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Abstract 
JohnnyVon is an implementation of self-replicating machines in continuous two-

dimensional space. Two types of particles drift about in a virtual liquid. The particles are 

automata with discrete internal states but continuous external relationships. Their 

internal states are governed by finite state machines but their external relationships are 

governed by a simulated physics that includes brownian motion, viscosity, and spring-

like attractive and repulsive forces. The particles can be assembled into patterns that 

can encode arbitrary strings of bits. We demonstrate that, if an arbitrary “seed” pattern is 

put in a “soup” of separate individual particles, the pattern will replicate by assembling 

the individual particles into copies of itself. We also show that, given sufficient time, a 

soup of separate individual particles will eventually spontaneously form self-replicating 

patterns. We discuss the implications of JohnnyVon for research in nanotechnology, 

theoretical biology, and artificial life. 
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1 Introduction 
John von Neumann is well known for his work on self-replicating cellular automata [19]. 

His ultimate goal, however, was to design self-replicating physical machines, and cellular 

automata were simply the first step towards the goal. Before his untimely death, he had 

sketched some of the other steps. One step was to move away from the discrete space 

of cellular automata to the continuous space of classical physics (pages 91-99 of [19]). 

Following the path sketched by von Neumann, we have developed JohnnyVon, an 

implementation of self-replicating automata in continuous two-dimensional space. 

JohnnyVon consists of a virtual “soup” of two types of particles that drift about in a 

simulated liquid. The particles are automata with discrete internal states that are 

regulated by finite state machines. Although the particles are internally discrete, the 

external relationships among the particles are continuous. Force fields mediate the 

interactions among the particles, enabling them to form and break bonds with one 

another. A pattern encoding an arbitrary string of bits can be assembled from these two 

types of particles, by bonding them into a chain. When a soup of separate individual 

particles is “seeded” with an assembled pattern, the pattern will replicate itself by 

assembling the separate particles into a new chain.1  

The design of JohnnyVon was inspired by DNA and RNA. The individual automata are 

intended to be like codons and the assembled patterns are like strands of DNA or RNA. 

The simulated physics in JohnnyVon corresponds (very roughly) to the physics inside 

cells. The design was also influenced by our interest in nanotechnology. The automata 

in JohnnyVon can be seen as tiny nanobots, floating in a liquid vat, assembling 

structures in a manufacturing plant. Another source of guidance in our design was, of 

                                                
1 The copies are mirror images; however, that is not a problem. This point is discussed in 
Section 5. 
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course, the research on self-replicating cellular automata, which has thrived and 

matured greatly since von Neumann's pioneering work. In particular, although the broad 

outline of JohnnyVon is derived from physics and biology, the detailed design of the 

system borrows much from automata theory. The basic entities in JohnnyVon are 

essentially finite automata, although they move in a continuous space and are affected 

by smoothly-varying force fields. 

We discuss related work in Section 2. JohnnyVon is closely related to research on self-

replicating cellular automata. A significant difference is that the automata in JohnnyVon 

are mobile. There is some related work on mobile automata that move in a two-

dimensional space, including Tim Hutton’s Squirm3 [6], which has many similarities to 

JohnnyVon. The work of Lionel and Roger Penrose, who created self-replicating 

machines using pieces of plywood, is also relevant [11].  

JohnnyVon is described in detail in Section 3. The motion of the automata is determined 

by a simulated physics that includes brownian motion, viscosity, and spring-like 

attractive and repulsive forces. The behaviours and interactions of the automata are 

determined by a small number of internal states and state transition rules. 

We present two experiments in Section 4. First, we show that an arbitrary seed structure 

can assemble copies of itself, using individual automata as building blocks. Second, we 

show that a soup of separate individual automata can spontaneously form self-

replicating structures, although we have deliberately designed JohnnyVon so that this is 

a relatively rare event. 

Section 5 is our interpretation of the experiments. Section 6 is concerned with limitations 

of JohnnyVon and future work. Some potential applications of this line of research are 

given in Section 7 and we conclude in Section 8. 
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2 Related Work 
JohnnyVon is related to research in self-replicating automata, mobile automata, and 

physical models of self-replication. Self-replicating machines are also related to self-

assembling machines and universal constructors. 

2.1 Self-Replicating Cellular Automata 
Since von Neumann’s pioneering work [19], after a hiatus, research in self-replicating 

cellular automata is now flourishing [7], [13], [15], [17], [18]. Most of this work has 

involved two-dimensional cellular automata. A two-dimensional grid of cells forms a 

discrete space, which is infinite and unbounded in the abstract, but is necessarily finite in 

a computer implementation. The cells are (usually identical) finite state machines, in 

which a cell’s state depends on the states of its neighbours, according to a set of 

(deterministic) state transition rules. The system begins with each cell in an initial state 

(chosen by the user) and the states change synchronously in discrete time steps. With 

carefully selected transition rules, it is possible to create self-replicating patterns. The 

initial states of the cells are “seeded” with a certain pattern (usually the pattern is a small 

loop). Over time, the pattern spreads from the seed to nearby cells, eventually filling the 

available space. 

Although this work has influenced and guided us, JohnnyVon is different in several 

ways. The automata in JohnnyVon are (essentially) finite state machines, but they are 

mobile, rather than being locked in a grid. The automata move in a continuous two-

dimensional space, rather than a discrete space (but time in JohnnyVon is still discrete). 

The states of the automata are mainly discrete and finite, but each automaton has a 

position and a velocity, and the force fields around the tips of each particle have smooth 
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gradients, all of which are represented with floating point numbers.2 The movements of 

the automata are governed by a simple simulated physics. We claim that these 

differences from self-replicating cellular automata make JohnnyVon more realistic, and 

thus more suitable for guiding work on self-replicating nanotechnology and research on 

the origins of life and related issues in theoretical biology. Aside from the increased 

realism, JohnnyVon is interesting simply because it is significantly different from cellular 

automata.  

2.2 Mobile Automata 
There has been other research on mobile automata (e.g., bio-machines [8] and 

generalized mobile automata [23]), combining Turing machines with cellular automata. 

Turing machines move from cell to cell in an N-dimensional grid space, changing the 

states of the cells and possibly interacting with each other. However, as far as we know, 

the only investigation of self-replicating mobile automata, other than JohnnyVon, is 

Hutton’s Squirm3 [6]. 

The Squirm3 simulation uses artificial chemistry to support self-replicating molecules. 

Virtual atoms occupy cells in a two-dimensional discrete grid space. The atoms move 

randomly in the grid space, presumably due to virtual brownian motion, like the particles 

in JohnnyVon. When two atoms occupy adjacent cells, they may form a bond with each 

other, again like the particles in JohnnyVon. If a seed molecule, consisting of a string of 

bonded atoms, is placed in a soup of free atoms, it will replicate itself by a series of 

virtual chemical reactions with the free atoms.  

Whereas Squirm3 uses virtual chemistry, JohnnyVon uses virtual physics; whereas 

Squirm3 uses a discrete grid space, JohnnyVon uses a continuous space; whereas the 

                                                
2 We discuss in Section 3.3 the extent to which the automata in JohnnyVon are finite state 
machines. 
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elementary units in Squirm3 are virtual atoms, the elementary units in JohnnyVon are 

virtual machines (e.g., nanobots). Otherwise, the two systems have many similarities, 

although they were developed independently.3 

The choice of a chemical model versus a physical model depends on the task at hand. 

Perhaps a chemical model is more suitable for investigating the origins of life, but a 

physical model is more suitable for designing self-replicating nanobots. However, some 

models of the origin of life, such as Cairn-Smith’s clay model [1], might be better 

approached with a model like JohnnyVon, rather than a model like Squirm3. 

2.3 Physical Models of Self-Replication 
Lionel Penrose, with the help of his son, Roger, made actual physical models of self-

replicating machines, using pieces of plywood [11]. His models are similar to JohnnyVon 

in several ways. Both involve simple units that can be assembled into self-replicating 

patterns. In both, the units move in a continuous space. Another shared element is the 

harnessing of random motion for replication. JohnnyVon uses simulated brownian 

motion and Penrose required the plywood units to be placed in a box that was then 

shaken back and forth. Penrose described both one-dimensional and two-dimensional 

models, in which motion is restricted to a line or to a plane. 

An obvious difference between the Penrose models and JohnnyVon is that the former 

are physical whereas the latter is computational. One advantage of a computational 

model is that experiments are perfectly repeatable, given the same initial conditions and 

the same random number seed. Another advantage is the ability to rapidly modify the 

computational model, to explore alternative models.  

                                                
3 We only discovered each other’s work after our respective systems were implemented. 
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A limitation of the Penrose models is that the basic units are all identical, so they cannot 

use binary encoding. They could encode information by length (the number of units in an 

assembled pattern), but the mechanism for ensuring that length is replicated faithfully is 

built in to the physical structure of the units. Thus altering the length involves building 

new units. On the other hand, JohnnyVon can encode an arbitrary binary string without 

making any changes to the basic units. 

2.4 Self-Assembly versus Self-Replication 
Self-assembly is the coordinated action of independent entities under local (distributed) 

control to produce a larger structure [21], [22]. Typically, components spontaneously 

self-assemble by moving about randomly in a liquid or gas until a stable minimum-

energy configuration is achieved. Self-assembly occurs in living organisms (in growth 

and development) and has also been demonstrated in chemistry (with self-assembling 

molecular structures) and in computational simulations. Programmable molecular self-

assembly has been demonstrated experimentally. For example, research in DNA 

computation has led to the development of synthetic DNA double-crossover molecules 

that self-assemble into two-dimensional crystals [20]. Research in nanotechnology often 

involves self-assembly, but self-assembly is not limited to molecular-scale structures; in 

principle, self-assembly can occur at any scale. 

Self-replication is the process whereby an object or structure makes a copy of itself. 

Sipper distinguishes self-replication from self-reproduction [17]. In self-replication, an 

exact duplicate is made. In self-reproduction, genetic operators such as crossover and 

mutation result in offspring that are different from their parents. 

Self-assembly does not necessarily imply self-replication, since the larger structure that 

is produced by self-assembly may be quite different from the original structure. Likewise, 

self-replication does not necessarily imply self-assembly, since self-replication might use 
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a centralized (non-local) control system. JohnnyVon, however, involves both self-

assembly and self-replication.  

2.5 Universal Construction versus Self-Replication 
Von Neumann sketched five distinct models for self-replication: the kinematic model, the 

cellular automata model, the excitation-threshold-fatigue model, the continuous model, 

and the probabilistic model [19]. Only the cellular automata model was described in 

detail. All five models had a common architecture, with two parts: a universal computer 

and a universal constructor. Together, these two parts could construct anything that 

could possibly be constructed (with cellular automata), given the appropriate set of 

instructions. Thus self-replication in von Neumann’s models arose as a special case of 

universal construction. Von Neumann’s approach to self-replication is an example of 

self-replication without self-assembly, since control is centralized in the universal 

computer. JohnnyVon is related to von Neumann’s kinematic and continuous models, 

but JohnnyVon is not a universal constructor, since it is only capable of self-replication.  

3 JohnnyVon 
We begin the description of JohnnyVon with an informal discussion of the model (3.1). 

We then define some terminology (3.2), followed with an outline of the states of the 

automata (3.3). The next subsection considers the attractive and repulsive fields that 

govern the interactions among the automata (3.4) and the following subsection  sketches 

the simulated physics (3.5). The sixth subsection explains how the automata decide 

when to split apart (3.6) and the seventh subsection discusses the treatment of time in 

JohnnyVon (3.7). The final subsection is concerned with the implementation of 

JohnnyVon (3.8).  
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3.1 Informal Discussion 
Much (but not all) of the previous work on self-replication has been based on two-

dimensional cellular automata [17]. This research has produced some very interesting 

results, but the practical implications are not clear. For example, Sayama’s structurally 

dissolvable self-replicating loop is interesting for its elegant and simple design, but it is 

quite different from self-replication in biology [15], [16]. It seems that many features of its 

design were based on the constraints of cellular automata. We believe that the 

assumption of a discrete space is the aspect of cellular automata models that is least 

realistic and most problematic for extrapolating from results with self-replicating 

automata to applications in biology and nanotechnology. This belief was a central 

motivation for the design of JohnnyVon. 

A continuous space computer simulation is generally much more computationally 

intensive than a comparable discrete space simulation. When we began our work, it was 

not obvious to us that today’s computers would be sufficiently powerful for a continuous 

space simulation of self-replicating machines. Our goal was to demonstrate self-

replication and self-assembly in continuous space with virtual physics, using a desktop 

computer to run the simulation. The constraints on our design were that the basic 

components should be physically plausible as miniature machines and that the control 

system should be purely local. Cellular automata models of self-replication are local, but 

they lack physical plausibility. In the real world, self-assembly and self-replication 

invariably require moving chunks of matter around in a continuous space, and cellular 

automata are not a convenient way to model this. 

For example, in Hutton’s system, atoms move around in a discrete space and they can 

form self-replicating chains, but he found it necessary to force an atom to stop moving in 

certain situations [6]. An atom cannot move if it is bonded to another atom and moving 

would take it out of the neighborhood of the atom to which it is bonded. This results in 
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groups of atoms (i.e., molecules) that become frozen in the grid space and cannot move 

until some of their bonds are broken. This is not physically plausible, and it is 

representative of the kinds of constraints that are imposed by the assumption of discrete 

space. 

The design of JohnnyVon was based on the idea that strings (chains) of particles, of 

arbitrary length, should be capable of forming spontaneously, and once formed, they 

should be relatively stable. Each particle is a T-shaped structure. Particles form strings 

by bonding together at the tips of the horizontal arms of the T structures. Strings 

replicate by attracting randomly floating particles to the tips of the vertical arms of the T 

structures and holding them in place until they join together to form a replica of the 

original string. 

Bonds between particles in a string can be broken apart by brownian motion (due to 

random collisions with virtual molecules of the containing fluid) and by jostling from other 

particles. Particles can also bond to form a string by chance, without a seed string, if two 

T structures meet under suitable conditions. Strings that are randomly broken or formed 

can be viewed as mutations. We intentionally designed JohnnyVon so that mutations are 

relatively rare, although they are possible. Faithful replication is intended to be much 

more common than mutation. 

The attractive fields around particles have limited ranges, which can shrink or expand. 

This is one of the mechanisms that we use to ensure faithful replication. The fields shrink 

when we want to discourage bonding that could cause mutations and the fields expand 

when we want to encourage bonding that should lead to faithful replication.  

A mechanism is needed to recognize when a string has attracted and assembled a full 

copy of itself.  Without this, each seed string would attract a single copy, but the seed 

and its copy would remain bonded together forever. Therefore the automata send 
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signals to their neighbours in the string, to determine whether a full copy has been 

assembled. When the right signal is received, a particle releases the bond on the vertical 

arm of the T structure and pushes its corresponding particle away.  

To create a simulation that will run on a desktop computer, we have made some design 

decisions that limit the physical plausibility of the model. For example, our attractive and 

repulsive fields were inspired by electrical fields, but they do not strictly obey the physics 

of electromagnetism. This is discussed in more detail in Section 6. 

3.2 Definitions 
The following definitions will facilitate our subsequent discussion. To better understand 

these definitions, it may be helpful to look ahead to Table 1 and Figure 1. 

Codon: a T-shaped object that can encode one bit of information. There are two types 

of codons, type 0 codons and type 1 codons.  

Container: the space that contains the codons. Codons move about in a two-

dimensional continuous space, bounded by a grey box. The centers of the codons are 

confined to the interior of the grey box.  

Liquid: a virtual liquid that fills the container. The trajectory of a codon is determined by 

brownian motion (random drift due to the liquid) and by interaction with other codons and 

the walls of the container. The liquid has a viscosity that dampens the momentum of the 

codons. 

Soup: liquid with codons in it. 

Field: an attractive or repulsive area associated with a codon. The range of a field is 

indicated by a coloured circle. In addition to attracting or repelling, a field can also exert 

a straightening force, which twists the codons to align their arms linearly. The fields 

behave somewhat like springs. 
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Arm: a black line in a codon that begins in the middle of the codon and ends in the 

center of a coloured field. 

Tip: the outer end of an arm, where the red, blue, green, and purple fields are centered. 

Middle: the inner ends of the arms, where the three arms join together. This is not the 

geometrical center of the codon, but it is treated as the center of mass in the physical 

simulation.  

Red (blue, purple, green) arm: an arm that ends in a red (blue, purple, green) field. 

Bond: two codons can bond together when the field of one codon intersects the field of 

another. Not all fields can bond. This is described in detail later. 

Red (blue, purple, green) neighbour: the codon that is bonded to the red (blue, purple, 

green) arm of a given codon. 

Single strand: a chain of codons that are red and blue neighbours of each other. 

Double strand: two single strands that are purple and green neighbours of each other. 

Small (large) field: a field may be in one of two possible states, small or large. These 

terms refer to the radius of the circle that delimits the range of the field.  

Free codon: a codon with no bonds. 

Time: the number of steps that have been executed since the initialization of 

JohnnyVon. The initial configuration is called step 0 (or time 0).  

3.3 States 
The state of a codon in JohnnyVon is represented by a vector, rather than a scalar. The 

state vector of a codon has 15 elements:  

• 3 floating point variables for position (x-axis location, y-axis location, angle) 

• 3 floating point variables for velocity (x-axis velocity, y-axis velocity, angular velocity) 
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• 4 binary variables for field size (four fields per codon, two states per field) 

• 3 whole-number-valued variables (one for each arm of the codon) for “pointers” that 

identify the codon to which a given arm is bonded (if any) 

• 1 three-valued variable for strand_location_state 

• 1 three-valued variable for splitting_state 

These elements are described in more detail in the following subsections. 

The six-dimensional finite-valued sub-vector, consisting of the four binary variables and 

the two three-valued variables, is the part of each codon that corresponds to the 

traditional notion of a finite state machine. This six-dimensional sub-vector has a total of 

24 × 32 = 144 possible states.4 

Chou and Reggia demonstrated the emergence of self-replicating structures in two-

dimensional cellular automata, using 256 states per cell [2]. The state values were 

divided into “data fields”, which were treated separately. In other words, Chou and 

Reggia used state vectors, like JohnnyVon, rather than state scalars. We agree with 

Chou and Reggia that state vectors facilitate the design of state machines. 

The remaining nine variables in the state vector (position, velocity, bond pointers) 

represent information about external relationships among codons, rather than the 

internal states of the codons. For example, the absolute position of a codon is not 

important; the interactions of the codons are determined by their relative positions. 

These nine variables are analogous to the grid in cellular automata. As far as internal 

states alone are concerned, the codons are finite state machines. It is their external 

relationships that make the codons significantly different from cellular automata. 

                                                
4 Some combinations of states are not actually possible. See Tables 2 to 5. 
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Sayama notes that his nine-state, five-neighbour cellular automata model is probably the 

simplest cellular automata model for simulating evolution of self-replicators that has 

been proposed so far, with a rule space of size 95 = 59,049 � 6 × 104 [16]. Since each 

codon in JohnnyVon can have at most three neighbours (one codon bonded to each of 

the three arms; four neighbours including the given codon itself), the rule space is of size 

1444 = 429,981,696 � 4 × 108. This is more complex than Sayama’s model but 

considerably less complex than Chou and Reggia’s 256-state, nine-neighbour cellular 

automata model, with a rule space of size 2569 = 272 � 5 × 1021 [2]. On the other hand, 

JohnnyVon’s continuous space with virtual physics is much more complex than the 

discrete grid space of cellular automata. In a sense, with JohnnyVon, we have shifted 

some of the complexity out of the internal structure of each automaton and into the 

external structure of relationships among the automata.  

3.4 Fields 
The codons have attractive and repulsive fields, as shown in Table 1. These fields 

determine how codons interact with each other to form strands. There are five types of 

fields, which we have named according to the colours that we use to display the codons 

in JohnnyVon’s user interface (purple, green, blue, red, yellow). All five fields have two 

possible states, called large and small, according to the radius of the circle that delimits 

the range of the field. All fields in a free codon are small. Note that the codons are 

asymmetric: every codon has its red arm on the left side and its blue arm on the right 

side (when viewed as in Table 1, with the purple or green arm pointing up). This never 

changes during a run, since there is no way for codons to rotate out of the 2D plane. 

Insert Table 1 here. 

Table 2 gives the state transition rules for the field states. Fields switch between small 

and large as bonds are formed and broken.  
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Insert Table 2 here. 

The interactions among the fields are listed in Table 3. Fields can pull codons together, 

push them apart, or twist them to align their arms.  

Insert Table 3 here. 

3.5 Physics 
JohnnyVon runs in a sequence of discrete time steps. Each codon has a position (x-axis 

location, y-axis location, and angle) and a velocity (x-axis velocity, y-axis velocity, and 

angular velocity) in two-dimensional space. Although time is measured in whole 

numbers, position and velocity are represented with floating point numbers. (We discuss 

time in more detail in Section 3.7.) Each codon has one unit of mass. 

The internal state changes of a codon are triggered by the presence and state of 

neighbouring codons. One codon “senses” another when it comes within range of one of 

its force fields. It could be said that the force fields are also sensing fields, and when one 

of these fields expands, its sensing ability expands equally.  

We think of the container as holding a thin layer of liquid, so although the space is two-

dimensional, codons are allowed to slide over one another. This simplifies computation, 

since we do not need to be concerned with detecting collisions between codons. It also 

facilitates replication, since free codons can move anywhere in the container, so it is not 

possible for them to get trapped behind a wall of strands. 

It is interesting to note that strands are emergent structures that depend only on the local 

interactions of individual codons. There is no data structure that represents strands; 

each codon is treated separately and interacts only with its immediate neighbours.  
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3.5.1 Brownian Motion 
Codons move in a virtual liquid. Brownian motion is simulated by applying a random 

change to each codon’s (linear and angular) velocity at each time step. This random 

velocity change may be thought of as the result of a collision with a molecule of the 

liquid, but we do not explicitly model the liquid’s molecules in JohnnyVon. 

3.5.2 Viscosity 
We implement a simple model of viscosity in the virtual liquid. With each time step, a 

codon’s velocity is adjusted towards zero by multiplying the velocity by a fractional 

factor. One factor is applied for x-axis and y-axis velocity (linear viscosity) and another 

factor is applied for angular velocity (angular viscosity). 

3.5.3 Attractive Force 
When two codons are bonded, an attractive force pulls their bonded arms together. This 

force acts like a spring joining the tips of the bonded arms. The strength of the spring 

force increases linearly with the distance between the tips, until the distance is greater 

than the sum of the radii of the fields, at which point the bond is broken. The spring force 

modifies both the linear and angular velocities of the bonded codons. (The angular 

velocity is modified because the force acts on the codon tip, rather than on the center of 

mass.) 

3.5.4 Repulsive Force 
The repulsive force also acts like a spring, joining the centers of the yellow fields, 

pushing the codons apart. The strength of the spring force decreases linearly with the 

distance between the centers of the yellow fields, until the distance is greater than the 

sum of the radii of the fields, at which point the force ceases. The spring force modifies 

both the linear and angular velocities of the bonded codons. 
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3.5.5 Straightening Force 
When two codons are bonded, a straightening force twists them to align their bonded 

arms linearly. This force is purely rotational; it has no linear component. The two bonded 

codons rotate about their middles, so that their bonded arms lie along the line that joins 

their middles. The straightening force for a given codon is linearly proportional to the 

angle between the bonded arm of the given codon and the line joining the middle of the 

given codon to the middle of the other codon. 

3.5.6 Spring Dampening 
The motion due to the attractive and straightening forces is dampened, in a way that is 

similar to the viscosity that is applied to brownian motion. The dampening prevents 

unlimited oscillation. No dampening is applied to the repulsive force, since oscillation is 

not a problem with repulsion. The linear velocities of a bonded pair of codons are 

dampened towards the average of their linear velocities, by a fractional factor (linear 

dampening). The angular velocities of a bonded pair of codons are dampened towards 

zero, by another fractional factor (angular dampening). 

3.6 Splitting 
When a complete double strand forms, the yellow fields switch to their large states and 

split the double strand into two single strands. The decision to split is controlled by a 

purely local process. Each codon has an internal state that is determined by the states of 

its neighbours. When a codon enters a certain internal state, its yellow field switches to 

the large state. The splitting is determined by a combination of two state variables, the 

strand_location_state and the splitting_state.  

The strand_location_state has three possible values: 

0 = Initial state: I do not think I am at the end of a (possibly incomplete) 

double strand. 
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1 =  I think I might be located at the end of a (possibly incomplete) 

double strand. 

2 =  My green or purple neighbour also thinks it might be at the end of a 

(possibly incomplete) double strand. 

An incomplete double strand occurs when a single strand has partially replicated. On 

one side, there is the original single strand, and, attached to it, there are one or more 

single codons or shorter single strands. The state transition rules for 

strand_location_state are designed so that a codon can only be in state 2 when it is at 

one of the two extreme ends of a (complete or incomplete) double strand.  

The splitting_state also has three possible values: 

x = Initial state: I am not ready to split. 

y = I am ready to split. 

z = I am now splitting. 

A codon’s yellow field switches to the large yellow state when splitting_state becomes z. 

The following tables give the rules for state transitions. Table 4 lists the rules for 

strand_location_state and Table 5 provides the rules for splitting_state.  

Insert Table 4 here. 

 

Insert Table 5 here. 

3.7 Time 
For the discrete elements in the state vector, there is a natural relation between changes 

in state and increments of time, when each unit of time is one step in the execution of 

JohnnyVon. For the continuous elements in the state vector (position and velocity), the 

time scale is somewhat arbitrary. The physical rules that are used to update the position 

and velocity are continuous functions of continuous time. In a computational simulation 
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of a continuous process, it is necessary to sample the process at a succession of 

discrete intervals. In JohnnyVon, the parameter timestep_duration determines the 

temporal resolution of the simulation. The parameter may be seen as determining how 

finely continuous time is sliced into discrete intervals, or, equivalently, it may be seen as 

determining how much action takes place from one step of the simulation to the next. 

Changing the value of the parameter is equivalent to rescaling the magnitudes of the 

forces.  

A small value for timestep_duration yields a fine temporal resolution (i.e., a small amount 

of action between steps) and a large value yields a coarse temporal resolution. If the 

value is too small, the simulation will be computationally inefficient; many CPU cycles 

will be wasted on making the simulation unnecessarily precise. On the other hand, if the 

value is too large, the simulation may become unstable; the behaviour of the objects in 

the simulation may be a very poor approximation to the intended continuous physical 

dynamics.  

The actual value that we use for timestep_duration has no meaning outside of the 

context of the (arbitrary) values that we chose for the magnitudes of the various physical 

parameters (force field strengths, viscosity, brownian motion, etc.; see the appendix for 

details). We set timestep_duration by adjusting it until it seemed that we had found a 

good balance between computational efficiency and physical accuracy.  

When comparing different runs of JohnnyVon, with different values for 

timestep_duration, we found it useful to normalize time by multiplying the number of 

steps by timestep_duration. For example, if you halve the value of timestep_duration, 

then half as much action takes place from one time step to the next, so it takes twice as 

many time steps for a certain amount of action to occur. Therefore, as JohnnyVon runs, 

it reports both the number of time steps and the normalized time (the product of the step 
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number and timestep_duration). However, in the following experiments, we only report 

the number of steps, since the normalized time has no meaning when taken out of 

context.  

3.8 Implementation 
JohnnyVon is implemented in Java. The source code is available under the GNU 

General Public License (GPL) at http://purl.org/net/johnnyvon/.  

We originally implemented JohnnyVon in C++. The current version is in Java because 

we found it difficult to make the C++ version portable across different operating systems. 

Informal testing suggests that the Java version runs at about 75% of the speed of the 

C++ version. We believe that the slight loss of speed in the Java version is easily offset 

by the gain in portability and maintainability.  

4 Experiments 
In our first experiment, we seed a soup of free codons with a pattern and show that the 

pattern is replicated. In the second experiment, we show that a soup of free codons, 

given sufficient time, will spontaneously generate self-replicating patterns. 

4.1 Seeded Replication 
In Figure 1, Images 1 to 7 show a typical run of JohnnyVon with a seed strand of eight 

codons and a soup of 80 free codons. (Image 8 in Figure 1 is for Section 4.2.) Over 

many runs, with different random number seeds, we have observed that the seed strand 

reliably replicates.  

Insert Figure 1 here. 

Image 1, Step 250: This image shows JohnnyVon near the start of a run, after 250 

steps have passed. A soup of free codons (randomly located) has been seeded with a 

single strand of  eight codons (placed near the center). The strand of eight codons 
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encodes the binary string “00011001” (0 is purple, 1 is green). In the strand, the red 

fields overlap with the corresponding blue fields of the red neighbours. To show the 

overlapping fields, the half of the circle that is closest to the codon with the red arm is 

coloured red, and the half of the circle that is closest to the codon with the blue arm is 

coloured blue. 

Image 2, Step 6,325: Six codons have bonded with the seed strand, but they have not 

yet formed any red-blue bonds. 

Image 3, Step 18,400: Eight codons have bonded with the seed strand, but these eight 

codons have not yet formed a complete strand. One red-blue bond is missing. These 

bonds can only form when the red and blue arms meet linearly to within ± �/256 radians. 

This happens very rarely when the codons are drifting freely, but it happens dependably 

when the codons are held in position by the purple-green bonds. 

Image 4, Step 22,000: The eight codons formed their red-blue bonds, making a 

complete strand of eight codons. This caused the yellow fields in the double strand to 

switch to their large states, breaking the bonds between the two single strands and 

pushing them apart. In this image, the yellow fields are still large. After a few more time 

units have passed, they will return to their small states. Note that the seed strand 

encodes “00011001”, but the daughter strand encodes “01100111”. This is discussed in 

Section 5. 

Image 5, Step 25,950: We now have two single strands, and they have started to form 

bonds with the free codons.  

Image 6, Step 30,850: The daughter strand has replicated itself, producing a 

granddaughter. The original seed strand and the granddaughter encode the same bit 

string. 
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Image 7, Step 127,950: There are only a few free codons left. Eventually they will bond 

with the strands, leaving a stable soup of partially completed double strands. The 

elapsed real-time from step 250 (Image 1) to step 127,950 (Image 7) was approximately 

45 minutes on an Intel Pentium III running at 600 MHz.  

4.2 Spontaneous Replication 
JohnnyVon was intentionally designed so that self-replicating patterns can arise from 

free codons without a seed, but only rarely. It is difficult for red-blue bonds to form, due 

to the narrow angle at which the arms must meet (± �/256 radians – see Table 2). These 

bonds are very unlikely to form unless the codons are held in position by green-purple 

bonds. However, given sufficient time, two free codons will eventually come into contact 

in such a way that a red-blue bond is formed and a self-replicating strand of length two is 

created. Image 8 in Figure 1 shows an example. 

Image 8, Step 164,450: A strand of length two has spontaneously formed from a soup 

of 88 free codons. Very shortly after forming, it replicated. The elapsed real-time from 

step 0 to step 164,450 was about 15 minutes. This is less real-time per step than the 

previous experiment because there are fewer calculations when there are no bonds 

between the codons. 

5 Interpretation of Experiments 
The first experiment shows that a pattern containing arbitrary information can replicate 

itself. Note that all codon interactions in JohnnyVon are local; no global control system is 

needed. (This is also true of the various implementations of self-replicating cellular 

automata.) 

It is apparent in Image 7 that (approximately) half of the single strands are mirror images 

of the original seed strand (in Image 1). More precisely, let X be an arbitrary sequence of 
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0s and 1s that we want to encode. Let n(X) be the string that results when every 0 in X is 

replaced with 1 and every 1 in X is replaced with 0. Let r(X) be the string that results 

when the order of the characters in X is reversed. When a strand with the pattern X 

replicates, the resulting new strand will have the pattern r(n(X)). Therefore, if we seed a 

soup of free codons with a pattern X, then the final result will consist of about 50% 

strands with the pattern X and 50% with the pattern r(n(X)).  

Penrose anticipated this problem [11]. He suggested it could be avoided by making the 

pattern symmetrical. Let c(X, Y) be the string that results when the string Y is 

concatenated to the end of string X. Let g(X) be c(X, r(n(X))). Note that g(X) is equal to 

its negative mirror image, r(n(g(X))). That is, if g(X) replicates, the resulting string is 

exactly g(X) itself. The function g(X) enables us to encode any arbitrary string X in such 

a way that replication will not alter the pattern. 100% of the final strands will be copies of 

g(X).  

The second experiment shows that self-replicating patterns can spontaneously arise. 

The strands in this case are of length two, but it is possible in principle for mutations to 

extend the length of the strands (although we have not observed this). 

Strands of length two have an evolutionary advantage over longer strands, since they 

can replicate faster. On rare occasions, when running JohnnyVon with a seed of length 

eight (as in Section 4.1), a strand of length two has spontaneously appeared. The 

length-two strand quickly out-replicates the length-eight strand and soon predominates. 

We have intentionally designed JohnnyVon so that its most likely behaviour is to 

faithfully replicate a given seed strand. However, we have allowed a small possibility of 

red-blue bonds forming without a seed pattern, which allows both spontaneous 

generation of self-replication and mutation of existing strands. (The probability of 

mutation can be increased or decreased by adjusting the red-blue bonding angle above 
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or below its current value of ± �/256 radians.) Since there is selection (for rapid 

replication), JohnnyVon supports a limited degree of evolution: there is inheritance, 

mutation, and selection.5 

Cellular automata can also support self-replication [6], [7], [13], [17], [19], evolution [2], 

[6], [13], [14], [16], [19] and spontaneous generation of self-replication without seeding 

[2], [6]. The novelty in JohnnyVon is that these three features appear in a computer 

simulation that includes continuous space and virtual physics. We believe that this is an 

important step towards building physical machines with these features. 

One reason that von Neumann turned to cellular automata models was that the 

computers of his time were not sufficiently powerful to simulate his kinematic or 

continuous models [19].6 JohnnyVon demonstrates that computer hardware has 

advanced to a level where we can now simulate other models of self-replication, besides 

cellular automata models. Perhaps one of the more important lessons we have learned 

from this work is that simulation of self-replication in continuous space with virtual 

physics is now feasible. When we began our work, it seemed quite possible that we 

could fail to achieve our goals, due to hardware limitations. 

6 Limitations and Future Work 
One area we intend to look at is the degree to which the internal codon states can be 

simplified while still exhibiting the basic features of stability and self-replication. We 

make no claim that we have found the simplest codon structure that will exhibit the 

intended behaviours.  

                                                
5 Selection is due to the different replication rates of the competing strands. Selection can only 
continue indefinitely if there is an endless source of free codons and there is room for unlimited 
population growth. In a finite container, selection will eventually halt, unless a mechanism is 
added to JohnnyVon, to supply free codons and remove excess strands. 
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JohnnyVon contains only genotypes (genetic code) with no phenotypes (bodies). The 

only evolutionary selection that JohnnyVon currently supports is selection for shorter 

strands, since they can replicate faster than longer strands. In order to support more 

interesting selection, we would like to introduce phenotypes. In natural life, DNA can be 

read in two different ways. During reproduction, DNA is copied verbatim, but during 

growth, DNA is read as instructions for building proteins.7 We would like to introduce this 

same distinction into a future version of JohnnyVon. One approach would be to add new 

“protein” particles to complement the existing codon particles. Free protein particles 

would bond to a strand of codons, which would act as a template for assembling the 

proteins. Once a string of proteins has been assembled, it would separate from the 

codon strand and then it would fold into a shape, analogous to the way that real proteins 

fold. To achieve interesting evolution, the environment could be structured so that 

certain protein shapes have an evolutionary advantage, which somehow results in 

increased replication for the corresponding codon strands. Previous work on simulating 

cells may be useful for this project [3], [5]. 

Another limitation of JohnnyVon is the simplistic virtual physics. In many cases, we 

sacrificed some physical plausibility in the design of JohnnyVon in order to achieve the 

goals of computational tractability and self-replication. For example, electrostatic 

attraction and repulsion in the real world have an infinite range, but all of the fields in 

JohnnyVon have quite limited ranges (relative to the size of the container). Our codons 

can only interact when their fields are in contact with one another, so it is not necessary 

to calculate the forces between every pair of codons. This significantly reduces the 

                                                                                                                                            
6 However, even his cellular automata model of self-replication was only recently implemented 
[12]. 
7 This is a bit of an oversimplification, which ignores issues such as sexual reproduction, where 
the copying is not verbatim.  
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computation, especially when there are many free codons, since the trajectory of a free 

codon is determined solely by brownian motion and viscosity.  

In addition to the limited range of the attractive and repulsive forces, there are the 

different types (colours) of fields, the rules for interactions among fields, the ability to 

switch between small and large states for fields, and the spring-like behaviours of the 

fields. These aspects of the design of JohnnyVon represent trade-offs that we made to 

achieve our goals; they do not represent properties of self-replication in the real world. 

However, it is likely possible to significantly increase the physical realism of JohnnyVon 

without sacrificing speed. This is another area for future work. It may be that the 

direction taken will depend on the application. The changes that would make JohnnyVon 

more realistic for a biologist, for example, may be different from the changes that would 

be appropriate for a nanotechnologist. 

Finally, it may be worthwhile to develop a 3D version of JohnnyVon. The current 2D 

space might be insufficiently realistic for some applications. 

7 Applications 
JohnnyVon was designed with nanotechnology in mind. We hope that it may some day 

be possible to implement the codons in JohnnyVon (or some distant descendant of 

JohnnyVon) as nanomachines. We imagine that the two types of codons could be mass 

produced by some kind of macroscopic manufacturing process, and then sprinkled in to 

a vat of liquid. A seed strand could be dropped in the vat, and the nanomachines would 

quickly replicate the seed. This imaginary scenario might never become reality, but the 

success of the experiments in Section 4 lends some plausibility to this project.  

Merkle has argued that a central objective of nanotechnology is to make products 

inexpensively, and that self-replication is an effective approach to very low cost 
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manufacturing [9], [10]. This view is shared by several others in the field [4]. 

Nanotechnologists who are doing research in self-replicating machines will certainly 

want to simulate the machines before they actually build them. We believe that such 

simulations, to be realistic, will necessarily include continuous space and virtual physics.  

JohnnyVon may also contribute to theoretical biology, by increasing our understanding 

of natural life. As Penrose mentioned, models of this kind may help us to understand the 

origins of life on Earth [11]. Simulations like JohnnyVon, using continuous space and 

virtual physics, seem well-suited to further elaboration and testing of theories such as 

Cairn-Smith’s clay model of the origin of life [1]. 

8 Conclusion 
JohnnyVon includes the following features: 

• automata that move in a continuous 2D space 

• self-replication of seed patterns 

• spontaneous generation of self-replication from free codons (self-replication without 

seed patterns) 

• evolution (inheritance, mutation, and selection)8 

• virtual physics (brownian motion, viscosity, attraction, repulsion, dampening) 

• the ability to encode arbitrary bit strings in self-replicating patterns 

• local interactions (no global control structures) 

JohnnyVon is the first computational simulation to combine all of these features. 

Von Neumann sketched a path that begins with self-replicating cellular automata and 

ends with self-replicating physical machines. We agree with von Neumann that, at some 

                                                
8 Evolution is limited, as discussed in Section 5. 
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point along this path, it is necessary to move away from discrete space models, towards 

continuous space models. JohnnyVon is such a step. 
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Appendix 
To facilitate the replication of our experimental results, Table 6 shows the internal 

parameters of JohnnyVon and the values that were used in the experiments. The source 

code is available, as discussed in Section 3.8. 

Insert Table 6 here. 
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Table 1. The two types of codons and their field states. The fields of a free codon are always 

small. The fields become large only when codons bond together, as described in the next table. A 

codon’s fields may be in a mixture of states (one field may be small and another large). Note that 

the circles are not drawn to scale, since the small fields would be invisibly small at this scale. 

 Type 0 codons 
(purple codons) 

Type 1 codons 
(green codons) 

All fields in 
their small 
states 

  

All fields in 
their large 
states 
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Table 2. State transitions in fields. Fields can change from small to large or vice versa, but they 

never change colour. 

Current field state Next field state Transition rules 

small red large red  

small blue large blue 

If a small blue field touches a small red field and the arms 
of their respective codons are aligned linearly to within ± 
�/256 radians, then both fields switch to their large states 
and their codons are designated as being bonded 
together. As long as the two fields continue to intersect, at 
any angle, they remain in the bonded state, and any third 
field that intersects with the two fields will be ignored. 

large red small red 

large blue small blue 

If jostling causes a large red field to lose contact with its 
bonded large blue field, then both fields switch to their 
small states and their codons are no longer designated as 
being bonded. 

small green large green 

small purple large purple 

If a codon’s red or blue fields are bonded, then its green or 
purple field switches to its large state. 

large green small green 

large purple small purple 

If neither of a codon’s red or blue fields are bonded, then 
its green or purple field becomes small. 

small yellow large yellow If a double strand is ready to split, then the yellow fields of 
all of the codons in the double strand become large (this is 
described in more detail later). 

large yellow small yellow If a yellow field has been large for 150 time units, then it 
returns to its small state. 
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Table 3. The behaviour of the fields. Fields have no effect on each other unless their circles 

intersect. If the behaviour of a pair of fields is not listed in this table, it means that pair of fields 

has no interaction (they ignore each other). The designations “Field 1” and “Field 2” in this table 

are arbitrary, since the relationships between the fields are symmetrical.   

Field 1 Field 2 Interaction between fields 

small red small blue If a small blue field touches a small red field and the arms of their 
respective codons are aligned linearly to within ± �/256 radians, 
then both fields switch to their large states and their codons are 
designated as being bonded together. As long as the two fields 
continue to intersect, at any angle, they remain bonded, and any 
third field that intersects with the two fields will be ignored. 

large red large blue When a large red field is designated as bonded with a large blue 
field, an attractive force pulls the tip of the red arm towards the tip 
of the blue arm and a straightening force twists the codons to align 
their arms linearly. 

small purple small green 

small purple large green 

large purple small green 

When a purple field touches a green field and the arms of their 
respective codons are aligned linearly to within ± �/3 radians, they 
are designated as being bonded. As long as the two fields 
continue to intersect, at any angle, they remain bonded, and any 
third field that intersects with the two fields will be ignored. An 
attractive force pulls the tip of the purple arm towards the tip of the 
green arm and a straightening force twists the codons to align their 
arms linearly. When a small purple field bonds with a small green 
field, their bond is typically quickly ripped apart by brownian 
motion. The bonds between two large fields or one large field and 
one small field are more robust; they can withstand interference 
from brownian motion. 

large purple large green A large purple field and a large green field cannot initiate a new 
bond; they can only maintain an existing bond. If they do not have 
an existing bond, carried over from before they became large, then 
they ignore each other. Otherwise, as long as the two fields 
continue to intersect, at any angle, they remain bonded, and any 
third field that intersects with the two fields will be ignored. An 
attractive force pulls the tip of the purple arm towards the tip of the 
green arm and a straightening force twists the codons to align their 
arms linearly. 

large yellow large yellow When two large yellow fields intersect, a repulsive force pushes 
them apart. The repulsive force stops acting when the fields no 
longer intersect or when the fields switch to their small states. 
However, when the repulsive force stops acting, the codons will 
continue to move apart, until their momentum has been dissipated 
by the viscosity of the liquid. For yellow fields, unlike the other 
fields, there is nothing that corresponds to designated bonded 
pairs. Thus, if there are three or more intersecting large yellow 
fields, they will all repel each other.  
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Table 4. Transition rules for strand_location_state. When strand_location_state is 2, the given 

codon must actually be at one end of a (possibly incomplete) double strand. During the replication 

process, if a strand has not yet fully replicated, there will be gaps in the strand, and the codons 

situated at the edges of these gaps will be stuck in state 1 until the gaps are filled, at which time 

they will switch to state 0. 

Current state Next state Transition rules for strand_location_state 

0 1 If (I have exactly one red or blue neighbour) and (I have a purple or 
green neighbour), then I switch from state 0 to state 1. 

1 0 If (I do not have exactly one red or blue neighbour) or (I do not have 
a green or purple neighbour), then I switch from state 1 to state 0. 

1 2 If (I have exactly one red or blue neighbour) and (I have a green or 
purple neighbour) and (my green or purple neighbour is in state 1 or 
2), then I switch from state 1 to state 2. 

2 0 If (I do not have exactly one red or blue neighbour) or (I do not have 
a green or purple neighbour) or (my green or purple neighbour is in 
state 0), then I switch from state 2 to state 0. 

 



Self-Replicating Machines in Continuous Space with Virtual Physics NRC-44969 

 37  

 

Table 5. Transition rules for splitting_state. A strand begins with all codons in the x state. When 

the strand is complete, one end of the strand (the end with no red neighbour) enters the y state, 

and the y state then spreads down the strand to the other end (the end with no blue neighbour). If 

the double strand is incomplete, the codons next to the gap will have their strand_location_state 

set to 1, which will block the spread of the y state. When the y state spreads all the way to the 

other end, in either of the two single strands, the double strand must be complete. Therefore, 

when the y state reaches the other end (the end with no blue neighbour), the end codon enters 

the z state, and the z state spreads back down to the first end (the end with no red neighbour). 

Current state Next state Transition rules for splitting_state 

x y If [(my strand_location_state is 2) and (my green or purple 
neighbour’s strand_location_state is 2) and (I have no red 
neighbour)] or [(my strand_location_state is not 1) and (my green or 
purple neighbour’s strand_location_state is not 1) and (my red 
neighbour’s splitting_state is y)], then I switch from state x to state 
y. 

y z If [(my strand_location_state is 2) and (my green or purple 
neighbour’s strand_location_state is 2) and (I have no blue 
neighbour)] or [(my strand_location_state is not 1) and (my green or 
purple neighbour’s strand_location_state is not 1) and (my blue 
neighbour’s splitting_state is z)], then I switch from state y to state 
z. 

z x If [(I have no red neighbour) and (I have been in state z for 150 time 
units)] or [my red neighbour is in state x], then I switch from state z 
to state x. 

 



Self-Replicating Machines in Continuous Space with Virtual Physics NRC-44969 

 38  

 

Table 6. The parameters in JohnnyVon and the values that were used in the experiments.  

Parameter name Parameter value Description 

timestep_duration 0.15 See Section 3.7. 

linear_viscosity 1 - power(1 - 0.10, timestep_duration) See Section 3.5.2. 

angular_viscosity 1 - power(1 - 0.05, timestep_duration) See Section 3.5.2. 

linear_spring_damping 1 - power(1 - 0.90, timestep_duration) See Section 3.5.6. 

angular_spring_damping 1 - power(1 - 0.99, timestep_duration) See Section 3.5.6. 

iterations_after_split (integer) (150.0 / timestep_duration) See Section 3.6. 

arm_length red arm: 7, blue arm: 7, green arm: 4, 
purple arm: 4, yellow arm: 1 

See Table 1. 

small_field_radius all fields: 0.01 See Table 1. 

large_field_radius yellow field: 6, other fields: 4 See Table 1. 

arm_force red arm: 1.8, blue arm: 1.8, green arm: 1.0, 
purple arm: 1.0, yellow arm: 1.0 

The strengths of the 
fields; see Sections 
3.5.3 and 3.5.4. 

angle_tolerance red arm: ± �/256 radians, blue arm: ± �/256 
radians, green arm: ± �/3 radians, purple 
arm: ± �/3 radians, yellow arm: no limit 

See Tables 2 and 3. 

straightening_force red arm: 1.0, blue arm: 1.0, green arm: 0.5, 
purple arm: 0.5, yellow arm: none 

See Section 3.5.5. 
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Figure 1. These images illustrate the experiments in Sections 4.1 and 4.2. See the text for details. 


