argues that no



15

experiments to that date have in fact demonstrated the presence of a cognitive map in

animals. Drawing on the animal navigation literature Bennett canvasses a number of

definitions of cognitive maps that all interpret the concept rather literally in terms of

spatial representations used for navigation. Following O’Keefe and Nadel (1978),

Bennett distinguishes between route following and map-based navigation, where the

former involves memory of a particular path to a goal. He argues that demonstrating

map-based navigation requires both showing that the animal has taken a shortcut to the

goal across an unfamiliar area—where it cannot have acquired a route memory—and

that it could not have performed the task by dead reckoning. Bennett claims that no

cognitive map experiments have conclusively eliminated both route memory and dead

reckoning hypotheses for apparent short-cut taking.

However Tolman (1948) clearly has a more general concept of a cognitive map than a

literal representation of space. He introduces the notion by contrasting it with stimulus-

response models of behaviour, and one of the experiments he uses to illustrate cognitive

maps is not a navigation experiment at all – it is a pattern matching experiment. Tolman

refers to the Spence and Lippitt experiment described above as “probably the best

experiment demonstrating latent learning” (p.195), but as a navigational problem it is

relatively trivial. And in his concluding remarks he makes wide-ranging comments on

potential implications of cognitive maps for social psychology. Tolman’s conception of a

cognitive map thus appears to be any kind of model that captures larger scale relational

information.

This makes a substantial difference to Bennett’s argument. A lot depends on what a

‘route memory’ really is: if it is interpreted as a strict stimulus response procedure then it

is not necessary to show that the animal has never crossed a spatial area before to

demonstrate the presence of a cognitive map. It is only necessary to show that the

animal can use acquired information flexibly under changed circumstances, and this is

just what the original cognitive map experiments do show. A ‘short-cut’ can include

choosing the best path known to reach the current goal, rather than the path that has

been most rewarded in the past. If route memory is conceived of more broadly to

encompass the possibility that it might be used flexibly then it corresponds to what

Tolman calls a ‘strip map’ (p.193).

Tolman’s notion of cognitive maps may be very broad compared to the idea that a

cognitive map is a representation of space but I suggest that it is also the more basic

and cognitively significant conception. It relates to behavioural flexibility in general, not

just spatial navigation, and it points to relational information processing abilities that may

be fundamental to cognition more widely. Several recent computational models provide

insight into mechanisms that may be involved in the acquisition of organised information.
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Schultz et al. (1997) use a predictive reward model based on the dopaminergic system

to show how a ‘value map’ of an animal’s environment could be acquired. As the animal

experiences its environment the predictive reward system acquires information about

reward value of the objects in the environment. In the model the ‘animal’ is a simple

artificial creature that is able to look around its environment. As it does so its reward

system generates predictions of the rewards it would obtain if it approached particular

objects. This information can be used to make choices between particular approach

options. Such a predictive reward system could, in a more complex model or a real

animal, be coupled with ‘imagination’ to generate extended predictions. Gluck and

Meyers (2001, p.195) describe a simple neural network that can be used to solve

navigation problems. The network acts as a forward model: given a current location and

a movement it learns to predict what the next location will be. If this network were

coupled with a predictive reward network it could be used to evaluate possible moves

and iteratively find a path to a goal.

Eichenbaum (2001) presents a ‘memory space’ model of declarative memory that draws

on James (1890), Tolman (1932) and Bartlett (1932), and points to a simple yet

somewhat more powerful process for acquiring organised cognitive map-like

knowledge.14 Declarative memory is composed of semantic and episodic memory15, and

in Eichenbaum’s model episodic memory is the ‘gateway’ for the formation of semantic

memory. Specifically, semantic memory is acquired by linking multiple experiences that

share some of the same information. The informational links across episodes constitute

the animal’s ‘memory space’: a larger organisation of information that can be used to

generate solutions to new problems. The hippocampus is proposed to mediate the

acquisition of sequential context-specific information involved in the formation of episodic

memories, and to play a role in identifying common features across episodes as part of

the formation of generalised semantic memory.

The model has been tested on rats using transitive inference as the measure for the

acquisition of organised information (Dusek and Eichenbaum, 1997). Rats are presented

with pairs of odours and taught to discriminate between them, where the rewarded

discriminations have the following hierarchical structure: A>B, B>C, C>D, D>E. The test

for transitive inference is the animal’s choice when presented with the pair BD, which is

not encountered during the training phase. Normal rats rapidly learned the discrimination

pairs and, when presented with the transitive inference probe, made the correct B>D

choice as accurately as they did on the training pairs. In fact 88% of the rats made the

correct choice on the first presentation of the transitive inference pair. In contrast, whilst

                                                  
14 See also Eichenbaum, 2000; Greene et al., 2001; Wallenstein et al., 1998.
15 Roughly, knowledge about properties of the world and autobiographical knowledge
respectively.
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rats with a disconnected hippocampus were able to learn the rewarded discrimination

pairs at the same rate as the intact rats, they were unable to solve the transitive

inference discrimination, performing at chance level.

Internal predictive models and the kind of integrative information processing

characterised in the ‘memory network’ model of the hippocampus provide an indication

of some of the relatively simple mechanisms that can be coupled to generate

increasingly complex higher order information processing. Conventional associative

learning theory treats stimulus, action and reward as part of a single function: the

probability of producing an action in response to a stimulus is determined by the

frequency with which that stimulus-response association has been rewarded in the past.

However a cognitive architecture that couples a complex reward system with multiple

internal models and integrative memory has the potential to partially disentangle

perceptual, value and action information. A predictive reward system capable of

parametric adjustment to different reward regimes can generate multiple value maps

based on contextual factors that signal a change in reward regime. A forward model of

context can be run under a variety of motivational settings to generate varying

predictions of the reward outcome of particular actions. A ‘memory network’ can link

salient information across interaction episodes to extract generalised relational

information beyond specifically rewarded stimulus-stimulus or stimulus-action

conjunctions. In combination such mechanisms can greatly expand the capacity for

context-sensitive, goal directed behaviour.

I conclude this section by commenting on the relation between this broader approach to

cognitive maps and the way in which representational explanation is conceived more

generally in cognitive science.16 In one respect Tolman’s ‘cognitive map’ label is

misleading inasmuch as it encourages the idea of a static ‘objective’ map. However

forward models are dynamic and, since they are trained through interactive experience,

based substantially on egocentric information. But once they are trained they do not

have to be driven by current perceptual information, they can be run in simulation. They

are also capable of interpolation: they will generate a prediction for input values that

have never been experienced before. Eichenbaum’s ‘memory network’ model indicates

another way in which broader relational information can be built up out of egocentric

information by integrating across multiple experiential episodes.

It is interesting that Eichenbaum’s (2001) presentation of his ‘memory network’ theory of

declarative memory should begin with William James, since the theory itself is rather

                                                  
16 I am not however attempting to present any theory of representation per se – cf. Grush (1997),
who does use internal models as the basis for a theory of representation.



18

pragmatist in nature. A central pragmatist idea was to show how higher knowledge is

constructed out of basic information derived from interaction with the world, and it

contrasted itself with what it regarded as ‘intellectualist’ philosophy that took ‘objective’

representational knowledge as fundamental.17 I shall term this general explanatory

model ‘constructivist’ (not to be confused with antirealist forms of constructivism).18

Piaget is another constructivist exemplar; systematically applying the same basic

strategy to developmental psychology in an attempt to show how generalised conceptual

knowledge is progressively built up out of lower order egocentric, context-laden

information.

With this in mind we can characterise a heuristic problem with typical approaches to

representational explanation in cognitive science and philosophy. The tendency is to

assume that, if a problem is being solved cognitively at all, then it is being solved by

representational processes that directly reflect the principal features of the problem

being solved. Questions about the potential cognitive basis of a particular behaviour are

transformed into questions about representational format, where the format is read

directly off the problem. For example the problem of disentangling value, perception and

action information is connected with Sterelny’s (2003) concept of decoupled

representation. The models described above might, in fact, be considered mechanisms

for generating decoupled representation. However Sterelny appears to treat the issue of

‘decoupled representation’ as a question of representational format, whereas these

models suggest that the decoupling is a systemic property and the representations are

actually dynamically stabilized constructs. Another example of systemic decoupling

occurs in the role of the prefrontal cortex in inhibiting prepotent actions. This is one of the

most important forms of cognitive decoupling, and whilst it certainly is dependent on

information processing that occurs in the prefrontal cortex and elsewhere, the

decoupling is a complex product of the major regulatory connections between the

prefrontal cortex and other brain regions. It is not a property inherent in representations

in the prefrontal cortex, which are in fact highly dynamic – see Duncan (2001).

                                                  
17 See e.g. James, 1997.
18 Pragmatism is an important but ambiguous example of constructivism. The ambiguity lies in the
difference between claiming that there is nothing more to truth than successful action—an idea
that causes pain to many philosophers—and the idea that ultimately all knowledge is based on
differences in interaction with the world. The latter principle is surely correct, but the former
suggests an eliminativist reduction of truth. Eliminativism can be avoided via a clarified
constructivist position in which a substantial concept of truth is captured as a higher order
construct. Bickhard (1993) develops a theory of representation along these lines. It is arguable
that the constructivist interpretation best captures the spirit of early pragmatism, which showed
great interest in the actual dynamics of knowledge acquisition in preference to sterile abstracted
epistemic and metaphysical debates.
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Questions about representational format are undoubtedly an important issue in

cognition, but treating cognitive problems in general as problems of representational

format obscures the role of indirect and systemic factors. Moreover this produces an

excessively sharp split between representational and non- or ‘locally’ representational

processes, with the latter often serving as a catch-all null hypothesis. For instance the

contrast between route memory and cognitive maps drawn by O’Keefe and Nadel (1978)

reflects a distinction in traditional cognitive science between procedural and declarative

knowledge.19 Yet from a constructivist perspective this distinction is not strict, and the

three ‘cognitive map’ models that I have just discussed illustrate specific types of

information processing mechanisms that can play a role in constructing generalised

information from context and action specific information. A critique of cognitive map

hypotheses by Wang and Spelke (2002), much in the spirit of Bennett, further illustrates

the problem. They treat evidence for use of perspectival information in navigation as

evidence against cognitive maps, but this doesn’t follow for the reasons discussed

above. Their characterisation of the contrast is revealing:

…animals, including humans, navigate primarily by representations that are

momentary rather than enduring, egocentric rather than geocentric, and limited in

the environmental information that they capture. Uniquely human forms of

navigation build on these representations.

(Wang and Spelke 2002, p.376, italics added)

4 Self-directed anticipative learning

Rats are likely to share many of their cognitive traits with the early mammals, which,

along with birds, underwent a major adaptive shift associated with the evolution of

thermoregulation. Mammals and birds tend to have larger brains than comparably sized

reptiles. However they also require a great deal more food because the requirements of

temperature homeostasis are such that resting mammals and birds expend between 5

and 10 times as much energy as do comparably sized reptiles (Allman, 1999). Mammals

and birds are locked into a reciprocal set of opportunities and demands. They are

capable of higher activity levels, and the increase in brain size allows this action to be

more sophisticated, thereby improving their ability to acquire food. But they also need

these resources to maintain the underlying physiological and neural infrastructure. The

cost of error therefore increases.

Mammals and birds thus face the complexity management problems described above in

sharp form.20 They need to acquire complex interaction skills, and they need

                                                  
19 Cf. the discussion in Sterelny, 2003: pp.40-45.
20 This leaves open the status of the bee evidence I outlined. Many people find it jarring that
evidence concerning honeybees should be introduced in a discussion of cognition. The answer to
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sophisticated mechanisms to determine success and error in the process of building

these skills and acquiring information about the opportunities and threats in the

environment. There was probably therefore strong evolutionary pressure for enhanced

context learning ability. I will now describe a progressive learning process termed self-

directed anticipative learning that may play an important role in context learning. The

central idea is quite simple, but it extends the systemic approach to cognition and

learning developed thus far.

Self-directed anticipative learning (SDAL) involves a reciprocal interplay between

interaction and anticipative model construction. In the initial phase the learner doesn’t

understand the task structure and doesn’t know what is relevant. The learner is alert and

attempts to gather information widely, looking for possibly relevant clues to the structure

of the situation. As the learner engages interactively with the situation it begins to gather

more perceptual information about the relational features of the situation together with

some success and error information. But with still-limited relational information about the

situation it is difficult to assign success and error specifically. The learner is acquiring

improved relevance information, however, which guides more specific attention and

interaction. More focused interaction should, in turn, generate better relational

information specific to the task, which will then improve the capacity to assign success

and error. The learner is in effect progressively constructing a relational model of the

task situation, incorporating a mixture of relevancy, perceptual and motor information.

The model is abstractive because task-irrelevant information ‘fades’ from attention and

the model. If the learner acquires a good situation model it can quickly attend to

important features of the context, and respond flexibly to changes in task parameters.

From an information processing perspective the key features of SDAL are:

Integration of multiple overlapping sources of information: In order to achieve

successful completion of the task the learner must integrate information about

performance from multiple overlapping sources (including perception, affect and

motor information, and repeated interaction with the task environment). The

significance of having multiple sources of information is that it provides orientation

and gradient information that helps distinguish better from worse situations and focus

action. The more convergent sources of information the learner has about

                                                                                                                                                       
this I think is that some of the complexity pressures that give rise to cognition arise much earlier
than is usually supposed. Thus, the foraging problems that bees face present some of the
problems of ambiguity and uncertainty reduction that drive the evolution of context learning
mechanisms. They do not however face the same kind of sensorimotor management problems
that mammals and birds do. Whatever the underlying reasons may be, though, honeybee
research is showing surprisingly high levels of information processing complexity in a simple
invertebrate architecture – see Menzel and Giurfa, 2001.
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performance the more effective its actions can be. At the initial stage of the learning

process the sources of information are impoverished, whilst at the concluding stage

they have been sufficiently enriched to converge on a solution.

Improved anticipation and error detection: As the learner interacts it generates

information that allows it to construct anticipative models of the interaction process.

This allows the learner to: a) improve its recognition of relevant information, b)

perform more focused activity, and c) to evaluate its performance more precisely.

Indeed, error itself is a rich source of context-sensitive information that can be used to

further refine anticipations.

Rochat et al. (1999) present evidence from human infant development that illustrates at

least part of such a process. Infants at 2, 4 and 6 months interacted with an adult female

stranger in a 1-minute peekaboo game that was either organised or disorganised. 2-

month infants gazed and smiled at the adult equally regardless of how organised the

peekaboo game was. However 4- and 6-month old infants smiled more and gazed less

in the organised peekaboo condition as compared with the disorganised condition.

Rochat et al. interpret this as a progression from diffuse sensitivity to a social partner to

an emerging sensitivity to the narrative envelope of social exchange. Below I discuss a

perceptual classification task involving feature learning that involves extended interaction

between top-down and bottom up processes. Thornton (1999) investigates a learning

process very similar to what I am calling SDAL in child conceptual development. She

argues that,

 [t]he dynamic interaction between the strategies children bring to the task and the

detailed structure of the task in hand acts to redirect the child’s attention to new

aspects of a problem, opening up the possibility of new discoveries that were not

prefigured in the child's original approach.

(Ibid., p.588)

Two cognitive neuroscience models provide further indication of some of the kinds of

information processing components that could, in cooperation, generate SDAL-type

processes. Dehaene et al. (1998) present a ‘global workspace’ hypothesis for effortful

cognitive tasks. According to this hypothesis difficult tasks provoke the activation of a

class of neurons with heavily interconnected long-range axons that are distributed

across the brain but are especially common in the prefrontal cortex. These neurons

assemble information from all brain regions, allowing it to be processed in an integrative,

flexible way. Such a process could serve as the basis for the assembly of contextual

information for anticipative learning and for executive guidance in the learning process.

Gluck and Meyers (2001) present a model of cortico-hippocampal interaction that views

the hippocampus as functioning to compress redundant information and differentiate



22

predictive information. This processed information is then passed on to the neocortex

and cerebellum where it is stored in long term memory.21 This kind of information

processing could serve as the basis for the formation of contextual models, whereby

information that is irrelevant or adds no predictive value for the learner comes to be

suppressed or ignored, whilst information that is predictive within a context or

differentiates between contexts is accentuated. Over time the information that a learner

retrieves from long term memory during task performance comes to be increasingly well

organised in relation to the important features of the task.

The SDAL model appeals to relatively generic cognitive abilities but is able to explain

rapid learning in complex domains. For instance Regier (2003) argues that a similar

concept of ‘accelerated learning’ could explain features of word acquisition that have

been thought to require innate domain-specific mechanisms. The characteristics of

repeated exposure to the situation coupled with changing attention biases and

expectations mean that SDAL may be an important process for extracting situational and

cross-situational invariances, and hence for the formation of generalised, ‘portable’

knowledge.

I have presented evidence that suggests that SDAL occurs in child development, but

does it occur in non-human animals? I am not aware of direct evidence for progressive

learning with SDAL-characteristics in non-human animals, however it could be playing a

role in ‘memory network’ forms of context learning. An important point to note is that the

power of this type of learning process is highly sensitive to quantitative factors such as

the ability to assemble context information. Cortex size is likely to be a major limiting

factor on this, as indicated by recent accounts of cortical function such as the global

workspace model. Other limiting factors include attention, working memory, gross

informational capacity of long term memory, and the capacity for organised storage and

retrieval of memory. SDAL might therefore form part of the explanation for the common

observation that intelligent, flexible behaviour in birds and mammals scales in proportion

to brain size.22

I will now review the key features of self-directedness and bring together the main points

from the discussion so far. According to the self-directedness model increasing

sensorimotor and behavioural complexity generates integration pressure. This drives the

evolution of higher order control processes that serve to coordinate the activity of

                                                  
21 The model is not incompatible with Eichenbaum’s ‘memory space’ account, and indeed it might
explain part of the underlying basis by which the integration across episodes occurs. More
generally, it is likely that the hippocampus performs multiple related information processing roles
– see e.g. Gluck et al., 2003.
22 I discuss experimental evidence supporting this in the next section.
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multiple systems within the organism and to manage larger scale needs – actions –

environmental relations. Two main effects arise:

• Animals become more self-directed, in the sense that they are capable of more

complex goal-directed action that integrates opportunities and needs

• The information processing conditions for higher cognition are generated

The second point is probably the most controversial. The predominant view is that there

is a qualitative difference between lower and higher cognition, and the most common

interpretation of this difference is that higher cognition exhibits linguistic or quasi-

linguistic representational structure, whereas lower cognition exhibits no structure or at

most simple associative structure. Much of the evidence I have presented so far,

however, demonstrates that lower cognition exhibits more complex organisation than

simple associative learning. The degrees of freedom problem forces a developmental

structure to cognition that depends on sophisticated integrative regulation. The credit

assignment problem creates a need for internal models and context learning. The

‘cognitive map’ evidence discussed indicates that mammals, specifically rats, are able to

extract stable relational information about context that permits flexible response to

changing and novel circumstances. SDAL-type learning processes involving repeated

exposure to a problem situation with cumulatively formed expectations and skills may

play an important role in the formation of abstracted, ‘portable’ knowledge.

Three further features are especially noteworthy. Firstly, in both motor control and

context learning there is a need for unitization – the creation of informational groupings.

In motor control the reason is that the continuous, multidimensional dynamics of the

motor system must be converted into a form amenable to the performance of articulated

action. In context learning there is a need to group together or suppress redundant

information, and to differentiate key features within a context and that mark the

differences between contexts. Secondly, whereas traditional symbolic approaches to

information processing assume the prior existence of fundamental information

processing units, in these cases the units are dynamic constructs embedded in

integrative processes. Thirdly, whilst unitization helps to generate articulation, it is

integration that generates the major information processing characteristics that shape

cognition, including success and error localization and abstraction.

5 General supportive evidence

At the broadest level the self-directedness model makes several core claims:

(i) Degree of integrative regulation is the major parameter governing the

transition from reactive to intelligent proactive agency
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(ii) Higher cognition emerges out of the principles of integrative neural

sensorimotor control

At this level of generality there are currently three major models for the basis of higher

cognition. These are the classical general computational theory of mind, the massive

modularity hypothesis, and the hypothesis that language is responsible for higher

cognition.23 All three are variants of symbolic computationalism, with the massive

modularity hypothesis fragmenting the computational system into multiple domain-

specific modules, and the language hypothesis proposing that natural language is the

vehicle for symbolic computation. I will now outline several sources of evidence that

support the self-directedness model.

The first is the correlation between brain size and problem solving flexibility.24 This has

been measured by the ‘transfer index’: an experimental measure of behavioural flexibility

devised by Rumbaugh (1970) and applied to diverse primate species. The transfer index

is a reversal learning problem (Bitterman, 1960), and is rather like a simple version of the

Wisconsin Card Sorting Task used in developmental neuropsychology as a measure of

executive function. The animal is first presented with two stimuli and rewarded for

choosing one of them. After being trained to one of two levels of competency (67% or

84%) the reward is switched to the other stimulus. ‘Transfer’ refers to the extent to which

learning on the first task affects performance on the second task. ‘Negative transfer’

occurs where increased training on the first task decreases performance on the second

task, and is interpreted as difficulty on the part of the animal in inhibiting the previously

learned response. ‘Positive transfer’ is where increased training on the first task

improves performance on the second task. Rumbaugh interprets this as resulting from

the animal conceptualizing the tasks (the problem in each case is choose the currently

rewarded response). However it might be put more neutrally as indicating that the animal

has extracted contextual information from the first task that helps it perform the second

task. This can be as simple as marking the two contexts as different, helping to

disambiguate the second task. But it can also involve more complex relational

information that picks out similarities between the two tasks. Performance on the transfer

                                                  
23 I do not include social intelligence hypotheses here because they have no direct implications
for a theory of cognitive architecture. Insofar as some versions do make architectural claims for a
‘metarepresentational’ module they are inconsistent with the evidence below.
24 The self-directedness model is similar in many important respects to the ‘differentiation and
construction’ account of the evolution of intelligence presented by Gibson (2002), who also points
towards the correlation between brain size and problem solving flexibility. These two accounts
may be largely complementary.
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index across primate species was found to correlate with absolute brain size (Gibson et

al., 2001).25

A second source of support comes from evidence that ‘general intelligence’ in humans is

a real phenomenon (sometimes referred to as ‘factor g’ or ‘gF’). The performance of an

individual across a range of intelligence tasks tends to be strongly correlated: an

individual who performs well on one kind of task is likely to perform well on other kinds of

tasks. In a review Deary (2001) reports a current consensus for a three-stratum

hierarchy model of intelligence ability differences: A general cognitive factor accounts for

around 50% of the variance in performance on a broad range of mental tests given to a

large sample of the population. There is also a subsidiary set of variance attributed to

‘group factors’ such as verbal comprehension, spatial cognition, memory and processing

speed, and finally some variance is accounted for by very specific mental abilities. This

strong correlation across mental abilities is difficult to explain using a ‘massive

modularity’ account of cognitive architecture, and it is not easily accounted for by

hypotheses that postulate language processing as the factor responsible for cognitive

integration, given that many intelligence tests are specifically designed not to tap into

language ability.

On its own factor g might be taken as evidence for the classical general computational

theory of mind. However in conjunction with the transfer index evidence for the

correlation between intelligence and brain size in primates it more strongly supports the

self-directedness model. The general computational theory explains cognitive flexibility in

terms of a general symbolic computational architecture, and it has to postulate a major

functional discontinuity corresponding to the evolutionary advent of this architecture –

Newell’s ‘Great Move’ (Newell, 1990). The self-directedness model on the other hand

explains cognitive flexibility as a graded function of neural integration capacity. The

quantitative correlation between brain size and flexible intelligence supports the latter

hypothesis.

Imaging evidence concerning the neural underpinnings of general intelligence provides

more direct support for the connection between neural integration and intelligence. Using

positron emission tomography Duncan et al. (2000) show that tasks that are highly

correlated with general intelligence produce specific activation in the lateral frontal

cortices. At first glance this might seem to conflict with the primate evidence that

intelligence correlates with overall brain size, however the frontal cortex has been shown

to play a general regulative role in cognition, performing executive functions that involve

                                                  
25 Performance did not correlate with the Encephalization Quotient measuring the relationship
between brain and body size (Jerison, 1973).
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the selective inhibition and activation of other brain regions based on current task

demands (e.g. Cohen and Servan-Schreiber, 1992; Goldman-Rakic, 1995; Miller, 2000).

Taken together this evidence supports the thesis of the self-directedness model that

behavioural flexibility and higher cognition are directly connected to neural integration

capacity. The self-directedness model explains the flexibility of intelligence, which the

massive modularity hypothesis cannot, and it explains the quantitative connection

between brain size and intelligence, which is problematic for the general computational

theory and for the language hypothesis.

An important qualification to this should be noted, however. Research by Premack

(1983) and Oden, Thompson, & Premack (1988; 1990) suggests that, whilst language

trained chimpanzees are able to spontaneously solve higher relational problems, such

as matching half an apple with half a glass of milk, chimpanzees without language

training do not. In one respect this supports a constructivist picture of cognition, and in

discussing the research Thompson (2000, p.382) notes that his own analysis is similar to

Clark’s (1998) idea that words can act as scaffolds to make particular features of the

world more concrete. But these results also suggest that there may be more to higher

relational cognition than generic integrative learning.  The picture is complicated by the

fact that infant chimpanzees are perceptually sensitive to such relations, indicating that

they have an underlying cognitive ability to discriminate these relationships, but that

something further is required before higher relational properties can be used to make

judgements. Still, it is very plausible that language has a scaffolding interrelationship with

higher cognition in humans, and language provides a powerful external medium for the

unitization phenomenon I discussed earlier. It would be a mistake, though, to conclude

that higher cognition is based on language, and I will now present evidence that the

generic processes I have been characterising also play a central role in higher cognition,

and that language is far from being the only medium for unitization.

6 Specific evidence for integration in higher cognition

In this section I will briefly present two kinds of evidence showing that the features of low

order cognition highlighted by the self-directedness model are also important

characteristics of higher cognition. This research questions the traditional emphasis on

categorical representations and points to the involvement of much more fluid, integrative

processes.

Traditional theories of concept learning assume that learning occurs within a fixed

feature space. However research by Schyns et al. (1998) and Goldstone et al. (2000)

indicates that although current perceptual feature recognition constrains the concepts
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that can be acquired, the concepts acquired also influence the learning of features. This

suggests that there may be no fixed set of fundamental features. The experiments

designed to demonstrate this involve presenting subjects with irregular figures for which

there are no obvious component parts. The subjects are taught to classify the figures

according to experimenter-determined categories through trial and error: the subjects are

not explicitly told the category rules. In the early stages of the learning process the

subjects acquire some ability to classify the figures correctly but are not able to

consciously identify any basis for classification. They have, however, become sensitized

to specific stimulus dimensions of the figures. In later stages classification becomes

nearly errorless, though the subjects are still not able to verbally identify the basis for

classification. At this point they have (unconsciously) localized the key diagnostic

features for classification. These may be particular shape characteristics, or it can

involve the unitization26 of an array of features. In the final stage of the process the

subjects are able to verbally identify the diagnostic features, and they ‘see’ the figures in

terms of ‘objects’ determined by these features. One of the more interesting aspects of

the experiments, however, is that different groups of subjects are presented with the

same stimulus sets but required to classify them differently. Subjects learn to identify the

particular features that are diagnostic for the task they are given and do not ‘see’ the

features that subjects trained on other tasks see.

In a review of concept research Solomon et al. (1999) argue that researchers have

greatly overemphasized categorisation and that this has produced a distorted theoretical

picture. They argue that concepts serve multiple functions that interact to affect

conceptual structure and functioning. They cite a study by Medin et al. (1997) that

indicated that landscapers use different conceptual structures when presented with

categorisation and reasoning problems. For categorisation the landscapers used goal-

derived categories based on landscaping, such as shade trees, weed trees, and so on.

When asked to make inferences about trees, however, they used a taxonomic scheme

based on biological relatedness. In a more recent experiment Shafto and Coley (2003)

required undergraduate students and commercial fishermen to sort marine animals into

groups. Novices sorted the animals according to similarity of appearance, whilst experts

sorted according to a variety of factors, including commercial, ecological and behavioural

characteristics. They conclude that, “[e]xpertise appears to involve knowledge of multiple

relations among entities and context-sensitive application of those relations” (p. 641).

In an intuitive sense these results are obvious. Of course experts can make finer

distinctions and reason more flexibly than novices: they know more. Still, there may be

important theoretical implications to be had from them. On a traditional cognitivist

                                                  
26 As noted earlier, this perceptual learning research is in fact the source for the term.
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account ‘knowing more’ means more or less just having a larger database. In theory it is

supposed to involve higher level knowledge organisation, including input chunking,

scripts, frames and so on, but there have never been convincing mechanisms for flexible

higher order learning in the cognitivist framework. The account I am developing here,

based largely on cognitive neuroscience evidence, points to a significantly different

picture of what ‘knowing more’ involves. Specifically, with respect to neural systems

learning involves systemic interactions across multiple brain regions leading to system-

wide activity dependent modifications that, in addition to storing information, to some

degree refine and tune the cognitive architecture itself. With respect to behaviour there is

an unfolding interaction process in which acquired information generates changed

behaviour patterns that in turn modifies what is learned, in substantial part by changing

the ability to detect relevant information. Thus, perception, memory and executive control

exhibit a dynamic interplay between bottom-up and top-down processes. Feature

perception, conceptual organisation and executive frontal processes are all reciprocally

tuned during context learning to facilitate the flexible assemblage of higher conceptual

and strategic information according to situational demands. Experts don’t just know

more, they see, think and interact differently.

The account I am presenting is clearly not anti-representational and nor does it claim

that all the structure that participates in cognition is developmentally constructed. The

electrical depolarization properties of neurons and molecular pathways for synaptic and

other forms of neural plasticity provide basic mechanisms for information processing.

The cell types and major connectivity patterns for neural regions such as the cerebellum

or hippocampus are genetically specified. Multiple coordinate systems are required for

sensorimotor control and learning. There are many specialised information processing

abilities that appear early in human infant development, such as perceptual expectations

about the numerical and type identity of objects (Xu and Carey, 1996). This is to be

expected on the basis of the arguments I introduced in section 2, because the same

complexity management problems that force an extended plastic development also

ensure that there must be considerable ‘built in’ organisation: too much plasticity is

unmanageable.

However the account does differ in fundamental ways from standard representational

approaches to cognition. It is systemically oriented, treating cognition as structured by

multiple neural systems and interaction with the environment. For instance one

prominent feature of higher cognition is information portability: the ability to store

information, transfer it across contexts, and use it in a variety of cognitive processes. In a

classical approach this is explained in terms of the properties of symbols, but in the

present account a large part of the explanation lies with integrative neural architecture

and interactive, abstractive learning processes. This has important advantages. The very
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plurality of neural systems, and the idiosyncrasy of the information they process,

suggests that the articulation of higher cognition is not based on a general coding

scheme in the way that a navigation chart might be based on the Mercator projection

system. Moreover strict formal symbolic computation is an inflexible form of information

processing, highly prone to combinatorial explosion. Indeed, the problem of

combinatorial explosion is one of the arguments used to justify the massive modularity

hypothesis (e.g. Carruthers 2002, p.705). It can just as easily be used, however, to

argue that cognition is not based on symbolic computation at all in the classical sense.

The integrative, constructive approach has the benefit of being able to explain how

higher cognition is able to function effectively in complex dynamical domains. As Schyns

et al. (1998) observe, traditional feature space theories of concept acquisition face a

difficult design choice with respect to the nature of the basic features represented in the

space. Choosing low level features increases power in the sense that many more kinds

of objects can be represented by the system. However it also increases the search

space for object identification and learning, which can result in computational

intractability. Choosing high level features can greatly improve speed and tractability, but

at the price of representational flexibility. To be functional such systems must necessarily

be highly domain specific. Models that incorporate feature learning do not face this

trade-off, or at least have a powerful strategy for making it tractable. They can couple

initial flexibility with later-acquired specificity that accelerates the learning process. This

is another version of the degrees of freedom problem with the same kind of solution.

Dynamical coherence and complexity management are just as much features of higher

cognition as they are of lower cognition. Higher cognition often involves the ability to

keep track of many factors simultaneously: think of holding a conversation with a good

friend who is offering to sell you a car that you may or may not be interested in buying.

The same kinds of complexity management strategies involving integrative success and

error localization and predictive learning that occur in lower cognition are likely to also

play a key role in higher cognition. This has a number of important implications. Higher

cognition is not screened off from lower cognition and dynamical interaction; it is deeply

entwined with it. It is therefore crucial to understand how cognition is embedded in

deeper processes, and also vital that a multidisciplinary approach is pursued. Cowley

(this volume) and Ross (this volume) provide very different perspectives on how such a

constructivist embedding might be carried out, and both may be providing an important

part of the picture.

As a non-specialist it would be foolish to try to make specific proposals about language

research. However the general thrust of this account supports an emphasis on the

importance of pragmatics in language. It does not necessarily support the hypothesis



30

that syntax can be fully explained as the developmental outcome of usage constraints,

which some formulations of integrationist linguistics appear to suggest. But it does

support the view that research on interactive dynamics in language development and

use provides a very productive window onto language. It also questions the cognitive

significance that is often loaded onto syntax, such as the idea that it is the vehicle for

higher relational cognition.27 Many of the most central features of higher relational

cognition cannot be explained by syntax – for example context sensitive lexical

retrieval.28 Palma (this volume) comments that the contextual dynamics of language may

be scientifically intractable, and this kind of argument against holistic approaches has a

long history.29 As a general claim this is a risky position, to say the least. One irony is

that behaviourists argued that any kind of explanation for behaviour that went beyond

stimulus-response relationships was scientifically intractable, and Chomsky (1959)

played a decisive role in undermining this idea. Another irony is that cognitive

neuroscience is now developing sophisticated methodologies for investigating ‘systems-

level’ phenomena, and this is providing a great deal of concrete evidence for older ideas

concerning the importance of holistic processes in cognition. On the other hand the

difficulty of such ‘integrationist’ research should not be underestimated. Developing

workable, productive research paradigms is a formidable problem, not least because the

phenomena of interest are not readily captured in highly controlled situations.

Interdisciplinary connections can help ameliorate this, however, because convergence

between several partial perspectives provides greater confidence and direction than a

single perspective alone.

7 Conclusion

I will conclude by saying more about the connection between this account and situated

cognition, since I have said very little directly about the kinds of scaffolding phenomena

that situated cognition usually focuses on. To begin with, it is an account systematically

based on embodiment, tracing the relationship between increasing sensorimotor

complexity and the formation of cognitive properties. Moreover the degrees of freedom

problem and the credit assignment problem provide an underlying theoretical rationale

for the importance of scaffolding in high as well as low order cognition. It may be that

one of the most critical limiting factors in the evolution of cognition is the capacity to

regulate plasticity. Basic neurophysiology—the neural toolkit present in all

animals—exhibits a rich array of activity-dependent plasticity mechanisms. It is not lack

of plasticity that is the problem. Rather, the problem may be guidance mechanisms for

                                                  
27 See e.g. Spelke, 2003.
28 See Thompson-Schill et al. (1997) for evidence on the role of the prefrontal cortex in lexical
retrieval.
29 See e.g. Wertheimer, 1938.
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extended functional development. An organised environment provides an external

scaffold for cognitive development, and it seems likely that increasingly rich parental and

social scaffolding was an important factor in making it possible to extend development

and open up cognitive plasticity in human evolution. Furthermore the high level of

regulated plasticity in the brain helps explain how it is so easy to incorporate

environmental organisation into our cognitive practices. For example, the brain makes a

distinction between ‘far space’ (the space beyond reaching distance) and ‘near space’

(the space within reaching distance). There are different neural systems involved in

processing each type of spatial information, and dissociations are possible in which, for

example, awareness of ‘near space’ is lost whilst awareness of ‘far space’ remains

intact. Berti and Frassinetti (2000) show that simply holding a stick causes a remapping

of far space to near space. In effect the brain, at least for some purposes, treats the stick

as though it were part of the body.
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