Cogprints

Solving the binding problem: cellular adhesive molecules and their control of the cortical quantum entangled network

Georgiev, Danko (2003) Solving the binding problem: cellular adhesive molecules and their control of the cortical quantum entangled network. [Preprint]

Full text available as:

[img]
Preview
PDF
493Kb

Abstract

Quantum entanglement is shown to be the only acceptable physical solution to the binding problem. The biological basis of interneuronal entanglement is described in the frames of the beta-neurexin-neuroligin model developed by Georgiev (2002) and is proposed novel mechanism for control of the neurons that are temporarily entangled to produce every single conscious moment experienced as present. The model provides psychiatrists with ‘deeper’ understanding of the functioning of the psyche in normal and pathologic conditions.

Item Type:Preprint
Keywords:The binding problem in psychology, integration of conscious experience
Subjects:Neuroscience > Neuropsychology
Neuroscience > Biophysics
Neuroscience > Neuroanatomy
ID Code:2923
Deposited By:Georgiev, Danko
Deposited On:06 May 2003
Last Modified:11 Mar 2011 08:55

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

1. Bailey, C.H. & Kandel, E.R. (1993). Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426

2. Becker, C.G. et al. (1996). The polysialic acid modification of the neural cell adhesion molecule is involved in spatial learning and hippocampal long-term potentiation. J. Neurosci. Res. 45, 143–152

3. Bennett, M.R. (2000). The concept of long-term potentiation of transmission at synapses. Prog. Neurobiol. 60, 109–137

4. Benson, D.L., Schnapp, L.M., Shapiro, L. & Huntley, G.W. (2000). Making memories stick: cell-adhesion molecules in synaptic plasticity. Trends in CELL BIOLOGY Vol. 10: 473-482

5. Brieher, W.M. et al. (1996). Lateral dimerization is required for the homophilic binding activity of C-cadherin. J. Cell Biol. 135, 487–496

6. Choi, S. et al. (2000). Postfusional regulation of cleft glutamate concentration during LTP at ‘silent synapses’. Nat. Neurosci. 3, 330–336

7. Clark, E.A. & Brugge, J.S. (1995). Integrins and signal transduction pathways: the road taken. Science 268, 233–239

8. Conti, F. & Weinberg, R.J. (1999). Shaping excitation at glutamatergic synapses. Trends Neurosci. 22, 451–458

9. Cremer, H. et al. (1994). Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367, 455–459

10. Cremer, H. et al. (1997). NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol. Cell. Neurosci. 8, 323–335

11. Cremer, H. et al. (1998). Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule deficient mice. Proc. Natl. Acad. Sci. U. S. A. 95, 13242–13247

12. Doyle, E. et al. (1992a). Intraventricular infusions of anti-neural cell adhesion molecules in a discrete posttraining period impair consolidation of a passive avoidance response in the rat. J. Neurochem. 59, 1570–1573

13. Doyle, E. et al. (1992b). Hippocampal NCAM180 transiently increases sialylation during the acquisition and consolidation of a passive avoidance response in the adult rat. J. Neurosci. Res. 31, 513–523

14. Eckhardt, M., Bukalo, O., Chazal, G., Wang, L., Goridis, C., Schachner, M., Gerardy-Schahn, R., Cremer, H., & Dityatev, A. (2000). Mice deficient in the polysialyltransferase ST8SiaIV/PST-1 allow discrimination of the roles of neural cell adhesion molecule protein and polysialic acid in neural development and synaptic plasticity. J. Neurosci. 20, 5234-5244.

15. Engert, F. & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70.

16. Fanning, A. & Anderson, J. (1999). Protein modules as organizers of membrane structure. Current Opinion in Cell Biology, 11:432–439.

17. Gazzaniga, M. S. & Sperry, R. W. (1967). Language after section of the cerebral commissures. Brain, 90, (I), 131-148.

18. Georgiev, D. (2002). The beta-neurexin-neuroligin-1 interneuronal intrasynaptic adhesion is essential for quantum brain dynamics. http://arxiv.org/abs/quant-ph/0207093

19. Grotewiel, M.S. et al. (1998). Integrin-mediated short-term memory in Drosophila. Nature 391, 455–460

20. Hagan, S., Hameroff, S.R. & Tuszynski, J.A. (2000). Quantum Computation in Brain Microtubules? Decoherence and Biological Feasibility. http://arxiv.org/abs/quant-ph/0005025

21. Hardcastle, V.G. (1994). Psychology's binding problem and possible neurobiological solutions. Journal of Consciousness Studies, 1:66?90.

22. Hata, Y., Butz, S. & Südhof, T.C. (1996). CASK: a novel dlg/PDZ95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci, 16:2488-2494.

23. Holst, B.D. et al. (1998). Allosteric modulation of AMPA-type glutamate receptors increases activity of the promoter for the neural cell adhesion molecule, N-CAM. Proc. Natl. Acad. Sci. U. S. A. 95, 2597–2602

24. Husi, H. et al. (2000). Proteomic analysis of NMDA receptor-adhesion protein signalling complexes. Nat. Neurosci. 3, 661–669

25. Irie, M., Hata, Y., Takeuchi, M., Ichtchenko, K., Toyoda, A., Hirao, K., Takai, Y., Rosahl, T. & Südhof, T.C. (1997). Binding of neuroligins to PSD-95. Science, 277:1511-1515.

26. James, W. (1890). Principles of Psychology. Holt, New York. (Republished by Dover, New York, 1950).

27. Luthi, A. et al. (1994). Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372, 777–779

28. Malenka, R.C. & Nicoll, R.A. (1999). Long-term potentiation – a decade of progress? Science 285, 1870–1874

29. McAllister, A.K. & Stevens, C.F. (2000). Nonsaturation of AMPA and NMDA receptors at hippocampal synapses. Proc. Natl. Acad. Sci. U. S. A. 97, 6173–6178

30. Muller, D. et al. (1996). PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17, 413–422

31. Muller, D. et al. (2000). Brain-derived neurotrophic factor restores longterm potentiation in polysialic acid-neural cell adhesion moleculedeficient hippocampus. Proc. Natl. Acad. Sci. U. S. A. 97, 4315–4320

32. Myers, R. E. (1955). Interocular transfer of pattern discrimination in cats following section of crossed optic fibers. J. comp. physiol. Psychol., 48.

33. Palay, S.L. & Chan-Palay, V. (1976) A guide to the synaptic analysis of the neuropil. Cold Spring Harb Symp. Quant. Biol. 40, 1–16

34. Rado, A. & Scott, A.C. (1996). Is there a binding problem? http://www.math.arizona.edu/~rado/bp4_new/bp4.html

35. Rutishauser, U. & Landmesser, L. (1996). Polysialic acid in the vertebrate nervous system: a promoter of plasticity in cell-cell interactions. Trends Neurosci. 19, 422–427

36. Sakurai, E. et al. (1998). Involvement of dendritic adhesion molecule telencephalin in hippocampal long-term potentiation. NeuroReport 9, 881–886

37. Scholey, A.B. et al. (1993). A role for the neural cell adhesion molecule in a late, consolidating phase of glycoprotein synthesis six hours following passive avoidance training of the young chick. Neuroscience 55, 499–509

38. Seki, T. & Rutishauser, U. (1998). Removal of polysialic acid-neural cell adhesion molecule induces aberrant mossy fiber innervation and ectopic synaptogenesis in the hippocampus. J. Neurosci. 18, 3757–3766

39. Shi, S.H. et al. (1999). Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284, 1811–1816

40. Sperry, R.W. (1981). Nobel lecture: Some effects of disconnecting the cerebral hemispheres.

41. Sperry, R. W. & Gazzaniga, M. S. (1967). Language following disconnection of the hemispheres. In: C. H. Millikan & F. L. Darley (Eds.), Brain Mechanisms Underlying Speech and Language. New York: Grune & Stratton, Inc., 177-184.

42. Sperry, R. W., Gazzaniga, M. S. & Bogen, J. E. (1969). Interhemispheric relationships: the neocortical commissures; syndromes ofhemisphere disconnection. In: P. J. Vinken & G. W. Bruyn (Eds.), Handbook of Clinical Neurology. Amsterdam: North-Holland Publishing Company, 4, 177-184.

43. Squire, L.R. (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys and humans. Psychol. Rev. 99, 195–231

44. Staubli, U. et al. (1998). Time-dependent reversal of long-term potentiation by an integrin antagonist. J. Neurosci. 18, 3460–3469

45. Tamura, K. et al. (1998). Structure-function analysis of cell adhesion by neural (N–) cadherin. Neuron 20, 1153–1163

46. Tanaka, H. et al. (2000). Molecular modification of N-cadherin in response to synaptic activity. Neuron 25, 93–107

47. Tang, L. et al. (1998). A role for the cadherin family of cell adhesion molecules in hippocampal long-term potentiation. Neuron 20, 1165–1175

48. Tiunova, A. et al. (1998). Three time windows for amnestic effect of antibodies to cell adhesion molecule L1 in chicks. NeuroReport 9, 1645–1648

49. Toni, N. et al. (1999). LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402, 421–425

50. Tsigelny, I., Shindyalov, I.N., Bourne, P.E., Südhof, T.C. & Taylor, P. (2000). Common EF-hand motifs in cholinesterases and neuroligins suggest a role for Ca2+ binding in cell surface associations. Protein Science 9:180–185

51. Ventura, R. & Harris, K.M. (1999). Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19, 6897–6906

52. Wenzel, J. et al. (1991). The influence of long-term potentiation on the spatial relationship between astrocyte processes and potentiated synapses in the dentate gyrus neuropile of rat brain. Brain Res. 560, 122–131

53. Wolfer, D.P. et al. (1998). Increased flexibility and selectivity in spatial learning of transgenic mice ectopically expressing the neural cell adhesion molecule L1 in astrocytes. Eur. J. Neurosci. 10, 708?717

54. Woolf, N.J. & Hameroff, S.R. (2001). Quantum approach to visual consciousness. TRENDS in Cognitive Sciences Vol.5 No.11, 472?478.

55. Yamagata, K. et al. (1999). Arcadlin is a neural activity-regulated cadherin involved in long-term potentiation. J. Biol. Chem. 274, 19473–19479

Metadata

Repository Staff Only: item control page