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Abstract
Why are attentional processes important in the driving of anticipations?

Anticipatory processes are fundamental cognitive abilities of living systems, in order to
rapidly and accurately perceive new events in the environment, and to trigger adapted
behaviors to the newly perceived events. To process anticipations adapted to sequences
of various events in complex environments, the cognitive system must be able to run
specific anticipations on the basis of selected relevant events. Then more attention must
be given to events potentially relevant for the living system, compared to less important
events.

What are useful attentional factors in anticipatory processes? The relevance of
events in the environment depend on the effects they can have on the survival of the
living system. The cognitive system must then be able to detect relevant events to drive
anticipations and to trigger adapted behaviors. The attention given to an event depends
on i) its external physical relevance in the environment, such as time duration and visual
quality, and ii) on its internal semantic relevance in memory, such as knowledge about
the event (semantic field in memory) and anticipatory power (associative strength to
anticipated associates).

How can we model interactions between attentional and semantic anticipations?
Specific types of distributed recurrent neural networks are able to code temporal
sequences of events as associated attractors in memory. Particular learning protocol and
spike rate transmission through synaptic associations allow the model presented to vary
attentionally the amount of activation of anticipations (by activation or inhibition
processes) as a function of the external and internal relevance of the perceived events.
This type of model offers a unique opportunity to account for both anticipations and
attention in unified terms of neural dynamics in a recurrent network.
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1 Semantic and attentional anticipations

Why are attentionnal processes important in the driving of anticipations?

1.1. Associative semantic anticipations

Anticipatory processes allow living systems to rapidly adapt their behaviors to
events encountered in their environment (e.g., objects, scenes, and behaviors).
Behavioral responses adapted to a given event perceived in the environment can be
more rapid and accurate when the perceived event was anticipated by the cognitive
system. According to the general concepts of anticipation (Dubois, 1998a; Rosen,
1985), anticipations are driven in memory on the basis of semantic knowledge (Lavigne
& Lavigne, 2000). Then internal representations about the relations between events
occurring in the environment and possible future events are important for the living
system to anticipate adapted behavioral responses (see Lavigne & Lavigne, 2000 for a
presentation). For this the cognitive system stores associations between events
perceived in sequences. Events frequently occurring closer in sequences are learned as
associated in memory. Within the framework of experimental studies of reading
behavior in cognitive psychology, semantic knowledge is based on associations in
memory between word meanings (concepts), which correspond to perceived events
during the activity of reading. The associative strength between (words) events is
learned from the (textual) environment and depends on their frequency of co-occurrence
(Conrad, 1972; Freedman & Loftus, 1971; Landauer, Foltz & Laham, 1998; Foltz,
Landauer & Dumais, 1997; Perlmutter, Sorce, & Myers, 1976; Spence & Kimberly,
1990). When an event occurring in the environment is perceived (e. g., ‘an approaching
snake’), dynamic activation processes propagate through associations in memory. Then
the cognitive system can activate (i. e. anticipate) events which has not yet occurred in
the environment but which are likely to occur in the very near future on a probabilistic
basis (e. g., ‘a dangerous attack’).

Anticipated (words) events being already activated in memory when they are
actually perceived, their perceptive processing (lexical access in memory) can be
accomplished more rapidly. Then reading behavior can be enhanced by shortening
fixation durations or lengthening saccades sizes. Then a reader’s oculomotor behavior
can be finely adapted to (words) events perceived in a sentence as a function of
anticipations triggered in memory by previously perceived (words) events (Balota &
Rayner, 1991; Keefe & Neely, 1990; Neely, 1991; Neely & Keefe, 1989; Neely, Keefe
& Ross, 1989; Rayner & Balota, 1989). For example, a perceived target word (‘attack’)
is more rapidly processed (about 550 ms) if already activated in memory according to
an associated preceding context (‘snake’), and is more slowly processed (about 600 ms)
when preceded by a non-associated context (‘cloud’).

The natural environment of a living system consists of simple and complex events
occurring in sequences or perceived in sequences. Events in the environment
correspond to simple objects (natural, artifactual, living, etc.), complex situations
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(correlations of objects, interactions between the living system and other objects, etc.),
or are abstract concepts elicited by perceived events (social representations, etc..). They
are all represented as events at different levels of abstraction and are memorized as
sequences organized in time. The memorization of sequences in memory allow the
cognitive system to anticipate possible future events from actually perceived events.
The simplest type of sequence of events is of a perceived first event triggering
anticipation in memory of a second event not yet perceived. This type of anticipation
needs to take into account only one perceived first event to activate associated ones in
memory, the more activated (associated) corresponding to the one more likely to occur.
However natural environments are complex, within which living systems are
surrounded by sequences of numerous events. When several events are perceived, the
cognitive system can trigger several anticipations in parallel, which can be coherent
with each other or not (i. e., leading to compatible behavioral responses or not)
depending on the associations between the sequentially perceived events (Lavigne &
Vitu 1997; Lavigne & Lavigne, 2000; Masson, 1991, 1995).

In addition to simple activation of an event in memory from a perceived one,
anticipations in complex environments imposes the cognitive system to select the most
adapted anticipations among a set of several events perceived in sequences in the
environment. Attention given to perceived events is therefore important to evaluate the
relevance of a perceived event, and to trigger anticipations leading to behavior adapted
to the more important events encountered (see Laberge, 1995; Lecas, 1992; Jones &
Yee, 1993). Perceived event’s evaluated relevance can then help selection processes of
the more adequate anticipation leading to the more adapted behavior.

The purpose of this article is to present experimental results, theoretical views and
a neural network model of anticipatory semantic and attentional processing. In Section
1 we present anticipatory semantic and attentional processes allowing several different
anticipations from sequences of several perceived events, attentional evaluation of the
relative relevance of the perceived events, and selection of the more adequate
anticipations for adapted behavior. In Section 2 we define attentional factors allowing to
evaluate the relevance of perceived events to trigger anticipations, such as processing
time of the event, time elapsed after processing the event, processing load elicited by
the event in memory. This allows defining common associative and temporal properties
of semantic and attentional anticipatory processes, as well as their adaptive properties.
In Section 3 we present an attractor neural network model giving simulations of the
functioning of both semantic and attentional anticipatory processes based on a common
and unique neural architecture.

1.2. Attentional drive of semantic anticipations

When at least two events triggering different anticipations are perceived at the
same time or close in a sequence, the cognitive system must select the best possible
anticipation activating the more probable event to occur. When perceiving sequences of
events the system must not only (i) anticipate events from every perceived event, but
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must also (ii) anticipate events from the whole sequence of events, or at least (iii)
anticipate from the most relevant event in the sequence.

(i) Every perceived event (‘snake’) triggers automatic propagation of activation in
memory through links to associated events (‘attack’) (Anderson, 1983; Collins &
Loftus, 1975; Collins & Quillian, 1969; Neely, 1991; Thompson-Schill, Kurtz, &
Gabrieli, 1998; VanVoorhis, & Dark, 1995). These rapid and unconscious activations of
associated events in memory (see Posner & Snyder, 1975a,b) are anticipations which do
not last very long in memory (Keefe & Neely, 1990; Neely, 1991; Neely & Keefe,
1989; Neely, Keefe & Ross, 1989; Neely, 1976, 1977). Indeed, when subliminal (i. e.,
processed under the threshold of conscious perception), events allow only unconscious
semantic anticipations (i. e., anticipations activated in memory under the threshold of
consciousness). They can predict events only very closely related in time (a few
milliseconds, Greenwald, Draine & Abrams, 1996). However, when supraliminal events
allow conscious attentional control of the anticipations in memory, anticipations can be
sustained longer and predict events far off in time (Balota, Black, & Cheney, 1992;
Fuentes, Carmona, Agis, & Catena, 1994; Fuentes, & Ortells, 1993; Fuentes, & Tudela,
1992; Neely, 1991). So a role of attention is to maintain anticipations activated in
memory longer to give them more predictive efficacy with time.

(ii) Two or more events perceived in the environment can already be associated
together (‘snake’ and ‘fang’) and have common associates in memory (‘attack’). Then,
when perceived at a same time or close in a sequence, they are coherent and can trigger
compatible anticipations leading to behaviors adapted to both of them. Furthermore,
anticipation triggered by one event is amplified by other events triggering similar
anticipations. This corresponds to additive activation processes triggered by two or
more words on common associates in memory (Balota & Paul, 1996; Brodeur &
Lupker, 1994; Lavigne & Vitu, 1997). The anticipation additively activated by several
(words) events is then more available in memory for further attentional processing.

(iii) Two or more events can be incoherent if not associated in memory or not
sharing common associates (‘snake’ and ‘wasp’). Then they can trigger different
anticipations leading to different motor responses corresponding to incompatible
behaviors, each adapted to only one of the perceived events (‘to walk back away the
snake’ and ‘to wave off the wasp’, respectively). Under the assumption that one
behavior can be accomplished at a time, the actual adopted behavior must be adapted to
the most relevant event with regard to its effects on the survival of the living system.
This implies a selection among several anticipations of possible behaviors (Glenberg,
1997; see Berthoz, 1996), which correspond to incursion and hyperincursion in
memory, for which one future state is selected in the system among several potential
ones (Dubois, 1996, 1998b). The attentional selection in memory must involve
inhibitory processes operating on activated anticipations, to eventually maintain
activated only the selected anticipation corresponding to the most relevant event
perceived (Laberge, 1995; Lecas, 1992; Jones, 1976; Jones & Boltz, 1989; Jones &
Yee, 1993; Neely, 1991; Posner & Snyder, 1975). In this case attention plays a role in
selecting anticipations in memory by activating the appropriate ones and inhibiting the
inappropriate ones.
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2. Attentional and semantic factors driving anticipations

What are useful attentional factors in anticipatory processes?

2.1. Attentional relevance of perceived events to drive anticipations

The relevance of events in the environment depends on the effects the events can
have on the survival of a living system. With regard to their associated potential danger,
some events have no or weak effects (e. g., ‘a snake’ or ‘a wasp’) on the internal state of
a given system. Some events can kill the system and must be given priority in
anticipating adapted behavioral responses. The cognitive system must then be able to
detect the most relevant event in a sequence, in order to drive adequate anticipations
and to adopt a behavior adapted to this event (see Laberge, 1995; Lecas, 1992; Jones,
1976; Jones & Boltz, 1989; Jones & Yee, 1993).

Attention must then be allocated to relevant events to orient anticipations by the
system to behaviors presenting the greater adaptive value. To achieve this aim a
fundamental role of attention is the evaluation of the relevance of the perceived events,
in order to select behaviors adapted to relevant events and avoid behaviors not in
relation to relevant events (Broadbent, 1982). More attention is then given to relevant
events in order to drive anticipations. The attention given to an event depends on i) its
external physical relevance in the environment, such as persistence of the event in the
environment and visual perceptibility, and ii) on its internal semantic relevance in
memory, such as anticipatory power (associative strength to anticipated associates) and
knowledge about the event (familiarity and semantic field in memory) (see Broadbent,
1971; Shiffrin, 1988).

2.1.1. External physical relevance in the environment

Physical properties of the events themselves define their perceptive salience, and
can be cues for attentional processes in their perceptive selection, independently of the
semantic knowledge the cognitive system has about them (cf., the signal detection
theory: Tanner & Swets, 1954; Green & Swets, 1966). Two physical properties are of
particular importance for attentional processing: (iv) processing time and (v)
perceptibility.

(iv) During reading, behavioral responses (e. g. eye movements or identification
times, see Lavigne & Lavigne, 2000) adopted on anticipated target-words are
influenced by the duration of the preceding prime words which led to the anticipations
(Greenwald et al., 1996; Lorch, 1982; McNamara, 1994; Ratcliff & McKoon, 1981).
The longer the prime-word is perceived the more it activates associated target-words in
memory and facilitates behavioral responses to target-words. More generally, the longer
attention is given to a (word) event, the more it can lead to anticipations.

When two prime-words are perceived in a sequence during reading, they trigger
different and incompatible anticipations if they do not share common associates. Then
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the prime which is processed longer benefits more attention and can cancel anticipations
made from the other (Lavigne & Vitu, 1997; see Lavigne & Lavigne, 2000; Neely, 1991
for reviews). This corresponds to general properties of attention in which events
perceived longer activate their associates in memory at the expense of other perceived
events (Posner & Snyder, 1975a,b; Posner, 1980; Posner & Cohen, 1984).

Therefore the amount of time during which an event is perceived determines the
amount of attention given to this event and its ability to trigger anticipations. When
perceiving different events triggering competing anticipations in parallel in memory (e.
g., ‘a snake’ and ‘a wasp’), processing time would be a cue of relevance of an event (e.
g., ‘a still snake’ vs. ‘a rapidly fleeing wasp’). Increasing attention with processing time
would lead to selection processes maintaining the most relevant anticipation activated
(e. g., ‘walking back from the still snake’) and inhibiting the other ones (e. g., ‘waving
off the fleeing wasp’).

(v) Perceptibility of an event can also influence attentional processing of the
event. During reading, anticipatory activation of associated target-words in memory
depends on quantitative and qualitative roles of attention as a function of the
perceptibility of a preceding prime-word. In case of very shortly perceived words (10 to
30 ms), perceptibility is diminished when the word is visually masked by non-verbal
visual stimuli (e. g., a row of X’s, random dots or a random letter string like ‘skefgklj’;
see Holender, 1986 for a review). Shortly presented and masked prime words lead to
unconscious processing where no attentional control is possible. Only automatic
processes occur to generate semantic anticipations on associated target-words in
memory, these priming effects being weaker than when the prime-words are fully and
attentionally processed (Greenwald et al., 1996; Holender, 1986). Furthermore, during
reading as well as in many situations of perceiving events in the environment, (word)
events can be foveally or parafoveally perceived. Parafoveally perceived words are
unconsciously processed and benefit less attention, leading to weaker anticipatory
priming effects than foveally perceived words which benefit from greater attentional
processing (Fuentes, Carmona, Agis, & Catena, 1994; Fuentes, & Ortells, 1993;
Fuentes, & Tudela, 1992; Lavigne & Dubois, 2000; Lavigne, Vitu, & d’Ydewalle,
2000). This is coherent with the general effects of perceptive salience influencing
attention to a perceived event (Tanner & Swets, 1954; Green & Swets, 1966). In this
case attentional processing can play a quantitative role in enhancing semantic
anticipations.

A more qualitative role of attention arises from experimental studies on foveal
and parafoveal word processing. Both consciously and unconsciously perceived words
lead to automatic and unconscious anticipations (Neely, 1991), their strength varying
with attention (quantitative effect of attention). However, when two prime words are
perceived at the same time and trigger incompatible anticipations (e. g., ‘snake and
wasp’), only foveally perceived words (e. g., snake’), which benefit from more
attention, can lead to anticipations (e. g., ‘walking away’) that inhibit other anticipations
(e. g., ‘waving off’) (Fuentes, Carmona, Agis, & Catena, 1994; Fuentes, & Ortells,
1993; Fuentes, & Tudela, 1992). Then the ability of attention to not only increase the
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strength of anticipations but also to inhibit other anticipations corresponds to a
qualitative role of attentional drive of anticipations.

To resume, attentional drive of semantic anticipations can vary as a function of
external physical properties of perceived events, such as perception time and
perceptibility. Exogenous selective attention allows a selection of relevant events (see
Laberge, 1995; Sperling & Reeves, 1980; Weichselgartner & Sperling, 1987), to drive
semantic anticipations in memory differentially as a function of their physical salience.

2.1.2. Internal semantic relevance in memory

In addition to external properties, internal properties can modulate the relevance
of the perceived events. These internal properties depend on the knowledge the
cognitive system has about the events in its environment. They are learned from
previous encounters with the events as a function of (vi) their frequency of occurrence,
(vii) the frequency of co-occurrence of two events, and (viii) the frequency of co-
occurrence of several events.

(vi) Events can be encountered and learned more (e. g., ‘a peach’) or less (e. g., ‘a
cherimoya’) frequently in the environment. The more frequently a word is read, the
more knowledge we have about it as a visual form. It can then be more rapidly accessed
in memory and identified for further reading, because of its higher level of activation in
memory than other less frequent words (see Monsell, 1991 for a review). Although
high-frequency words are more activated, activation thresholds put a limit to this level
(Rumelhart & McClelland, 1981, 1982). Therefore, an important parameter is that low-
frequency (words) events need more time to be accessed in memory and are processed
longer (Rayner & Balota, 1989; Vitu, 1991; Lavigne, Vitu & d’Ydewalle, 2000). A
consequence is that a less frequently encountered event can activate anticipations of
associated events in memory for longer time. This is consistent with the effects of
habituation to frequently encountered events, and of attention given to less frequently
encountered events (Tipper, Bourque, Anderson & Brehaut, 1989), in the sense that
anticipations which benefit from longer activation are given more attention. To
generalize, infrequent events (e. g., ‘a cherimoya’) are privileged as more relevant by
the attentional system to drive anticipations at the expense of frequent events (e. g., ‘a
peach’).

(vii) Event frequency alone can not account for every attentional drive based on
internal knowledge about the event. Indeed, one can drive strong anticipations from
both infrequent and frequent events (e. g., ‘a cherimoya’ and ‘a peach’ respectively) if
one has strong knowledge about them (e. g., ‘it tastes very good’). Knowledge about the
taste of a fruit depends on the co-occurrence of the eating of the fruit and of its flavor.
The strength of the association between two events (or words or concepts) in memory is
largely determined by their frequency of co-occurrence (Conrad, 1972; Freedman &
Loftus, 1971; Foltz, Landauer & Dumais, 1997; Landauer, Foltz & Laham, 1998;
Perlmutter et al., 1976; Spence & Kimberly 1990). The more two events are
encountered together at the same time or close in time, the more they are learned
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together (associated) and the more one of the two events can trigger strong anticipations
of the other event (Becker, 1979; Lorch, 1982). More generally, events strongly
associated in memory to a perceived event benefit from more activation and are given
more attentional relevance during anticipatory processes (see Jones & Yee, 1993).

(viii) Basic knowledge based on binary associations is not the only semantic
factor which can influence attention given to anticipations. Associative norms are
constructed experimentally in collecting words given by persons as associated to prime-
words (see Lavigne & Lavigne 2000; Ferrand & Alario, 1999). The more a word is
associated in memory to a prime- word, the more it is given as the first associate to
come to mind when reading the prime-word. These associative norms show the
variability in associative strength between words, and also that the number of different
words given  as associates can greatly vary among different prime-words. A given word
(e. g., ‘snake’) is represented in memory through associations to several others (e. g.,
‘fangs, ‘tail’, ‘reptile’, ‘rapid’, ‘dangerous’, ‘attack’, ‘poison’, ‘death’, etc.). Not only
binary associations between a prime-word and one of its associates (e. g., ‘snake’ and
‘attack’), but many associations between a prime-word and all its associates (e. g.,
‘snake, ‘fang’, ‘poison’, …, ‘attack’) define the semantic field of the prime-word.
Depending on the learned co-occurrences between a prime-word and a variable number
of co-occurrent words, the semantic field size may vary from large (‘snake’ has many
associates) to small (‘auburn’ has few associates). The larger the semantic field, the
more activation propagates within the field from the prime-word to many other
associates. Because many associates transmit their activation to a given associate in the
field, the level of activation of each associate is higher when the field size is large than
when it is small (Lavigne et al., in preparation). Then perceived events for which one
has the more knowledge (i. e., which have large semantic fields) are more relevant for
attentional processes and lead to stronger anticipations.

To resume, internal cognitive factors determine attention which is sustained
through time to anticipate possible upcoming events in a sequence (Jones, 1976; Jones
& Boltz, 1989; Jones & Yee, 1993).

2.2. Common structures and processes for semantic and attentional anticipations

Attention is a well-defined concept in cognitive models leading to various
fundamental processes in semantic anticipations. However it is important to define
theoretical properties of attention in terms of actual structures and processes in order to
propose common properties of a neural network model of both attention and semantic
anticipations. The discussion of experimental results and theoretical views strongly
suggests that attentional drive of semantic anticipations involves levels of activation of
event representations in memory. A common associative structure for semantic and
attentional anticipations can be proposed: event representations are associated in
memory, and activation propagates through the associative network from activated
events to associated ones. The variable level of activation of the event representation
can be determined by semantic anticipations themselves as well as by attentional
control. Then semantic anticipations, running on associations between events, and
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attentional drive, based on physical and semantic properties of the events, interact to
modulate the degree of activation of the representations of anticipated events. Through
these interactions of dynamic processes based on a common associative structure,
attention appears to be influenced by semantic structures in memory and semantic
anticipations are influenced by attentional modifications of event representations. A
common neural structure can then be presented that precisely models both attention and
semantic anticipations in terms of common neural  networks dynamics.

3. Recurrent attractor neural network model with delayed neuronal
activities

How can we modelize interactions between attentional and semantic
anticipations?

From previous models able to code temporal sequences of perceived events as
associated attractors in memory (Amit, 1989; Amit et al., 1994, Brunel, 1994, 1996), a
modified and extended version of a recurrent neural network was presented to modelize
semantic anticipatory processes (Lavigne & Lavigne, 2000). Mathematical properties of
a new model are presented as well as simulations of interactions between attentional
and semantic anticipations.

3.1. Network architecture

The network is a local module similar to a cortical column connected to other
areas of the cerebral cortex (see Brunel, 1996). It is made of 1000 neurons, 750
excitatory (E) and 250 inhibitory (I) neurons, with equal probability of having a synapse
on any other neuron. (connectivity parameter c = 0.1). The network has then SEE =
56250 excitatory to excitatory synapses, SEI = SIE = 18750 excitatory to inhibitory and
inhibitory to excitatory synapses, and SII = 6250 inhibitory to inhibitory synapses.

Excitatory neurons code for events perceived by the network and inhibitory
neurons prevent runaway propagation of activation throughout all the excitatory
neurons and maintain stable states in the network.

3.2. Neuron properties

Neurons are connected through four types of pre-synaptic (j) to post-synaptic (i)
synapses. Synaptic efficacies correspond to post-synaptic potentials (mV) provoked by
a spike. They are initially randomly defined as follows with respective means JijEE=0.04
mV (excitatory to excitatory), JijEI= 0.05 mV (excitatory to inhibitory), and JijIE=JijII=
O.14 mV (respectively inhibitory to excitatory and  inhibitory to inhibitory), with a
synaptic variability ∆=J.

3.3.  Neuron dynamics
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All neurons in the network are leaky integrate-and-fire neurons converting input
currents I (mV) in firing rates νi (spikes.s-1), according to the transduction function

νi = Φ(I) = O║[0,I1[ + [(I – α)(βI + χ)]║[I1,I2[ + [δI – ε]║[I2,+∞[
(1)

approximating Brunel’s (1996) values for Ricciardi’s (1977) transduction function, with
║[Ix,Iy[ = 1 for the corresponding intervals of I, O if not,  I1 = 15, I2 = 25, α = 13, β =
0.2, χ = 11, δ = 4, ε = 40.

A neuron receives a total input intensity

Ii(tot) = Ii(ext) + τEΣ vj(E)Jij(E) - τIΣ vj(I)Jij(I) + τ(t)Ii(µ)  
(2)

Ii(ext) is the external input current received by 50% of the neurons from the other
cortical areas outside the network. The distribution of Ii(ext) has mean I(ext) = 11 mV and
σ = 0.9 mV.

τEΣ vj(E)Jij(E) is the internal input current received by the neurons from excitatory
neurons; and τIΣ vj(I)Jij(I) is the internal input current received by the neurons from
inhibitory neurons; with τE = 0.01 and τI  = 0.002 the time constants for excitatory and
inhibitory neurons respectively, vj the spike rates of neuron i and s and Jij the synaptic
efficacies from neuron j to neuron i.

τ(t)Ii(µ) is the external input current when an event µ is perceived, applied to
excitatory neurons coding for the corresponding event µ. τ(t) is the time variable slowly
increasing with perception duration (t) of the event, which guarantees slow spike rate
dynamics during event perception.

3.4. Learning dynamics

Synapses connecting excitatory neurons (JEE) coding for perceived events are
plastic and sensitive to hebbian learning. Synaptic dynamics incorporates both
associative long term potentiation (LTP) and depression (LTD) defining modifications
of the synaptic efficacies Jij between neurons j and i (Amit & Brunel, 1995):

τcdJij/dt = - Jij + Cij + J0/1 (3.1)

calculated in the network as

Jij(t+1) = (τc – 1)Jij(t) /τc + Cij(t)/τc + J0/1/τc (3.2)

Jij vary according to the time constant τc = 20.
J0/1 takes the minimum (J0 = 0.04) or maximum (J1 = 0.15) values when Jij crosses
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(getting respectively lower or upper) a threshold wij, which stochastically vary between
J0 + θ and J1 - θ, with θ = 0.04 with steps of ξ = 0.01 mV.

Potentiation or depression of the synapse is given by the values of Cij(t defined by
the Hebb learning rule according to Brunel (1996):

Cij(t) = λ+νi(t) νj(t) - λ-[νi(t) + νj(t)] (4)

νi(t) and νj(t) are the spike rates of neurons i and j respectively, and λ+ = 0.0005 and
λ- = 0.004 are the potentiation and depression parameters respectively.

3.5. Network dynamics

Each cycle in the network consists in a random updating of the spike rates of the
neurons as a function of the intensities they receive. When currents are received only
from outside the network and from other excitatory and inhibitory neurons (equation 2),
neurons emit about 3.9 spikes per second (equation 1) and the network has a stable state
of spontaneous activity.

In order to simulate slow variations of attentional activation of the attractors in the
network, slow network dynamics are guaranteed by a variable increase of input
intensity Ii(µ). A perceived event slowly increases the total input intensity Ii(tot) to
simulate attentional activation as a function of perception duration.

Before learning, synaptic efficacies are randomly distributed, and no or few
changes occur when spike rates are low. Before learning, the network has no structured
attractor corresponding to events stored in memory. After learning of sequences of
events, learned attractors coding for each event correspond to neurons activated by the
event, which are strongly associated. When perceiving the corresponding event, neurons
in a same attractor transmit activation within the attractor, the activation being sustained
and progressively decreasing through time after removal of the perceived event.

4. Network simulations of attentional and semantic anticipations

The neural network model presented allows to define long term and short term
memories as different internal states (association/activation) of attractors coded in a
same neural structure. This type of model presents several interests including its
neurobiological plausibility, its ability to fit the external behavior of the system such as
associative learning and activation processes, and most importantly its accounting for
internal cognitive properties of the system such as the time course of activatory and
inhibitory processes as well as attentional processes. This last feature gives the model a
strong cognitive plausibility, making it an explicative model of internal processes not
limited to predictive abilities of the end product of the processes (see Perfetti, 1998).
Indeed, this model internally functions in accordance to basic properties of the cognitive
system, a crucial point when attempting to model attentional drive of anticipatory
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processes.

4.1. Semantic and attentional learning of co-occurrences and similarities

Each event perceived by the network is coded as patterns of activation across a
subset (10 neurons) of the entire network (1000 neurons). Events are coded in a
distributed way by several neurons so that each event can be a complex event,
corresponding to conjunctions of sub-events coded by individual neurons or small
groups of neurons. Patterns memorized by the network are also non-orthogonal in the
sense that they do not share neurons. This means that learned events are not associated
in a pre-defined way by common neurons, but are associated through learning
depending only on co-occurrence of events in the network environment.

Given that the attractor of a perceived event decreases slowly through time after
removal of the event, neurons coding for a first event are still activated when a
following event is perceived. This property of the network allows it to associate
attractors corresponding to events occurring frequently in temporal sequences, that is to
co-occurrent events. The model is then able to perform (ix) semantic learning based on
the events encountered, and (x) attentional learning based on its internal cognitive
states.

(i) Semantic learning is achieved by an unsupervised learning mechanism
involving the Hebb-like rule (equation 4) varying synaptic efficacies and associating
neurons coding for successive events (equations 3.1. and 3.2.; see Brunel, 1996;
Lavigne & Lavigne, 2000). After learning, the network has many attractors
corresponding to learned events. The attractors are associated as a function of the
temporal co-occurrence between the perceived events. Semantic learning in the network
then corresponds to binary associations between representations of events perceived in
temporal contiguity (e. g., ‘peach’ and ‘good taste’). These binary associations based
only on co-occurrences between events are not sufficient to account for semantic
learning and processes (see Perfetti, 1998). Similarity relations are also explained by the
model, based on relationships between events which do not directly co-occur (e. g.,
‘peach’ and ‘cherimoya’) but which co-occur with a common other contextual event (e.
g., ‘good taste’). These indirect co-occurrences lead to associations between events on a
similarity basis due to a common contextual event surrounding the perception of the
associated events. Furthermore, a contextual event leading to similarity relations
between two non co-occurrent events (e. g., ‘peach’ and ‘cherimoya’) can be activated
through the perception (‘good taste’) or through the internal activation of the non co-
occurring event as an associate (e. g., ‘grow in trees’) to the perceived  events (‘peach’
and ‘cherimoya’). The general property to store events in association with a surrounding
contextual event allows the network to represent not only binary association but also
semantic similarity relations not directly dependent on the encountered co-occurrences
in the environment.
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Activation of event 2 in memory from perception of event 1
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Figure 1: Activatory
anticipations of
event 2 from
perception of event
1, as a function of
associative learning
between two events
from direct co-
occurrences (events
1 and 2 are
presented in a
sequence); and of
similarity learning
from indirect co-
occurrences (events
1 and 2 are each co-
occurrent with a
third event 3).

(ii) Attentional factors can modulate associative learning based on direct binary
co-occurrences as well as on context-based similarity. Indeed, these two modes of
learning can be depicted as dependent, directly or indirectly, only on co-occurrences
encountered in the environment (Landauer, Foltz & Laham, 1998; Foltz, Landauer &
Dumais, 1997; Perfetti, 1998). However, to run adapted anticipations, a cognitive
system must be able not only to store sequences of events occurring in its environment,
but also to store them as a function of the event’s relevance, that is on the basis of the
attention given to the encountered events. Indeed, the acquisition of a new knowledge
through associative learning processes can benefit from cognitive behavioral features
such as attentional processing. For example, two co-occurring events (e. g., ‘cherimoya’
and ‘good flavor’) can be learned differentially as a function of the attention given to
one or to both events. A simple hypothesis would be that (supra-threshold, possibly
conscious) attention given to an event in memory is defined in the network as greater
activation of the corresponding attractor’s neurons compared to (infra-threshold,
possibly unconscious) semantic anticipations. The more an event is learned (frequency
of occurrence and perception time), the more its corresponding attractor would be,
attentionally, activated in memory during a further perception. Then, the more attention
is given to an event, the more its attractor can be activated (in intensity and time
duration), and the stronger it can be associated to a co-occurring event through
associative hebbian learning. Then, from the perception of one co-occurrence,
attentional learning can modulate associations in memory from nearly zero to a
maximum, which is a function of the intensity (equation 4) and time duration (equations
3.1. and 3.2.) of the activated attractors. Internal states of the network are as important
as sequences of events perceived in the environment to determine the types and degrees
of binary associative and similarity learning.
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Figure 2: Activatory
anticipations of
event 2 from
perception of event
1, as a function of
the amount of
attention given to
event 1 during direct
associative learning
(values of τ(t)Ii(µ) in
equation 2).

4.2. Attentional and semantic anticipations

A common basis is given by the neural network model for semantic and
attentional anticipations, in terms of degree of activation of attractors as a function of
external and internal semantic and attentional properties of the perceived events.
Semantic and attentional learning are based on common neural dynamics, modifying
synaptic weights between event’s attractors semantically associated in long term
memory as a function of their attentional level of activation. Memorized knowledge can
be differentially activated by perceived events and internal states of the system. The
reverberating activations of neurons associated in attractors of delayed activity then
correspond to knowledge activated in short term memory (see Amit et al., 1994). The
attractor activated by the perception of the corresponding event activates in short term
memory associated attractors corresponding to anticipated events not yet perceived in
the environment (see Lavigne & Lavigne, 2000). Particular spike rate transmission
through synaptic associations and slow network dynamics allows the model to vary
attentionally the amount of (infra- or supra-threshold) activation of (the attractor’s
neurons of) semantic anticipations, as a function of the external and internal relevance
of the perceived events. This type of model offers a unique opportunity to account for
both anticipations and attention in unified terms of neural dynamics, associative
semantic being coded in the synaptic weights between neurons and attention being
represented as the level of activation of the event’s attractors.

(iii) The model accounts for the rapid anticipations (2-3 network cycles) by
automatic spreading of activation from a perceived event to an associated one (see
Anderson, 1983; Balota, 1983; Greenwald, 1996; Keefe & Neely, 1990; Neely, 1991;
Neely & Keefe, 1989; Neely, Keefe & Ross, 1989; Neely, 1976, 1977; Collins &
Loftus, 1975; Collins & Quillian, 1969; Thompson-Schill, Kurtz, & Gabrieli, 1998;
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VanVoorhis, & Dark, 1995). Furthermore, anticipations are sustained longer through
time when more attention is given to the perceived event (Fuentes, Carmona, Agis, &
Catena, 1994; Fuentes, & Ortells, 1993; Fuentes, & Tudela, 1992; Neely, 1991).
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Figure 3: Activatory
anticipations of
event 2 from
perception of event
1, as a function of
the amount of
attention given to
event 1 during
perception (values of
τ(t)Ii(µ) in equation
2).

(iv) The model explains how two perceived events triggering the same
anticipations activate more an associated event in memory than a single perceived event
(Balota & Paul, 1996; Brodeur & Lupker, 1994; Lavigne & Vitu, 1997), by increasing
the amount of activation of the attractor coding for the anticipated event and received
from perceived events in an additive way.
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Network cycles

M
ea

n 
sp

ik
e 

ra
te

s 
in

 th
e 

at
tra

ct
or

 c
od

in
g 

fo
r e

ve
nt

 2
(s

pi
ke

s 
pe

r s
ec

on
d)

-10

10

30

50

70

90

110

Perception event(s)

2 preceding events

1 preceding event

Figure 4: Activatory
anticipations of
event 2 from
perception of one or
two associated
events (additive
activatory effects on
anticipations).



89

(v) When two events are perceived in a sequence, the model rapidly activates
anticipations in parallel in memory, which are associated to the each events (rapid
activation of anticipations and resistance to local incoherence between perceived
events). The model also slowly inhibits anticipations associated to only one event
(change of anticipations when perceived events are not coherent together: Lavigne &
vitu, 1997; Neely, 1991; see Glenberg, 1997; see Berthoz, 1996; Dubois, 1996, 1998b).

Activation of event 3 in memory from perception of events 1 and 2
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Figure 5: Fast
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anticipation of event
3 from perception of
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(inhibition of
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(vi) The model account for the effect of perception duration of an event on the
strength of the anticipations driven in memory (Greenwald et al., 1996; Lorch, 1982;
McNamara, 1994; Ratcliff & McKoon, 1981). The longer an event is perceived the
more it activates an anticipated associated event in memory.

Activation of event 2 in memory from perception of event 1

Network cycles

M
ea

n 
sp

ik
e 

ra
te

s 
in

 th
e 

at
tra

ct
or

 c
od

in
g 

fo
r e

ve
nt

 2
(s

pi
ke

s 
pe

r s
ec

on
d)

-5

5

15

25

35

45

55

Perception event 1

6 cycles perception

10 cycles perception

Figure 6: Activatory
anticipations of
event 2 from
perception of event
1 as a function of the
perception duration
of event 1.



90

(vii) In the model, the perceptibility of an event corresponds to the number of
neurons coding the event which are actually activated by the presentation of the event.
The more neurons coding the event are activated during perception (e. g. all the
neurons) compared to a noisy stimulus (e. g. part of the neurons and a background noise
to the whole network), the more an anticipated associated event is activated in the
network (see Holender, 1986; Fuentes et al., 1992, 1993, 1994; Lavigne & Dubois,
2000; Lavigne, Vitu, & d’Ydewalle, 2000).
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Figure 7: Activatory
anticipations of
event 2 from
perception of event
1, as a function of
the perceptibility of
event 1 (learned
event 1 vs. noisy
event 1).

(viii) In the model low frequency events need more time to reach neuron’s
activation thresholds and activate associated anticipations in the network (Rayner &
Balota, 1989; Vitu, 1991; Lavigne, Vitu & d’Ydewalle, 2000; see Monsell, 1991 for a
review). When activated longer, the attractor of the perceived event activates longer
associated anticipations, which reach higher activation levels. This accounts for the fact
that more attention given to less frequently encountered events (Tipper, Bourque,
Anderson & Brehaut, 1989).
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(ix) In the model the frequency of co-occurrence of two events during learning
leads to stronger associations between their corresponding attractor neurons (see
Conrad, 1972; Freedman & Loftus, 1971; Foltz, Landauer & Dumais, 1997; Landauer,
Foltz & Laham, 1998; Perlmutter et al., 1976; Spence & Kimberly 1990). The more two
events are associated the more a perceived one can trigger strong anticipation of the
other in memory (see Becker, 1979; Lorch, 1982), which is then given more attentional
relevance (see Jones & Yee, 1993).
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1, as a function of
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(viii) In the network the more a perceived has associates, the more activation can
add on an anticipated event through all the associated (i. e., the semantic field), given
that many associates transmit their activation to a given associate in the field (Lavigne
et al., in preparation). Perceived events for which one has the more knowledge (i. e.,
which have large semantic fields) are more relevant for attentional processes and lead to
stronger anticipations.
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5. Conclusion

Attentional processing of events occurring in the environment is a fundamental
cognitive ability to drive semantic anticipations (see Lavigne & Lavigne, 2000).
Attentional drive of anticipations appear to be an important process in memory to finely
adapt behavior to complex sequences of perceived events. As a function of both events
external properties and learned semantic internal properties, attentional processing
allows to evaluate events relevance in order to orient anticipations toward behaviors
adapted to the most relevant anticipated events.

The ability to drive anticipations, through attentional processes, as a function of
learned semantic knowledge about events in the environment, guaranty the adaptation
of behaviors adopted by the cognitive system. This fundamental cognitive ability can be
handled by anticipatory attractor neural networks, which allow to understand the
interactions between semantic and attentional anticipations on the basis of a common
neural structure. To deal with attentional drive of semantic anticipations, further
developments of the model will need tuning of the neuronal parameters to allow the
network to learn more events and to be more powerful in dealing with the processes
reported altogether.

Furthermore, semantic anticipations are central cognitive processes which interact
with fundamental cognitive abilities such as attention (Laberge, 1995), emotion
(Damasio, 1998) and goal direction (Levine, Leven & Prueitt, 1992; Thagard, 1998). In
addition to the attentional properties presented in the model, a great challenge to
anticipatory neural networks is to code emotions and goals that can drive anticipations
(Lavigne, & al. In preparation). This would lead to a better understanding of the
learning and processing of emotions and goals by a cognitive system which adaptively
anticipates in its environment.
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