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Abstract

In this paper we expose the theoretical

background underlying our current research. This

consists in the development of behaviour-based

knowledge systems, for closing the gaps between

behaviour-based and knowledge-based system s,

and also between the understandings of the

phenomena they model. We expose the

requirem ents and stages for d eve loping

behaviour-based knowledge system s and discuss

their limits.  We believe that these are necessary

conditions for the development of higher order

cognitive capacities, in artificial and natural

cognitive system s.

1. Introduction

In the field of artificial intelligence, knowledge-based

systems (KBS) and behaviour-based systems (BBS) have

modelled and simulated exhibitions of intelligence of

different types, which we could call “cognitive”

intelligence and “adaptive” intelligence, respectively.

Broadly, and independently of their methodologies, BBS

have modelled intelligence exhibited by animals adapting

to their environment, while KBS have modelled “higher”

cognition: reasoning, planning, and problem solving.

Trying to understand how this higher cognition could

evolve from adaptive behaviour, we propose the

development of behaviour-based knowledge systems

(BBKS). They are systems where an artificial creature is

able to abstract and develop through its behaviour

knowledge from its environment, and exploit this

knowledge for having a favourable performance in its

environment. BBKS relate the exhibitions of intelligence

modelled by BBS and KBS, closing the gaps between

them.

In order to develop these ideas, in the next section we

expose abstraction levels (Gershenson, 2002a) in animal

behaviour, which are useful for illustrating our goals. In

Section 3 we present the steps we believe should be

followed in order to develop and exhibit knowledge

parting from adaptive behaviour. In Section 4 we note

limits of BBKS, which are related to the limits of

Epigenetic Robotics and Artificial Intelligence. W e also

briefly describe our current work, which consists in the

implementation of a BBKS.

2. Abstraction Levels in Animal

Behaviour

Abstraction levels (Gershenson, 2002a)  represent

simplicities and regularities in nature. Phenomena are

easier to represent in our m inds when they are simple.

We can have an almost clear concept of them, and then

we can try to understand complex phenomena in terms

of our sim ple representations. W e can recognize

abstraction levels in atoms, molecules, cells, organisms,

societies, ecosystems, planets, planetary systems, galaxies.

An element of an abstraction level has a simple and

regular behaviour, and it is because of this that can be

easily observed and described. At least easier than the

complexities that emerge from the interactions of several

elements.

We can identify abstraction levels in animal behaviour

(Gershenson, 2001, pp. 2-3), taking the definition of

behaviour developed by Maturana and Varela:

“behaviour is a description an observer makes of the

changes in a system with respect to an environment with

which the system interacts” (Maturana and Varela, 1987,

p. 163). Our proposal is not a final categorization, but it

is quite convenient for orienting our work, even when the

borders between levels are fuzzy. The most elemental

type of behaviour is vegetative, which can be seen as

behaviours “by default” (such as breathing, metabolism,

etc.). We can also distinguish reflex behaviours. These

are action-response-based behaviours (such as reactions

to pain). Stepping-up in  complexity, we can identify
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reactive behaviours, which depend strongly of an

external stimulus, or a set or sequence of external

stimuli (McFarland, 1981). Examples of these can be

locomotion patterns. These behaviours (and the ones

which follow) require an action selection process,

whereas reflex behaviours are executed whenever the

triggering stimulus is present. Motivated behaviours do

not only depend on external stimuli (or the absence of

a specific stimulus), but also on internal motivations.

For example, “exploration for food” can be performed

when there is the internal motivation “hunger”. The

previous types of behaviour have been m odelled with

behaviour-based systems (BBS) (e.g. Brooks, 1986;

Beer, 1990; Maes, 1990; 1993; Hallam, Halperin and

Hallam, 1994; González, 2000; Gershenson, 2001).

Reasoned  behaviours are the ones which are

determined by manipulations of abstract concepts or

representations. Preparing yourself for a trip would be

an example. You would like to make plans, for which

you would need to have abstract representations, and

very probably a language (Clark, 1998), and to

manipulate these representations. This manipulation

can be considered as the use of a logic . This level has

been modelled with knowledge-based systems (KBS)

(e.g. Newell and Simon, 1972; Lenat and Feigenbaum,

1992). We could speculate about conscious behaviours,

without entering the debate of the definition

consciousness, just saying that they are behaviours that

are determ ined by the individual’s consciousness. W e

do not believe that there is an “ultimate” level of

behaviour. We could, in theory, always find behaviours

produced by mechanisms more and more complex. But

for now we have enough trying to model behaviours

less complex than reasoned ones. If we cannot clearly

identify further levels, there is no sense in trying to

model them. Figure 1 shows a diagram of the types of

behaviours described above.

Figure 1. Abstraction levels in animal behaviour
(Gershenson, 2001).

We believe that the behaviours in the higher levels

evolved and developed from the behaviours in the

lower levels, since in animals you cannot find higher

levels of behaviour without the lower ones. Thus,

higher levels of behaviour require the lower ones, in a

similar way as children need to develop first lower

stages in order to reach higher ones (Piaget, 1968).

Also the higher types of behaviour in many cases can

be seen as complex variants of the lower ones.

Therefore, it is sensible to attempt to build artificial

cognitive systems exhibiting adaptive behaviour of

higher levels incrementally: in a bottom-up fashion

(Gershenson, 2001:3). This does not mean that we

cannot model any level separately. But the more levels

we consider, the less-incomplete our models will be.

Historically, KBS were used first trying to model

and simulate the intelligence found at the level of

reasoned behaviours in a synthetic way (Steels, 1995;

Verschure, 1998; Castelfranchi, 1998). This means that

we build an artificial system in order to test our model,

instead of contrasting our model directly with

observations on the modelled system. The synthetic

method allows us to contrast our theories with artificial

systems, and in the case of intelligence and mind,

theories are very hard to contrast with the natural

systems. KBS have proven to be acceptable models of

the processes of reasoned behaviours. Not only they

help us understand reasoned behaviours, but are able

to simulate these behaviours themselves. But when

people tried to model the lower levels of behaviour, the

artificial systems which were built failed to reproduce

the behaviour observed in natural system s, mainly

animals (Brooks, 1995). This was one of the strong

reasons that motivated the development of BBS on the

first place, but the fact is that BBS have modelled

acceptably animal adaptive behaviour. BBS help us

understand adaptive behaviour (e.g. Webb, 1996;

2001), but also we can build artificial systems which

show this adaptiveness (Maes, 1991).

Figure 2. Simulating exhibitions of intelligence
 (Gershenson, 2001).

But if we believe that reasoned behaviours evolved

and developed from lower levels of behaviour, we



should start thinking how to justify this. Not only to

validate our belief, but for understanding how was this

possible, and to be able to reproduce it. How can

reasoning evolve and develop from adaptive behaviour?

We believe that this can be studied by simulating

reasoned behaviours from a BBS perspective. This

would not be a unification between BBS and KBS, but

a bridge closing the gaps between them. They would be

behaviour-based knowledge systems (BBKS). In other

words, such a system should exhibit knowledge, which

should have been developed, not directly implemented.

In this way, a BBKS would be able to model the

exhibitions of intelligence modelled by BBS and KBS,

also illustrating the relationships between these types

of intelligence: adaptive and cognitive. Also, BBKS are

compatible with the Epigenetic Robotics approach

(Balkenius et. al., 2001; Zlatev, 2001).

We believe that this is a promising line of research.

We argue that this is the most viable path for

understanding most levels of behaviour, and therefore

intelligence: natural and artificial. As the MacGregor-

Lewis stratification of neuroscience notes, “the models

which relate several strata (levels) are most broadly

significant” (MacG regor, 1987, quoted in Cliff, 1991).

Figure 2 shows a graphical representation of the ideas

expressed above.

But is it possible to simulate knowledge from

adaptive behaviour? We believe it is, and in the

following section we describe how we might attempt to

achieve this.

3. Knowledge from Behaviour

As we stated in the previous section, reasoned

behaviours require abstract representations or

concepts of the perceived world, and an accurate

manipulation of these in order to produce a specific

behaviour. How can these abstract representations and

concepts be acquired? It seems that they are learned

from regularities in the perceptions of objects and

events. We believe that this is how concepts are

created. We define a concept as a generalization of

perception(s) or other concept(s)1. This definition

requires and presupposes embodiment and

situatedness (Clark, 1997). This means that if we

intend to simulate these abstractions, our artificial

creatures should be embodied and situated, or at least

virtually embodied and situated (i.e. in simulations). We

should note that in animals concepts are not physical

structures (if we open a brain we will not find any

concept): they emerge from the interactions of the

nervous system with the rest of the body and

environm ent. We can see them as a metaphor, and

could say that they lie in the eye of the beholder. The

same for other types of representation. And since these

are necessary elements of knowledge, things will be

clearer if we remark that knowledge is not a physical

structure or element either, but an emergent property of

a cognitive system (i.e. an observer needs to perceive

the knowledge).

As an example for showing our use of concepts, a

person begins to develop a concept of “pen” from the

moment she perceives a pen. Then, when she perceives

different instantiations of pens and their uses, all the

regularities will determine her concept of “pen”. We

believe that animals also have such concepts and are

shaped in the same way. A kitten might play with a  ball

of paper to explore what can be done with it. Once the

kitten experiences the possibilities of sensation,

perception and use, a concept representing the ball of

paper should have been created, so that the animal will

behave accordingly in future presentations of balls of

paper. Of course, we have a different concept “ball of

paper” than the kitten, because our perceptions (and

the “hardware” we process them with) are different.

But that a creature has different concepts than the

ones we have, does not mean that it does not have

concepts. The popular “problem” of the frog not

having concept of a fly because frogs confuse other

objects with flies (they try to eat them), is a bizarre

anthropomorphization of the mind (based on the

classical experiments by Lettvin et. al. (1959)). The frog

has a concept, but not of a fly. Their perceptual system

simply does not allow them to distinguish flies and

similar objects. They do not need this to  survive in

their ecological niche. We observe a similar situation

with fiddler crabs. They do not have a concept of

“predator”. They just have a concept of “something

taller than me”, and they run away from it (Layne,

Land, and Zeil, 1997). This is because animals develop

their intelligence to cope with their environment, not

with ours. And even in humans, recent research (e.g.

O’Regan and Noë, 2001; Clark, in press) shows that

our visual perceptions are not as com plete as they

seem to us. W e need to be aware of this while studying,

and judging, animal and human intelligence. Concepts

are necessary because it has a huge computational cost

to remember each particular object and to act

accordingly. Generalizations allow the cognitive system

to produce similar actions in similar situations at a low

computational cost.

But, strictly speaking, all humans also have

different concepts for the same objects, since we have

had different experiences of them. It is only because of

language that we can communicate referring to the

same classes of objects even when the mechanisms

which determ ine in our brains those concepts might be

very different from each other.

1This is not the classical notion of concept in the
philosophy of mind literature (e.g. Peacocke, 1992), and it is
not restricted to humans. It is compatible with the use of
Gärdenfors (2000).



In animals, this ability to abstract concepts from

perceptions should be given by the plasticity of the

animal’s neurons. This implies that some concepts

might be innate, determined by the prenatal wiring of

the neurons, which is dependent on the genome (and

perhaps also proteome). How and why these innate

mechanisms evolve, including the ones allowing the

concept abstraction, are still open questions. One

could argue that it is an advantage to have them, but

recent studies (e.g. Alexander, 2001) have put a

question on wether natural selection is the only (or

even in some cases the main) driving force of natural

evolution. Here we will not discuss this issue, just

assuming that this ability has been already acquired.

We will only say that work in evolutionary robotics (see

Harvey et. al., (1997) and Gomi (1998) for reviews)

might lead to answers for these questions.

So, we can say that an animal is able to abstract

regularities from its environment. W e will not be aware

of them  if the animal does not exploit the acquired

concepts in its behaviour. But if the animal manipulates

the acquired concepts in order to adapt to its

environment, we can say that the animal has abstracted

a logic  of its environment. Knowledge of its environment.

As we stated, this is dependant on the observer, since

we believe that knowledge is an emergent property of

a cognitive system, not an element2. We can also say

that the “proper” use of concepts gives them a certain

meaning, grounded through action.

If we are searching for exp lanations of our logic, the

logic  of our environment, then we should take other

issues into account. First of all, the fact that we live in

a society3, which is shaped by us, and shapes us. W e

have a language, which allows us to  externalize and

share our concepts. This allows us to have an access to

the concepts of others, enlarging our knowledge.

Language and human thought are so interrelated,

interdependent, and internecessary, that some people

even seem to have forgotten that they are different

things4. We believe that language is also necessary for

complex manipulation of concepts (Clark, 1998), and

since an individual can develop a language only in a

society (Steels and Kaplan, 2002), it is only in a society

that an individual can develop higher cognition

(Gershenson, 2001), as it seem s has been in nature

(Dunbar, 1998). Through generations, a culture is

formed, accumulating past experiences.

Summing up, the epigenetic stages we should follow

to reach knowledge from behaviour, should be:

1. concept abstraction.

2. grounding of concepts though action.

3. sharing of concepts through social interactions

(language).

4. manipulation of concepts (logic5).

5. evolution of concepts (culture).

Note that knowledge is not acquired only until

completing all the stages, but it is developed gradually

with every stage. And we will not say that our

knowledge cannot be improved as well, i.e. we can

always add m ore stages. Also, steps 3 and 4 could

exchange places. In fact, there have been models and

theories which address most of the steps described

above, but separately (e.g. Scheier and Lambrinos,

1996; Gärdenfors, 2000; Z latev, 2001; C angelosi and

Parisi, 2001; Prince, 2001; Steels and Kaplan, 2002),

and thus they answer only partially the question of how

knowledge could evolve from adaptive behaviour.  Of

course, it is necessary to have such models and theories

before attempting to model all the path, and they all

can be considered as BBKS or BBKS theories.

These requirements for acquiring higher order

cognition seem quite sensible, and have been proposed

with similar approaches (e.g. Kirsh, 1991; Steels, 1996;

Clark, 1997; Balkenius et. al., 2001; Zlatev 2001;

Gershenson, 2001; Steels and Kaplan, 2002).

Another way of convincing ourselves to follow this

path is to analyze it backwards: if we take from humans

each of the stages described, how do our knowledge

would be diminished? Without culture we would not be

able to accumulate knowledge from generation to

generation, and only by our physiological abilities we

would be at a level even lower than social primates.

Without being able to manipulate concepts we would

not be able to make inferences nor predictions.

Without a language we would not be able to learn what

other individuals have learned, and we would be

restricted to our individual learning. Without concepts,

we would just have reactive behaviours, without the

possibility of integrating our sensory experiences to

produce complex behaviours. But of course, for using

these concepts they need to be grounded.

We believe that following this approach, consistent

with Epigenetic Robotics (Balkenius et. al., 2001;

Zlatev, 2001), we will be able to build systems which

develop their own logic, consistent with their

environment, which w ill be able to do reasonings in the

sense a KBS does. Of course, this will not replace KBS,

since their manageability at a knowledge level is much

higher than it would be in BBKS (as noted in

2We should also be careful with language games,
such as “Does a tree knows when spring came because it
blossoms?”.

3The social factor has been proposed to be also
responsible for the evolution of our “big” brains (Dunbar,
1998).

4Though thought seems to have all the properties
of a language... 5We mean logic as a tool, not logic as a science.



Gärdenfors (2000)). But KBS deliver us no knowledge

of how knowledge takes place, whereas this is the goal

of BBKS.

4. Limits of BBKS

The proposed line of research is no panacea . We

can already see several limitations of this approach,

which should be considered if to follow this path.

When we model natural exhibitions of intelligence

(Figure 2), some people might say that we sin of

oversimplification, because we do not model all the

conditions which affect a natural cognitive system. But

simplification is a necessity, due to the immense

complexity of the phenomena which are modelled. It is

this complexity, and all the information (even when it

might be redundant) that our cells and brains can

contain, that force us to make simplifications in our

models. We believe that this information is so huge

that the com plexity of natural organisms exhibiting

intelligent behaviour cannot be simulated in artificial

systems without simplification6. Our actual computers

are very far from being able to calculate in real time all

the necessary operations which  a realistic (non

oversimplifying) model would require. Some

alternatives might lie in DNA  computing (Benenson et.

al., 2001), but even if we had such computational

power as the one required to imitate convincingly

living organisms, how to program all the necessary

information? At this moment this seem s impossible  in

a short time scale.

But where to go? It seems we can make a

distinction depending on our purposes. If we are

interested in understanding intelligence (as we are with

the development of BBKS), then our limited models

creating artificial systems seem to suit our purposes. If

we want to produce intelligence “higher than human”,

we can learn a bit from the history of such attempts. In

the beginnings of Artificial Intelligence, some people

assumed that all the knowledge of a human adult might

be programm ed. Other people aware of obvious

difficulties, looking at how natural systems acquire

their knowledge, thought of programming a “child”

computer that would be able to learn as a child does

(e.g. Turing, 1950) (of course, “one could not send the

machine to school without the other children making

excessive fun of it” (Turing, 1950)), (it is easier if you

do not program everything but let the parameters be

adjusted by the system, i.e. learned). Another

alternative has been to evolve the mechanisms in

charge of producing intelligent behaviour, also being

inspired in nature (it is easier if you do not program

everything but let the model be adjusted by the system,

i.e. evolved), but it has required too much

computational power in order to aspire to reach

“higher order” intelligence by itself. These alternatives

and combinations of them have been used depending

on the ideas and purposes of researchers, modelling

from bacteria to hum an societies, all of them “sinning

of oversimplification”.  So, if we want to produce

intelligence “higher than human”, it seems sensible

that we should not start building the computational

mechanisms from scratch. This is, we should not

attempt to throw away five billion years of evolution

and the computational power of our cells, and start

from where we already are, even from the hardware

perspective. This implies that we should build our

systems on us (The best model of a cat is another cat,

and if possible, the same cat). But for this of course we

need first to understand with our limited simplified

models how our mind works, in order to try to improve

it.

But we should notice that we already make

intelligence “higher than human”, just with our cultural

and technological evolution. There was already human

intelligence more than two thousand years ago, but we

could say that we are able  to exhibit more intelligence

(we are able to solve more tasks) than humans of even

a hundred years ago (e.g. you can make calculations

much easier with a computer than with pen and paper).

By altering the nature of our environments, changing

them to suit our purposes, we make our environments

and our tools to manipulate them more complex, and

our intelligence can be considered to be higher (Clark,

2003). Or from another perspective, we raise the level

of human intelligence, even with roughly the same

“hardware” (Our DNA has not changed much in the

last ten thousand years). Cultural evolution implies

that the intelligence will be improved each generation.

And the  understanding of this process, will allow us to

guide it.

5. A Behaviour-based Knowledge

System

We are currently developing a  BBKS in order to

study the development of knowledge in artificial

cognitive systems. Following the ideas presented in

Gershenson, González and Negrete (2000), we are

constructing a virtual laboratory in order to contrast

our models as virtual animats develop and survive in

their environment. This virtual laboratory can be

downloaded  ( source  code inc luded)  fro m

http://www.cogs.sussex.ac.uk /users/carlos/keb. A

screenshot of the virtual environment can be

appreciated in Figure 3.

6This idea is clearly presented by Michael Arbib
(1989), speaking about brain models: “a model that simply
duplicates the brain is no more illuminating than the brain
itself” (p. 8).
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Figure 3. Screenshot of the virtual environment.

At this stage, animats are able to extract regularities

from their sensors developing data structures which we

call “koncepts”. Then regularities in these koncepts

recursively form koncepts of a higher level. With a

simple reinforcem ent learning schem e, koncepts are

linked to actions, grounding a form of “meaning” of

the koncepts. Using these koncepts for select their

actions, animats are able to survive in their simple

environment.

We are currently developing more com plex tasks, in

order to model how logic can em erge from the use of

abstract koncepts, in a similar way as the one proposed

by Gärdenfors (1994). We are also interested in

studying the sharing of koncepts through a form of

com munication, and how this affects the cognitive

development of the animats. An extensive description

of this work will be found in Gershenson (2002b).

6. Conclusions

We have proposed the development of behaviour-

based knowledge systems for explaining the transition

of from adaptive behaviour to high cognitive processes

in a synthetic fashion. This is, with our artificial systems

we are not only understanding the natural systems

which inspire us, but at the same time we become

capable of engineering systems with the potentialities

of the natural ones. We have stated broadly the steps

and requirem ents that BBKS should follow for

producing knowledge of their environment while still

exhibiting adaptive behaviour. We have also discussed

some limitations of BBKS and presented briefly our

current work.

An additional motivation for developing BBKS is

for doing philosophy of mind and philosophy of

cognitive science with the aid of synthetic systems:

synthetic philosophy. In this way, theories of mind,

concepts, meaning, representation, intentionality,

consciousness, etc. could be contrasted with our

synthetic BBKS, reducing a bit the space for rhetoric.
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