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Abstract

In this methodological work I explore the possibility of explicitly modelling expec-
tations conditioning the R&D decisions of firms. In order to isolate this problem
from the controversies of cognitive science, I propose ablack boxstrategy through
the concept of “internal model”. The last part of the article uses artificial neural
networks to model the expectations of firms in a model of industry dynamics based
on Nelson & Winter (1982).

Keywords: Neural networks, Genetic algorithms, Bounded rationality, learning,
expectations, innovation dynamics.



And one of the deepest, one of the most general functions of liv-
ing organisms is to look ahead, to produce future as Paul Val´ery put
it.”(François Jacob (1982), p.66).

1 Introduction

The purpose of R&D investment is to carry out an innovation which is a poten-
tial source of competitiveness for firms. When a firm invests in R&D, it becomes
involved in a dynamic process which rests on an a priori belief in technological
progress. The primary motivation of firms to invest in R&D is linked to this ex-
pectation concerning the existence of a technological change process that firms try
to exploit in order to increase (or to maintain) their competitiveness. Thus R&D
investment corresponds to a decision which is turned to the future and, as a conse-
quence, which involves an expectation dimension.

In the meantime, R&D decisions are characterized by a strong uncertainty con-
cerning the return on investment. This uncertainty is stronger for R&D investment
than for other types of investment. Indeed innovations often result from what Si-
mon (1958) calls “nonprogrammed decisions”, that is situations where the alterna-
tives of choices must be discovered by firms and the connections between choices
and consequences are imperfectly known. It is the reason why R&D decisions
are generally associated to uncertainty in the sense of Knight (1921). This un-
certainty strongly limits the ability of firms to form expectations about the return
on their R&D investment. In this context, firms must be able to improve through
experience their perception of the relationships between R&D investment and com-
petitiveness and to adapt accordingly their R&D decisions. Thus firms determine
their R&D investment through the combination of adaptation with expectation of
potential return on R&D. Both dimensions generally coexist except in the extreme
situations where there is no uncertainty or where the uncertainty is totally radical
so that firms can not form any expectation.

In order to emphasize the role of uncertainty in R&D decisions, we should
distinguish between two types of uncertainty:

• The technological uncertainty concerns the connection between R&D and
innovation. It depends on the nature of innovation (radical or incremental)
and on the potentialities of the technology which is exploited by firms. This
uncertainty influences the occurrence and the time of innovation as well as
the technological performances associated to the innovation;

• The market uncertainty rather affects the link between R&D investment and
competitiveness of firms (in terms of profit or market share). The impact of
innovation on the competitiveness of firms does not only depend on tech-
nological factors but also on the evolution of demand and on the behaviors
of competing firms. This uncertainty is mainly linked to the environment in
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which R&D is carried out, especially when the industry persistently is out of
equilibrium.

On the basis of this distinction between the sources of uncertainty, I can ar-
gue that the nature and the degree of uncertainty in R&D decisions depend on
the technology and on the market structure. In this perspective, uncertainty is not
systematically associated to radical innovation but to innovation in general. For
instance in an oligopolistic structure, a firm that carries out R&D activities in order
to realize incremental innovations has to cope with the market uncertainty which
comes from the behavior of its rivals. In an equilibrium approach this problem is
overcome since every firm is supposed to perfectly anticipate the equilibrium deci-
sions. Otherwise this uncertainty strongly influences the impact of innovation upon
the competitiveness of the firm. Another case could be a monopolistic situation
with radical innovation. In that case, uncertainty would come mainly from techno-
logical factors (unless unpredicted variations of demand occur). These examples
clearly show that the combination of expectation with adaptation in the presence
of uncertainty is a general problem and it is relevant for all types of innovation
(incremental or radical).

I propose to explore the modelling of the determination of the level of R&D
investment of firms. As a consequence, this article will not tackle the decision of
being an innovator or not, nor the adoption of a new technology. I will exclude
these decisions and focus on the situations where firms invest in internal R&D in
order to produce an innovation. In that case the problem is to determine the level of
R&D investment. My interest is to analyze how expectation and adaptation can be
combined in the modelling of R&D investment rules. These dimensions are gen-
erally split up in the literature: rational expectations are assumed in neoclassical
models, whereas alternative approaches (institutional and/or evolutionary) gener-
ally adopt a purely adaptive representation.

The concept of equilibrium with rational expectations or perfect foresight,
which is generally used in standard models, leads to a systematic coordination
among agents and among periods. In that sense, the role of rational expectations
is mainly to insure intertemporal coordination. The problem with this approach is
that it does not deal with how agents form and adapt their expectations. Under the
equilibrium assumption there is no need for adaptation since the expectations corre-
spond to the objective distribution of outcomes. In this context, agents do not have
to exploit observations and past experiences in order to improve their predictions
and to adapt the model of the economy they use to form expectations. However
this issue is particularly relevant for R&D decisions since they are guided by the
agents’ vision of the technological change process. Also, the neoclassical models
generally deal with risk (v.s. uncertainty) and they do not cope with the formation
and the adaptation of expectations. As such, I exclude them from the scope of this
article.

In the next section, I focus on models based on adaptive decision rules. I show
that recent models of innovation developed in the evolutionary framework tend to
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overlook the role of expectations in innovation decisions. In this class of models,
the decision rules are purely adaptive, and as a consequence, they do not take into
account the impact upon investment of the expectations of firms concerning the
relationships between R&D and competitiveness.

Section 3 is devoted to the modelling trade-off between expectation and adap-
tation. I argue that in the presence of uncertainty, expectations reflect the existence
of an internal model of the economy that firms use to make simulations about the
possible outcomes of their decisions. This internal model is specific to firms and
is adapted over time according to observations and experiences. The arguments of
this section show that artificial neural networks (ANN) appear as a natural candi-
date for modelling the presence of such an internal model.

This assumption is tested in Section 4 where an evolutionary model of industry
dynamics is developed. This model builds upon Yildizoglu (2001) (see the pre-
sentation of this model at p.6) where some firms (the GenFirms) explore the R&D
strategy (investment rate) through a genetic algorithm. In this first, deliberately
crude, version of the model I assumed that the only possibility for the firms to
learn the fitness of each rule was to effectively use it during a learning period. In
the model of the fourth section, the fitness of each rule is evaluated on the base of
firm’s expectations provided by a firm-specific neural network. The results from
different assumptions about learning are presented: Nelson and Winter kind fixed-
rule based behaviour (NWFirms), Genetic Algorithm (GA) based learning where
each rule is effectively used (GenFirms) and GA based learning with expectations
based on a neural network (NNGenFirms).

2 Uncertainty and adaptive behavior

When one takes into account the complexity of the innovation process and the
inherent uncertainty (technological and/or market), the assumption of agents pos-
sessing the true model of the economy becomes very costly in terms of realism.
This assumption is of course critical for models based on rational expectations.

Evolutionary modelling of R&D decisions has rejected this assumption from
the beginning (see Nelson & Winter (1982) and Hodgson (1994) for a historical
account). As an alternative, the bounded rationality concept of Simon and adaptive
behavior based on decision rules have been placed in the centre of evolutionary
models (see Simon (1982)).

Alternatives to the unifying rational expectations framework lead to a great
diversity because the modelling of bounded rationality entails the modelling of
agents’ learning process when an empirically and conceptually founded unanimity
about this learning process does not exist for the time being (see Dennett (1998)).
Simon’s propositions have consequently been introduced in economic models in a
progressive and diversified way. Concerning the modelling of R&D decisions, the
persistent form of this formalization has been centered around decisions rules and
their modification as a consequence of learning.
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2.1 From bounded rationality to decision rules

The original model of Nelson and Winter (1982, ch.15) introduces a very simple
kind of R&D investment rule: each firm is supposed to invest a constant fraction
of its capital stock in R&D. Even if the merit of this model is to propose a first ap-
plication of the concept of bounded rationality to innovation decisions, it is limited
by a very simplistic version of this concept. In the end, as Silverberg & Verspa-
gen (1999) assert: “While there is technological learning at the economy-wide
level, firms themselves are completely unintelligent, since they operate according
to given search and investment rules that cannot be modified as a result of experi-
ence.” This is of course very far from Simon’s initial propositions.

Winter (1984) provides a first attempt in introducing adaptive R&D decision
rules. In this model, the R&D-capital ratios are adapted in order to reach a satis-
factory profit rate which is given by the capital weighted industry average profit
rate. If the current profit of the firm is less than satisfactory, the firm progressively
adjusts its R&D-capital ratio towards the industry average ratio. This adaptive rule
corresponds more to blind imitation (of the average behavior) than to the positive
result of a learning process. Moreover this rule assumes that each firm knows the
distributions of capital stocks, profit rates and R&D ratios in order to be able to
compute the weighted averages. Hence we have an informatively demanding but
finally poor adaptive behavior behind this rule. Silverberg & Verspagen (1996) and
Silverberg & Verspagen (1995) enrich this rule by letting firms choose their R&D
investment as a fraction of profit or sales. Moreover the relative weight of each
source of R&D financing (sales or profit) is adapted through imitation and random
experiments (mutations) according to a satisficing rule. This emphasizes a second
important dimension of the evolutionary modelling of learning process: random
experiments or mutations. As a matter of fact imitation and mutation are two main
dimensions of adaptive rules that will be introduced in subsequent models of inno-
vation.

2.2 Towards richer adaptation: the emergence of a unified modelling
principle?

Recent and more sophisticated models of technology dynamics progressively adopt
mechanisms of rule adaptation more resolutely inspired by evolutionary algorithms.
These algorithms are not introduced to represent faithfully the exact learning mech-
anism of agents but to just take into account, in the least ad hoc way, the presence
of learning (see Marengo (1992) for a precursory application of evolutionary algo-
rithms to models of learning).

The models developed by Kwasnicki (see Kwasnicki & Kwasnicka (1992) and
Kwasnicki (1998)) use a representation of the learning of firms already very close
to genetic algorithms (see Figure 1 and Goldberg (1991)). Even if the R&D strate-
gies of firms do not directly result from learning and adaptive processes, the result
of this R&D (i.e. innovation) is modeled as the discovery and the effective use of
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Figure 1: A simple example of genetic algorithm

new routines: “The creative process is evolutionary by nature and as such its de-
scription should be based on a proper understanding of the hereditary information.”
(Kwasnicki (1998), pp.140) The learning of the firm does not directly concern its
strategy of R&D investment (R&D is a constant function of capital stock) but the
routines which enable it to produce better products. These routines are adapted
through an evolutionary process based on recombination and mutation. The speed
and the scope of this adaptation depend on the decisions of the firm (mainly on
R&D investment). Given the emphasis on the modelling of innovation as the learn-
ing of new routines, these models open yet a little more the “black box” of the firm
and, hence, their adaptive dimension is closer to the behavioral theory of the firm
than to the innovation theory.

An even richer modelling of adaptive R&D strategies can be found in the work
of Ballot and Taymaz. Even if R&D decisions are on a secondary plan in their first
articles (see for example Ballot & Taymaz (1997)), one of their most recent arti-
cles is dedicated to R&D rules. In their initial articles they use controlled Genetic
Algorithms to model the learning process of the firm as a result of incremental in-
novations. The efficiency of this learning is mainly determined by the spending of
firm in human capital training. Even if these models are remarkable because they
plainly adopt evolutionary algorithms, they are closer to Kwasnicki (1998) since
the adaptation concerns the technology of firms and not their innovative strategies.
Ballot & Taymaz (1999) is directly dedicated to the comparative modelling of R&D
strategies. This model confronts an evolutionary adaptation mechanism, which is
a Classifier System (CS), with other more ad hoc satisficing criteria: Informed
behaviorà la Nelson & Winter (1982), Optimizing behavior based on statistical
inference about the production function and Follower behavior which is pure imi-

5



tation of the top 50% of firms in the industry.
A CS uses rules like “IF (Condition) THEN (Action)”. Each time an Action

is chosen only if its Condition is fulfilled and if the rule has a strong value. This
value is fixed by a credit assignment system and new rules are generated by a GA.
Because of the condition part, the CS has the possibility to develop in parallel better
sets of rules for different situations. Moreover, recent formulations of CS include
a more direct reference to learning and expectations, through the inclusion of the
prediction errors in the evaluation of the fitness (see XCS developed by Wilson
(1995)).

In Ballot & Taymaz (1999), this CS continuously adapts the R&D-Sales ratio
according to the information about the market share and the relative performance
of the firm on the market. Then the GA generates new rules with a speed which
is increasing in the general human capital of the firm. The comparison between
these four rules clearly shows that the combination of evolutionary algorithms with
empirical knowledge on the elements of R&D decisions can significantly limit the
ad hoc nature of rule-based adaptive models.

The main idea of GA (and also of the CS) is the combination of good solutions
in order to obtain better and even the best solutions. This combination is aug-
mented by casual random experimenting. This simple idea is behind the Schemata
Theorem of Holland (Goldberg (1991) and Mitchell (1996)).

Yildizoglu (2001) tests this idea in a very simple model based on Nelson &
Winter (1982) model. This article makes rule-based firms compete with learning
firms. The R&D and capital investment of the latter is modelled using a very sim-
ple genetic algorithm for each of them. Two main class of results show that we
should not neglect learning if we desire to better understand the connection be-
tween innovative activity and industry dynamics. In the first place, results at the
industry level show that industries with learning firms exhibit higher technological
and allocative efficiency (welfare). In the second place, learning gives a compet-
itive edge to firms benefitting from it: learning firms very quickly dominate the
industry. Even this simple model shows that we cannot ignore learning since its
presence has a tremendous impact on firms’ and industry performance.

This simple mechanism of learning is also the basis of an emerging paradigm
in Artificial Life studies. If one aims to explore the behavior of a whole system
(an ecology) of adaptive agents, this can be done in the unifying frame of Com-
plex Adaptive Systems (CAS) (Holland (1996),Holland (1998)). This paradigm is
actually far from providing a rich unified framework for models of economic deci-
sions. In the meantime, evolutionary algorithms combined with a good empirical
knowledge on economic decisions can offer a coherent strategy for adaptive mod-
els. This strategy could overcome the criticism concerning the excessive diversity
of bounded rationality models by providing such a unified framework (see Sargent
(1995) for a summary, and Rubinstein (1998) for alternatives that stick to an ax-
iomatic approach and to the equilibrium assumption). Such a common framework
would unfortunately not solve the main problem of adaptive models: because they
refuse to assume that agents possess the true model of the economy in their head,
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these models go to the other extreme by considering agents without any model in
their mind. In that case agents just “grope in the dark”. We must hence find a
convincing method for modelling expectations.

3 Uncertainty and modelling of expectations

If one does not adopt a biologically over-determined vision of human behavior
(“everything is coded in our genes”), the intentions of economic agents must be
taken into account in the modelling of their decisions. Even with minimal knowl-
edge, under uncertainty, agents look forward: a firm engages in R&D investments
only if it assumes that there is potential technical progress and, moreover, that
research activities can give a competitive edge over other firms through new pro-
duction processes or products. R&D activity consequently follows from the antic-
ipation of a positive impact of this activity on the prospects of the firm.

Unfortunately, it is very difficult to include these anticipations in models of
R&D because we do not have a precise knowledge on how these expectations are
actually formed by economic agents. The adaptive learning mechanisms of the pre-
ceding section include an expectational dimension but only for conditions already
observed and rules already used by agents. Expectations are hencehard-codedinto
rules and learning about the environment cannot be distinguished from the search
for better rules (Dosi, Faggiolo & Marengo (1999)). Consequently, these mecha-
nisms do not explain how agents represent their environment in order to evaluate
decisions even if they are not yet been tested. To overcome this problem, maybe
we should accept to be unable to model the formation process of expectations and
focus more on the effects of the simple presence of such a process. This black-box
approach would leave aside a detailed representation of this process and thus over-
come one of the major problems of Artificial Intelligence (Hofstadter (1979) and
Dennett (1998)).

Simulations DecisionInternal Model

Effective
result of the

decision

If Result differs from
Simulation

Update model

Figure 2: Dynamics of the internal model
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3.1 Expectations and agent’s internal model

Instead of assuming that the agents know the exact model of the economy (ra-
tional expectations hypothesis), one can imagine that their decisions are guided
by a more or less approximate model. This model summarizes the state of the
agent’s knowledge and evolves as a consequence of evolution of this knowledge.
This approximate model can be called the internal model of the agent. It guides
the decision process since it enables the agent to test the connections between the
alternatives of choice and their consequences. The presence of such an internal
model can reflect the intentionality of decisions.

Obviously, in this context, the concept of “model” must be understood in a very
loose sense. More than a mathematical construction, it consists in a representation
of the agent’s perception of the environment: “In (. . . ) situations [that are not
sufficiently simple as to be transparent to human mind], we must expect that the
mind will use such imperfect information as it has, will simplify and represent the
situation as it can, and make such calculations as are within its powers” (Simon
(1976), p.144). These calculations are “As if” experiments that enable the agent to
evaluate the possible consequences of its decisions. In other words, before making
a decision, the agent simulates the potential outcomes of different decisions by
using its internal model. The output of these simulations yields the expectations of
the agent.

Concerning the R&D decisions, the relevance of such a model could seem
more problematic. These decisions are made by a meta-agent: the firm. A faithful
description of the internal model of such an meta-agent is of course impossible, and
in a certain sense meaningless. Fortunately, one does not need such a description in
order to embody expectations in models of R&D. The effects of the intentionality
can be studied simply by representing the presence of such a model instead of its
exact structure. This is not necessarily a restrictive assumption since “the actions
taken within organization need to be consistent; the frameworks within which they
are embedded do not. (. . . ) All is required is that the frameworks should fit where
they touch” (Loasby (1986, p.51)). In this case, one can easily assume that the firm
bases its decisions on the connection that its internal model establishes between
R&D and the relevant dimensions of the environment.

The agent compares the expectations resulting from the simulations with ef-
fective observations. If this experience questions the internal model, the latter is
updated. Hence we have a dynamic structure which evolves as it is depicted by
Figure 2.

The representation of this internal model must therefore take into account the
update of the model following the experience and the expectations of the firm. The
main idea behind this approach is that “an intelligent being learns from experience,
and then uses what it has learned to guide expectations in the future” (Dennett
(1998), p.185) and, moreover, “. . . failed predictions can serve as well as overt re-
ward as a basis for improvement” (Holland (1998), p.77). The idea we are trying
to represent in our models is therefore a fairly obvious one: “an intelligent agent
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must engage in swift information-sensitive ‘planning’ which has the effect of pro-
ducing reliable but not foolproof expectations of the effects of its actions” (Dennett
(1998), p.193).

While this idea is quite obvious, its integration into models of R&D is prob-
lematic. This is the reason why purely adaptive models (see the preceding section)
generally neglect this dynamic process of expectation formation. The representa-
tion of learning as the product of an evolutionary algorithm does permit the elab-
oration of better decision rules, but only by trial and error. The agent can only
judge decisions which have been used before. On the contrary, the vision based on
the dynamics of the internal model admits that agents can have a relatively precise
(if not perfect) perception of the value of their decisions even if they have never
been used before. This is made possible by means of simulations with the inter-
nal model. We must now attack the problem of the integration of this idea into
economic models.

3.2 How to represent the evolution of the internal model?

The standard way of formalizing such a model is given by subjective probabilities
of Savage. In this case, the internal model of the firm corresponds to a set of
conditional probability distributions. The update of this model can be imagined
through successive least square estimations or Bayes rule.

The Bayesian approach has the advantage of not assuming any particular struc-
ture for the internal model. But it is very demanding in terms of agents’ rationality.
Moreover, “there is substantial evidence that Bayes’ theorem lacks empirical rele-
vance and hence its procedural justification is weak” (Salmon (1995), p.245).

R&D

Investment

Decision 3

Decision 4

s

s

s

ija

jb

...shareMarketor

rateReturnor

ofitPr

Figure 3: Feedforward ANN with one hidden layer

Even if least squares can be used in simple representations of this internal
model (see for example the use of this approach in Jonard & Yildizoglu (1999)
for the expectations about the return on physical investment), we need a tool as
flexible as possible for the black-box approach. Ideally our representation should
be independent of the structure and the parameterization of the internal model in
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order to incorporate only the most primitive dimensions of this model: its existence
and its influence on the decisions of agents. An artificial neural network (ANN)
is a good candidate to represent the dynamics of the internal model in a black-box
approach. With only minimal structural assumptions, namely the list of dependant
and explicative variables, and the structure of the hidden layer, it can represent the
fact that the firm adjusts its internal model to the flow of experience. The results
of the ANN are quite independent from the adopted activation function (only the
speed of the training depends on it – see Masters (1993) for the discussion of prop-
erties of ANNs): for many practical problems even a very simple feed forward
ANN with one hidden layer of few hidden nodes gives quite robust results.

An ANN provides a time varying flexible functional form that delivers an ap-
proximation of the connections between the inputs and the output of the internal
model. This approximation is obtained by the calibration of the parameters of the
ANN (ai j andbj in Figure 3) according to the series of input and output data. These
parameters reflect the intensity of the connections in the network. A better approx-
imation can be achieved through the introduction of fictive nodes in the network
(a hidden layer) which represent unobserved state variables, or more particularly,
unobserved variables of the internal model of the agent. ANN thus covers a wide
range of models from the simplest linear one when there is no hidden layers, to the
increasingly sophisticated ones when the number of the hidden nodes increases.
This number can even be used to represent the complexity of the agent’s internal
model.
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10



3.3 Internal model for R&D decisions

The internal model used by firms for their R&D decisions could be represented by
an ANN (see Figure 4). Given a state of this ANN, the firm uses it to compare
alternative investment decisions in terms of their competitive outcome. On the
basis of the results of the ANN, the agent takes a decision. This investment decision
results in a certain performance determined by the dynamics of the industry. This
decision and the corresponding outcome provides a new experiment for the firm.
The use of this experiment for the update of the internal model corresponds to the
learning.

At any point in time the state of the ANN is indeed given by parameters which
represent the strength of connections. These parameters are calibrated at each pe-
riod by using the past observations of inputs (decisions and indicators) and outputs
(indicators of competitiveness or profitability). Then the agent provides this ANN
with different investment hypothesis and compares the resulting outputs:

Input : “(RD/CF = x%)” −→ Out put: “π = y%”.

whereRD/CF represents the R&D- cash flow ratio andπ, the profit rate of the
firm. This expectation(x%→ y%) can be compared with other hypothesis in order
to make a decision through the relevant decision process. With bounded rationality,
the firm will choose the first hypothesis with asatisfyingoutcome. This decision
and its effective result (the observed profit rate) can again be used to update the
internal model (to calibrate the ANN).

As input data one could use actual or lagged values of different relevant vari-
ables: R&D investments (cumulated or not), capital stock (size), market share,
known demand characteristics, the degree of maturity of the technology. Cumu-
lated or lagged values of R&D investments can be particularly relevant since the
innovation process is cumulative and R&D does not have immediate reward. As
to competitiveness we can consider different indicators such as relative mark-up,
variation rate of the productivity or the variation of the profit rate.

4 A model of adaptive learning and expectations

In order to test the validity of the approach proposed in the preceding section, I will
now present an industry model where firms elaborate their profit-rate expectations
from their individual internal model. The presence of such a process is modeled
under the form of a firm-specific artificial neural network. As in Yildizoglu (2001),
the exploration by firms of the R&D-strategy space is represented through a genetic
algorithm.

4.1 A simple model

This model is very close to Yildizoglu (2001) that includeslearningfirms in a sim-
plified version of the Nelson & Winter (1982) model. As in the Nelson & Winter
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model, this model concerns an industry producing a homogenous good and facing
a decreasing market demand. The only production factor is the physical capital and
the technology has constant returns to scale (it is linear). In each period, each firm
dedicates a fraction of its gross profits to the R&D activity and the residual of the
profits are used for the expansion of the physical capital. The R&D investment of
the firm is necessary for the imitative and innovative activity of the firm, and these
are the only source of productivity gains in the model.

In the previous version of the model, learning firms (GenFirms) that use a
Genetic Algorithm for exploring the strategy space (the R&D/Profits ratios) are
introduced. In order to assess the fitness of each decision rule (R&D rates) these
firms effectively use them during a number of periods (learning period), in order
to take into account the delayed and random results of the innovation process. The
results of the model show that even with such a crude exploration strategy, the
presence learning firms is a source of technological performance for the industry
and of a competitive edge for themselves.

Of course, the assumption of a configuration where firms effectively use any
idea that they can happen to have on their strategy is very far from realistic. As we
have proposed in the preceding sections, they will rather have an internal model
that will hint them about the possible value of each strategy, even before the first
use of it. The presence of such a model on the base of which the expectations are
formulated by the firm is included in the actual model, using a firm-specific ANN
(seeMasters (1993) and Watson (1997)) for each firm.NNGenFirms use such a
procedure for learning.
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Figure 5: GA and ANN based learning

The Figure 5 summarizes the workings of the learning block of theNNGen-
Firms (a detailed description of the model in the standard SUN JavaDoc format
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can be read from my web site1).
Expectations are based on a internal model that connects variables observable

by the firm (Inputs vector of the ANN) to the desired output. In each period:

1. Past observations of inputs and the output are used to train the network
(adapting the internal model to the observations of the firm - arrow 1);

2. using the freshly trained ANN, the firm simulates the possible outcome of
each possible R&D rate in the actual strategy population, combining this
rate with the actual values of other inputs: for each rule in the population, an
inputs vector composed of this value of R&D rate and last observations on
other inputs are provided to the ANN (arrow 2). The ANN uses this input to
compute the corresponding value of the output given its actual state (arrow
3) and the GA uses this value as the expected fitness of the rule (arrow 4);

3. the R&D strategy with the highest expected profit rate is used by the firm to
determine the amount of it’s R&D investment (arrow 5);

4. the GA uses the expected fitness of the rules to generate a new population
through selection-crossover-mutation (arrow 6);

5. the R&D investment of the firm determines the stochastic outcomes of the
imitation and the innovation: if successful, these activities can provide the
firm with a higher productivity of the capital (the only production factor);

6. the residual gross profits (profits – R&D investment) determines the invest-
ment of the firm in physical capital and, hence, the capital stock of the next
period;

7. the simulation is carried on in the next period.

The NWFirms use a fixed R&D rate in stages 5–7 in a way similar to the
original Nelson and Winter Model. TheGenFirms use the same R&D rate during
the learning period and, once all rules in the population are used, they proceed with
stage 4.

For the NNGenFirms, the GA and the ANN are hence complementary: the GA
represents the adaptive explorations of the firm and the ANN provides the GA with
the expectations that are necessary for theex anteevaluation of strategies. This
model complies with our announced objective: connecting adaptive behaviour with
expectations.

4.2 Results of the experiments

Since we aim to derive results independent from a particular sequence of random
numbers, a batch of 20 simulations, of 2000 periods each, is run for each configu-
ration of the model. Observations have been saved every 40 periods. Each possible

1http://beagle.montesquieu.u-bordeaux.fr/yildi/learnindnn/doc/
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configuration of the industry is hence represented by a sample of 1000 observa-
tions. The relevant dimensions (e.g. technical progress, concentration) of resulting
samples are compared by way of non-parametric tests (the non-parametric Mann–
Whitney test, see for instance ch.18 in Watson, Billingsley, Croft & Huntsberger
(1993)). For convenience, results are presented asbox plots where the box gives
the central 50% of the sample centered around the median: the box hence gives the
first, second and third quartiles(Q1,Q2,Q3) of the distribution. The whiskers give
the significant minimum and the significant maximum of the distribution. Each
box contains the whole history of the industry for all simulations for each corre-
sponding configuration.

This protocol allows the qualitative comparison of different industry configu-
rations. Different indicators are used for these comparisons.

Quite standard indicators are used for the comparison of performance of indus-
tries:

• welfare indicators: market price and average gross profits;

• technical efficiency indicators: average productivity and maximal productiv-
ity.
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Figure 6: The relative market performance of industries with NNGenFirm.

I compare three industry configuration:

nwpure: An industry composed of 30 NWFirms investing each 10% of gross prof-
its in R&D.

genpure: An industry composed of 30 GenFirms, each using a GA with 12 chro-
mosomes of 8 genes. Each rule is evaluated during 3 periods (the learning
period).

ngenpure: An industry composed of 30 NNGenFirms that use the same GA as
the GenFirms but use an ANN with 4 hidden nodes for evaluating each rule.
The inputs of the ANN are:
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• the R&D rate;

• a moving average of the last 5 R&D rates, taking into account the de-
layed effect of the R&D;

• the variation rate of the physical capital of the firm(∆K/K), taking into
account the impact of the capital expansion on profit;

• max{0,−∆p/p} that takes into account the impact of the price(p) on
the profit rate (normalized in order to give values in accordance with
other inputs);

Only the data from last 10 periods is used for training the ANN in each
period.
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Figure 7: The relative technological performance of NNGenFirms

The Figure 6 summarizes the results concerning the market performance of
these industries. Figure (b) shows that learning is costlier for the NNGenFirms be-
cause of the imprecision of the ANN during the beginning of the history. They can
hence suffer from higher losses than the GenFirms. But they can also attain much
higher profits than the GenFirms (that perform better than the NWFirms as I show
in Yildizoglu (2001)). The Mann-Whitney tests gives the following ordering for the
medians of the average profits in these industries:nwpure< genpure< ngenpure.
Globally, we observe highest average profits in industries composed of NNGen-
Firms. Again, the comparison of the distributions of the market price (Figure (a))
is clarified using Mann-Whitney tests: the lowest prices are observed in industries
composed of NNGenFirms. The social welfare is consequently the highest in such
industries in comparison with other configurations. There is not a contradiction be-
tween these figures (lowest prices but higher profits) if the productivities are higher
in ngenpureindustries because this would imply lower unit costs.

The Figure 7–(a) confirms this result:ngenpureindustries attain higher maxi-
mal profits. Figure (b) shows thatnwpureindustries are not very efficient in R&D
and this mainly results from constant expansion of the physical capital even if this
tremendously lowers the price and hence, the profit rate. This figure also indicates
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Figure 8: Sensitivity to the variation of the number of hidden nodes

an R&D process quite inefficient for the GenFirms: they do not spend enough
on R&D to attain the same maximal productivities as the NNGenFirms. The in-
troduction of the expectations enhances the performance of the adaptive process
represented by the GA.

It would be interesting to test the sensitivity of these results to the structure of
the ANN. The Figure 8 represents the performances ofngenpureindustries with
different ANNs (aggregated over the batch of 20 simulations of 2000 periods for
each configuration –nhi corresponds to ANNs withi hidden nodes). These results
show that the performance of thengenpureindustries does not strongly depend
on the structure of the ANN: the structure with 4 hidden nodes corresponds to
slightly (but in a statistically significant way) better performances but we do not
observe a regular relation between the number of hidden nodes and the market and
technological performance of NNGenFirms. As a consequence, these results are
quite robust in respect with the structure of the ANN (especially when completed
with the insensitivity to the structure of the activation function, as we have earlier
discussed): the distributions of maximal productivities for the industriesngenpure
in Figure 7–(a) andnh4 in Figure 8–(a) are very similar even if they result from
different sets of simulations.

5 Conclusions

This article establishes the necessity and the possibility of complementing adaptive
learning mechanisms with adaptive expectations in the modeling of R&D strategies
of firms with bounded rationality.

We start from a trivial observation: if firms get engaged in a costly and rather
inflexible innovation process, that is because they expect to get something back
from it. These expectations and their appreciation of the technological trajectory
of their industries will strongly condition the importance of the R&D expenditures
in their budget. This observation does naturally not imply that we should assume
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the simplest of the worlds and model these expectations with rational expectations:
Firms are generally very far from having a crystal-clear picture of the dynamics
of the economy, but they at least have some picture of the economy, and it guides
their decisions. Even the adaptive decision processes of boundedly rational firms
are guided by expectations.

This article proposes that we should model the presence of this picture and
its evolution as a consequence of the observations of the firm using a black box
approach based on the concept ofinternal model,and that the presence (but not
the structure) of this internal model can be represented by a firm specific artificial
neural network. The second part of the article develops such a model based on
Yildizoglu (2001): the adaptive decisions of the firms are represented by a genetic
algorithm as in the preceding article but the fitness of each strategy isex anteappre-
ciated by the firm usingas if experiments through a firm specific artificial neural
network. I compare the performance of industries composed of such firms with
the performances of industries with firms using fixed rulesà la Nelson & Winter
and others composed of firms that effectively use each rule in order to appreciate
its value. The results clearly show that we observe higher welfare and technolog-
ical performance if we take into account the expectations of the firms. Moreover,
these results are very robust and they do not depend on the structure of the ANN
(the number of hidden nodes). These results confirm our vision concerning the
necessity of taking into account the fact that firms form expectations about their
environment and these expectations are a source of better performance. If we ig-
nore them, we can underestimate in our models the performance of the firms. These
are only first results with this model. A more in depth analysis of the dynamics of
the model should reveal even richer properties of learning firms.
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