Generalized Continuum Hypothesis and the Axiom of Combinatorial Sets

K. K. Nambiar

August 20, 2001
Prologue

In an earlier paper [1], intuitive set theory (IST) was defined as the theory we get when we add the two axioms, *monotonicity* and *fusion*, to ZF theory. Here we attempt to replace the axiom of monotonicity with a simpler axiom we call, *axiom of combinatorial sets*.
Axiom of Combinatorial Sets

If k is an ordinal, we write $\binom{\mathfrak{N}_\alpha}{k}$ for the cardinality of the set of all subsets of \mathfrak{N}_α with cardinality of k.

\[\mathfrak{N}_{\alpha+1} = \binom{\mathfrak{N}_\alpha}{\mathfrak{N}_\alpha}.\]
Derivation

We derive the Generalized Continuum Hypothesis from the axiom of combinatorial sets as below:

\[2^{\aleph_\alpha} = \binom{\aleph_\alpha}{0} + \binom{\aleph_\alpha}{1} + \binom{\aleph_\alpha}{2} + \cdots + \binom{\aleph_\alpha}{\aleph_0} + \cdots \binom{\aleph_\alpha}{\aleph_\alpha}. \]

Note that \(\binom{\aleph_\alpha}{1} = \aleph_\alpha \). Since, there are \(\aleph_\alpha \) terms in this addition and \(\binom{\aleph_\alpha}{k} \) is a monotonically nondecreasing function of \(k \), we can conclude that

\[2^{\aleph_\alpha} = \binom{\aleph_\alpha}{\aleph_\alpha}. \]

Using axiom of combinatorial sets, we get

\[2^{\aleph_\alpha} = \aleph_{\alpha+1}. \]
Epilogue

In view of the fact that we can derive the generalized continuum hypothesis from the axiom of combinatorial sets, we can replace the axiom of monotonicity \([1, 2]\) with the axiom of combinatorial sets, in the definition of intuitive set theory.
References

· · · for a printable version of this paper · · ·

[link]
click here