Cogprints

The beta-neurexin-neuroligin-1 interneuronal intrasynaptic adhesion is essential for quantum brain dynamics

Georgiev, Dr. Danko (2003) The beta-neurexin-neuroligin-1 interneuronal intrasynaptic adhesion is essential for quantum brain dynamics. [Preprint]

Full text available as:

[img]
Preview
PDF
643Kb

Abstract

There are many blank areas in understanding the brain dynamics and especially how it gives rise to consciousness. Quantum mechanics is believed to be capable of explaining the enigma of conscious experience, however till now there is not good enough model considering both the data from clinical neurology and having some explanatory power! In this paper is presented a novel model in defence of macroscopic quantum events within and between neural cells. The beta-neurexin-neuroligin-1 link is claimed to be not just the core of the central neural synapse, instead it is a device mediating entanglement between the cytoskeletons of the cortical neurons. Thus the macroscopic coherent quantum state can extend throughout large brain cortical areas and the subsequent collapse of the wavefunction could affect simultaneously the subneuronal events in millions of neurons. The beta-neurexin-neuroligin-1 complex also controls the process of exocytosis and provides an interesting and simple mechanism for retrograde signalling during learning-dependent changes in synaptic connectivity.

Item Type:Preprint
Keywords:Quantum mind, Consciousness, Beta-neurexin-neuroligin-1 adhesion, Interneuronal coherence
Subjects:Neuroscience > Biophysics
Neuroscience > Neurophysiology
Neuroscience > Neurochemistry
ID Code:2806
Deposited By:Georgiev, Danko
Deposited On:03 Mar 2003
Last Modified:11 Mar 2011 08:55

References in Article

Select the SEEK icon to attempt to find the referenced article. If it does not appear to be in cogprints you will be forwarded to the paracite service. Poorly formated references will probably not work.

1. Basran, J. et al. (1999). Enzymatic H-transfer requires vibration driven extreme tunneling. Biochemistry 38, 3218-3222.

2. Beck, F. (1996). Can quantum processes control synaptic emission? Int. J. Neural Systems 7, pp. 343-353.

3. Beck, F. (1999). J. Consciousness Studies Abstracts Flagstaff conference "Quantum Approaches to Consciousness", p.. Also accessible at: http://www.bakery.demon.co.uk/flagstaff/abstracts.htm

4. Beck F. & Eccles J.C. (1992). Quantum aspects of brain activity and the role of consciousness. Proc Natl Acad Sci USA 1992 Dec 1;89(23):11357-61. http://www.pnas.org/cgi/reprint/89/23/11357.pdf

5. Bresolin, N., Castelli, E., Comi, G.P. et al. (1994). Cognitive impairment in Duchenne muscular dystrophy. Neuromuscul Disord.4:359–369.

6. Brose, N. (1999). Synaptic cell adhesion proteins and synaptogenesis in the mammalian central nervous system. Naturwissenschaften 1999 Nov; 86(11):516-24.

7. Bruno, W.J. & Bialek, W. (1992). Vibrationally enhanced tunneling as a mechanism for enzymatic hydrogen transfer. Biophys. J. 63, 689-699.

8. Cha, Y. et al. (1989) – Hydrogen tunneling in enzyme reactions. Science 243, 1325-1330.

9. Chishti, A., Kim, A.C., Marfatia, S., Lutchman, M., Hanspal, M., Jindal, H., Liu, S.C., Low, P.S., Rouleau, G.A., Mohandas, N. et al. (1998). The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci, 23:281-282.

10. Clegg, J.S. (1984). Properties and metabolism of the aqueous cytoplasm. Am J Physiol. 246:R133-R151

11. Cohen, A.R., Woods, D.F., Marfatia, S.M., Walther, Z., Chishti, A. & Anderson, J.M. (1998). Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. J Cell Biol, 142:129-138 http://ww2.mcgill.ca/biology/undergra/c524a/142-129.pdf

12. Culligan K., Mackey A.J., Finn D.M., Maguire P.B. & Ohlendieck K. (1998). Role of dystrophin isoforms and associated proteins in muscular dystrophy. Int J Mol Med. 2:639–648.

13. Culligan, K., Glover, L., Dowling, P. & Ohlendieck, K. (2001). Brain dystrophin-glycoprotein complex: Persistent expression of beta-dystroglycan, impaired oligomerization of Dp71 and up-regulation of utrophins in animal models of muscular dystrophy. BMC Cell Biology. http://www.biomedcentral.com/content/pdf/1471-2121-2-2.pdf

14. Culligan, K. & Ohlendieck, K. (2002). Diversity of the Brain Dystrophin-Glycoprotein Complex. Journal of Biomedicine & Biotechnology, 2:1; 31–36. http://www.hindawi.dk/journals/jbb/volume-2/S1110724302000347.pdf

15. Eccles J.C. (1992). Evolution of consciousness. Proc Natl Acad Sci USA 1992 Aug 15;89(16):7320-4. http://www.pnas.org/cgi/reprint/89/16/7320.pdf

16. Fanning, A. & Anderson, J. (1999). Protein modules as organizers of membrane structure. Current Opinion in Cell Biology, 11:432–439.

17. Gant, K.L. & Klinman, J.P. (1989). Evidence that protium and deuterium undergo significant tunneling in the reaction catalyzed by bovine serum amine oxidase. Biochemistry 28, 6597-6605.

18. Garwood, J., Schnadelbach, O., Clement, A., Schutte, K., Bach, A. & Faissner, A. (1999). DSD-1-proteoglycan is the mouse homolog of phosphacan and displays opposing effects on neurite outgrowth dependent on neuronal lineage. J Neurosci;19(10):3888-99. http://www.jneurosci.org/cgi/reprint/19/10/3888.pdf

19. Hameroff, S. (1998). Anesthesia, consciousness and hydrophobic pockets - a unitary quantum hypothesis of anesthetic action. Toxicology Letters100/101:31-39.

20. Hameroff, S. (1999). Quantum mechanisms in the brain? Quantum Approaches to Understanding Consciousness. http://www.consciousness.arizona.edu/quantum/week6.htm

21. Hameroff, S. & Penrose, R. (1998). Quantum computation in brain microtubules? The Penrose-Hameroff "Orch OR" model of consciousness. Philosophical Transactions Royal Society London (A) 356:1869-1896.

22. Hata, Y., Butz, S. & Südhof, T.C. (1996). CASK: a novel dlg/PDZ95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci, 16:2488-2494.

23. Hsieh-Wilson, L. (2001). The Tangled Web: Unraveling the Molecular Basis for Communication In The Brain. Engineering & Science No.2, pp. 14-23. http://pr.caltech.edu/periodicals/EandS/articles/Hsieh-Wilson Feature.pdf

24. Hsueh, Y., Yang, F., Kharazia, V., Naisbitt, S., Cohen, A., Weinberg, R. & Sheng, M. (1998). Direct interaction of CASK/LIN-2 and syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. J Cell Biol 1998, 142:139-151.

25. Irie, M., Hata, Y., Takeuchi, M., Ichtchenko, K., Toyoda, A., Hirao, K., Takai, Y., Rosahl, T. & Südhof, T.C. (1997). Binding of neuroligins to PSD-95. Science, 277:1511-1515.

26. Jack, J.J.B., Redman, S.J. & Wong, K. (1981). The components of synaptic potentials evoked in a cat spinal motoneurons by impulses in single group Ia afferents. J. Physiol. 321, pp. 65-96.

27. Jibu, M., Hagan, S., Hameroff, S.R., Pribram, K.H. & Yasue, K. (1994). Quantum optical coherence in cytoskeletal microtubules: implications for brain function. Biosystems 32: 195-209.

28. Jibu, M., Pribram, K.H. & Yasue, K. (1996). From conscious experience to memory storage and retrieval: the role of quantum brain dynamics and boson condensation of evanescent photons. International Journal Of Modern Physics B, Vol.10, Nos. 13 & 14: 1735-1754.

29. Jibu, M. & Yasue, K. (1997). What is mind? Quantum field theory of evanescent photons in brain as quantum theory of consciousness. Informatica 21, pp. 471-490.

30. Johnsson, T. et al. (1994). Hydrogen tunneling in the flavoenzyme monoamine oxidase B. Biochemistry 33, 14871-14878.

31. Kohen, A. & Klinman, J.P. (1999). Hydrogen tunneling in biology. Chem. Biol. 6, R191-R198.

32. Kohen, A. et al. (1997). Effects of protein glycosylation on catalysis: changes in hydrogen tunneling and enthalphy of activation in the glucose oxidase reaction. Biochemistry 36, 2603-2611.

33. Lue, R., Marfatia, S., Branton, D. & Chishti, A. (1995). Cloning and characterization of hDlg; the human homolog of the Drosophila discs large tumor suppressor binds to protein 4.1. Proc Natl Acad Sci USA, 91:9818-9822.

34. Maeda, N., Hamanaka, H., Oohira, A. & Noda, M. (1995). Purification, characterization and developmental expression of a brain-specific chondroitin sulfate proteoglycan, 6B4 proteoglycan/phosphacan. Neuroscience; 67(1): 23-35.

35. Marcus, R. A. (1956). On the theory of oxidation-reduction reactions involving electron transfer. J. Chem. Phys. 24, pp. 966-978.

36. Marcus, R. A. and Sutin, N. (1985). Electron transfer in chemistry and biology. Biochim. Biophys. Acta 811, pp.265-322.

37. Maurel, P., Rauch, U., Flad, M., Margolis, R.K. & Margolis, R.U. (1994). Phosphacan, a chondroitin sulfate proteoglycan of brain that interacts with neurons and neural cell-adhesion molecules, is an extracellular variant of a receptor-type protein tyrosine phosphatase. PNAS; 91(7):2512-6. http://www.pnas.org/cgi/reprint/91/7/2512.pdf

38. Mavromatos, N. (2000). Cell Microtubules as Cavities: Quantum Coherence and Energy Transfer? Published at arXiv.org e-Print archive http://arxiv.org/pdf/quant-ph/0009089

39. Mavromatos, N., Mershin, A. & Nanopoulos, D. (2002). QED-Cavity model of microtubules implies dissipationless energy transfer and biological quantum teleportation http://arxiv.org/pdf/quant-ph/0204021

40. Mehler, MF. (2000). Brain dystrophin, neurogenetics & mental retardation. Brain Res Brain Res Rev. 32:277–307.

41. Missler, M. & Südhof, T.C. (1998). Neurexins: three genes & 1001 products. Trends Genet, 14:20-26.

42. Nanopoulos, D. (1995). Theory of Brain Function, Quantum Mechanics And Superstrings. Published at arXiv.org e-Print archive http://arxiv.org/abs/hep-ph/9505374

43. Nanopoulos, D. & Mavromatos, N. (1996). A Non-Critical String (Liouville) Approach to Brain Microtubules: State Vector Reduction, Memory Coding and Capacity. http://arxiv.org/abs/quant-ph/9512021

44. Niethammer, M., Valtschanoff, J.G., Kapoor, T.M., Allison, D.W., Weinberg, T.M., Craig, A.M. & Sheng, M. (1998). CRIPT, a novel postsynaptic protein that binds to the third PDZ domain of PSD?95/SAP90. Neuron, 20:693-707.

45. Northrop, D.B. & Cho, Y.K. (2000). Effect of pressure of deuterium isotope effects of yeast alcohol dehydrogenase: evidence for mechanical models of catalysis. Biochemistry 39, 2406-2412.

46. Redman, S. J. (1990). Quantal analysis of synaptic potentials in neurons of the central nervous system. Physiol. Rev. 70, pp.165-198.

47. Sakurai, T., Friedlander, D.R. & Grumet, M. (1996). Expression of polypeptide variants of receptor-type protein tyrosine phosphatase beta: the secreted form, phosphacan, increases dramatically during embryonic development and modulates glial cell behavior in vitro. J Neurosci Res;43(6):694-706

48. Scrutton, N.S. et al. (1999). New insights into enzyme catalysis: ground state tunneling driven by protein dynamics. Eur. J. Biochem. 264, 666-671.

49. Song, J.Y., Ichtchenko, K., Südhof, T.C., Brose, N. (1999). Neuroligin-1 is a postsynaptic cell-adhesion molecule of excitatory synapses. PNAS, Feb 2; 96(3):1100-5. http://www.pnas.org/cgi/reprint/96/3/1100.pdf

50. Sugita, S., Saito, F., Tang, J., Satz, J., Campbell, K.P., Sudhof, T.C. (2001). A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol. 154:435–445.

51. Sutcliffe, M.J. & Scrutton, N.S. (2000a). Enzyme catalysis: over the barrier or through-the-barrier? TiBS, September 405-408.

52. Sutcliffe, M.J. & Scrutton, N.S. (2000b). Enzymology takes a quantum leap forward. Philos. Trans. R. Soc. London Ser. A 358, 367-386.

Metadata

Repository Staff Only: item control page