Action Potential Modulation of Neural Spin Networks Suggests Possible Role of Spin

Hu, Huping and Wu, Maoxin (2004) Action Potential Modulation of Neural Spin Networks Suggests Possible Role of Spin. [Preprint]

Full text available as:



In this paper we show that nuclear spin networks in neural membranes are modulated by action potentials through J-coupling, dipolar coupling and chemical shielding tensors and perturbed by microscopically strong and fluctuating internal magnetic fields produced largely by paramagnetic oxygen. We suggest that these spin networks could be involved in brain functions since said modulation inputs information carried by the neural spike trains into them, said perturbation activates various dynamics within them and the combination of the two likely produce stochastic resonance thus synchronizing said dynamics to the neural firings. Although quantum coherence is desirable and may indeed exist, it is not required for these spin networks to serve as the subatomic components for the conventional neural networks.

Item Type:Preprint
Additional Information:Reporting No. BCG-01-2004
Keywords:Action potential, modulation, nuclear spin, cognitive pixel
Subjects:Neuroscience > Biophysics
ID Code:3458
Deposited By:Hu, Dr. Huping
Deposited On:04 Mar 2004
Last Modified:11 Mar 2011 08:55

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

1. Marder, E., Abbott, L. F., Turrigiano, G. G., Liu, Z. & Golowasch, J. Memory from the dynamics of intrinsic membrane currents. Proc. Natl. Acad. Sci. USA. 93, 13481–13486 (1996).

2. Hunt, S. P. & Mantyh, P. W. The Molecular dynamics of pain control. Nature Rev. Neurosci. 2, 83–91 (2001).

3. Morais-Cabral, J. H., Zhou, Y. & MacKinnon, R. Energy optimisation of ion conduction rate by the K selectivity filter. Nature 414, 37–42 (2001).

4. Hu, H. P., & Wu, M. X. Spin-Mediated Consciousness Theory. arXiv e-print quant-ph/0208068 (2002).

5. Gershenfeld, N. & Chuang, I. L. Bulk spin resonance quantum computation. Science 275, 350–356 (1997).

6. Barnet, A. & Weaver, J. C. Electroporation: a unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes. Bioelectrochem. Bioenerg.. 25, 163–182 (1991).

7. Sargent, D. F. Voltage jump/capacitance relaxation studies of bilayer structure and dynamics. J. Membr. Biol. 23, 227–247 (1975).

8. Saux, A. L., Ruysschaert, J. M. & Goormaghtigh, E. Membrane molecule reorientation in an electric field recorded by attenuated total reflection Fourier-transform infrared spectroscopy. Biophys. J. 80, 324-330–125 (2001).

9. Grayson, M. Electric field effects on 2JHH spin-spin coupling constants. Int’l J. Mol. Sci. 4, 218–230 (2003).

10. Peshkovsky, A. & McDermott, A. E. Dipolar interactions in molecules aligned by strong AC electric fields. J. Magn. Reson. 147, 104–109 (2000).

11. Buckingham, A. D. Chemical shifts in the nuclear magnetic resonance spectra of molecules containing polar groups. Can. J. Chem. 38, 300–307 (1960).

12. Marsh, D. Polarity and permeation profiles in lipid membranes. Proc. Natl. Acad. Sci. USA. 98, 7777–7782 (2001).

13. Prosser, R. S., Luchette, P. A., Weterman, P. W., Rozek, A. & Hancock, R. E. W. Determination of membrane immersion depth with O2: A high-pressure 19F NMR study. Biophys. J. 80, 1406–1416 (2001).

14. Bezrukov, S. M. & Vodyanoy, I. Noise-induced enhancement of signal transduction across voltage-dependent ion channels. Nature 378, 362–364 (1995).

15. Simonotto, E., Riani, M., Seife, C., Roberts, M., Twitty, J. & Moss, F. Visual perception of stochastic resonance. Phys. Rev. Lett. 78, 1186–1189 (1997).

16. Viola, L., Fortunato, E. M., Lloyd, S., Tseng, C. H. & Cory, D. G. Stochastic resonance and nonlinear response using NMR spectroscopy. Phys. Rev. Lett. 84, 5466–5469 (2000).

17. Bryan-Brown, G. P., Brown, C. V., Sage, I. C. & Hui, V. C. Voltage-dependent anchoring of a nematic liquid crystal on a grating surface. Nature 392, 365–367 (1998).

18. Walsh, V. & Cowey, A. Transcranial magnetic stimulation and cognitive neuroscience. Nature Rev. Neurosci. 1, 73–79 (2000).

19. Hu, H. P., & Wu, M. X. Mechanism of Anesthetic Action: Oxygen pathway perturbation hypothesis. Med. Hypotheses 57, 619-627 (2001).

20. Marino, A. A. Environmental electromagnetic fields and public health. In Foundations of Modern Bioelectricity Marino, A. A., ed. (Marcel Dekker, New York, 1988).

21. Shellock, F. G. Magnetic Resonance Safety Update 2002: Implants and Devices. J. Magn. Resonan. Imaging 16, 485–496 (2002).

22. Khitrin, A. K., Ermakov, V. L. & Fung, B. M. Information storage using a cluster of dipolar-coupled spins. Chem. Phys. Lett. 360, 161–166 (2002).

23. Julsgaard, B., Kozhekin, A. & Polzik, E. S. Experimentally long-lived entanglement of two macroscopic objects. Nature 413, 400–403 (2001).

24. Donald, M. J. Quantum theory and the brain. Proc. R. Soc. A 427, 43–93 (1990).

25. Hameroff, S. & Penrose, R. Conscious events as orchestrated spacetime selections. J. Conscious. Stud. 3, 36–53 (1996).

26. Tegmark, M. The importance of quantum decoherence in brain processes. Phys. Rev. E 61, 4194–4206 (2000).

27. Hagan, S, Hameroff, S. R. & Tuszynski, J. A. Quantum computation in brain microtubules: Decoherence and biological feasibility. Phys. Rev. E 65, 061901 (2002).

28. Penrose, R. A spinor approach to general relativity. Ann. Phys. 10, 171–201 (1960).

29. Hestenes, D. Quantum mechanics from self-interaction. Found. Phys. 15, 63–78 (1983).

30. Salesi, G. & Recami, E. Hydrodynamics of spinning particles. Phys. Rev. A 57, 98–105 (1998).


Repository Staff Only: item control page