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Task Switching: A PDP Model

Sam J. Gilbert and Tim Shallice
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When subjects switch between a pair of stimulus—response tasks, reaction time
is slower on tria N if a different task was performed on trial N — 1. We present a
parallel distributed processing (PDP) model that simulates this effect when subjects
switch between word reading and color naming in response to Stroop stimuli. Reac-
tion time on ‘*switch trials”’ can be slowed by an extended response selection pro-
cess which results from (a) persisting, inappropriate states of activation and inhibi-
tion of task-controlling representations; and (b) associative learning, which alows
stimuli to evoke tasks sets with which they have recently been associated (as pro-
posed by Allport & Wylie, 2000). The model provides a good fit to a large body
of empirical data, including findings which have been seen as problematic for this
explanation of switch costs, and shows similar behavior when the parameters are
set to random values, supporting Allport and Wylie' sproposal. 0 2001 Elsevier Science
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Atkinson and Shiffrin (1968) proposed a distinction between relatively
permanent cognitive structures, such as short- and long-term memory, and
control processes which harness those fixed structuresin order to attain spe-
cific goals. This distinction was elaborated in the following years (eg.,
Posner & Snyder, 1975; Shiffrin & Schneider, 1977) and has been generally
accepted (Shallice, 1994). Y et research with normal subjects in the decades
following Atkinson and Shiffrin’ s article paid relatively little attention to the
control processes required to select and organize fixed cognitive structures
(with some notable exceptions, e.g., Gopher, Weil, & Siegel, 1989; Logan,
1979, 1980, 1985; Spelke, Hirst, & Neisser, 1976).

In recent years, studies have begun to investigate the control processes
of normal subjects when they switch between different cognitive tasks on
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successive trids (e.g., Allport, Styles, & Hsieh, 1994; Meiran, 1996; Rog-
ers & Monsell, 1995; and contributions to Monsell & Driver, 2000). The
task-switching paradigm therefore appears to offer avaluable tool for study-
ing ‘‘executive control’’ (Logan, 1985; Monsell, 1996), both in normal sub-
jects and in patients (e.g., Rogers, Sahakian, Hodges, Polkey, Kennard, &
Robbins, 1998). However, there has been disagreement over the interpreta-
tion of experimentsinvolving task switching, making it difficult to draw firm
conclusions from them about executive control. Here, we seek to clarify this
debate by presenting a computational model of task switching.

MAIN EMPIRICAL FINDINGS AND THEORETICAL
INTERPRETATIONS

A number of methodologies have been developed for studies of task
switching. One approach is simply to compare pure and mixed blocks, i.e.,
to compare blocks where the subject performs the same task on every tria
with blocks in which s/lhe must alternate between two tasks on successive
trias (e.g., Allport et al., 1994; Jersild, 1927; Spector & Biederman, 1976).
Other studies have employed the ‘‘aternating runs’ paradigm (Rogers &
Monsell, 1995), where subjects are required to switch tasks predictably every
nth trial, where n is at least 2. This has the advantage that *‘switch’’ trials
(where the task differs from the one performed on the previous trial) can be
compared with *“nonswitch’ (or ‘‘repeat’’) trials within the same block. In
a third methodology for task switching experiments, each trial is preceded
by a cue which instructs the subjects which task to perform (e.g., Meiran,
1996; Sudevan & Taylor, 1987). This paradigm makes the requirement to
switch tasks unpredictable.

Experiments using each of these paradigms have demonstrated costs, both
in reaction time and error rate, for switch compared with nonswitch trials
(or mixed compared with pure blocks). These ‘‘switch costs’ have been
reported to vary from zero to several hundred milliseconds per item, de-
pending on the experimental conditions (see below). The main test of the
model presented in this article will be whether it can predict the effects of
various experimental manipulations on switch costs.

Explanations of the Switch Cost

Animportant concept in studies of task switching isthe ‘‘task set,”” which
may be defined loosely as the set of cognitive operations required to effec-
tively perform atask (‘* To form an effective intention to perform a particul ar
task, regardless of which of the range of task-relevant stimuli will occur, is
to adopt atask-set’’; Rogers & Monsell, 1995, p. 208, emphasisin original).
This concept is often used in the same way as the concept of the action
or thought ‘‘schema’ (Norman & Shallice, 1986). The distinction between
individual S-R mappings and task sets, composed of all of theindividual S-R
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mappings which are required to carry out an experimental task, iscrucia. As
we shall see, an important issue concerns the degree to which task switching
should be understood in terms of processes occurring at the level of discrete
S-R mappings rather than those which occur at the level of the task set (see
also Monsell, Taylor, & Murphy, 2001).

Two main theoretical accounts of the switch cost have been put forward.
Allport and colleagues (e.g., Allport et a., 1994; Allport & Wylie, 2000)
have suggested that switch costs index an interference effect caused by a
carryover of the previous task set into switch trias (this will be called the
‘‘task carryover account’’). As well as a carryover of the previously active
task set into switch trials, inhibition of competing task sets can also persist
on switch trials, when the previously competing task is now required. Ac-
cording to this theory, there is no need to postulate differences between the
higher level cognitive processesthat occur during switch and nonswitch trials
in order to explain switch costs; switch trials are simply prolonged by greater
competition caused by the carryover effect (i.e., switch costs reflect a form
of priming). Thisaccount does not deny the involvement of control processes
in task switching. Without such processes, the subject could never switch
tasks at al. What is denied by this account is that these control processes
are measured in any direct way by the switch cost.

An opposing explanation of switch costs has been advanced by Monsell
and colleagues (Monsell, Yeung, & Azuma, 2000; Rogers & Monsell, 1995).
This hypothesis proposes that switch costs do reflect the duration of a stage-
like executive control process which reconfigures the cognitive system for
the upcoming task. However, it is held that this process cannot be completed
until the arrival of the first stimulus of the new task (i.e, it is a stimulus-
driven ‘‘exogenous control process’). An additional component of the
switch cost is hypothesized to reflect the operation of an ** endogenous con-
trol process’ which can be executed before the arrival of the first stimulus
inthe new task. In asimilar account, Rubinstein et al. (2001) attribute switch
coststo the duration of a‘‘goal shifting’’ stage, which can be executed before
the arrival of a stimulus, and a ‘‘rule activation’’ stage which must await
stimulus presentation.

Evidence for the Task Carryover Account

Evidence for the task carryover account of switch costs has come from
findings which demonstrate an effect of the performance of an earlier task
on subsequent switch costs (Allport et a., 1994; Allport & Wylie, 2000; see
also Mayr & Keele, 2000). Two of these findings are of particular theoretical
relevance.

Asymmetric switch costs. Allport et a. (1994, Experiment 5) carried out
an experiment where subjects switched between word reading and color
naming in response to incongruent Stroop stimuli (e.g., ‘‘red’”’ written in
blue ink; Stroop, 1935). As expected, word reading yielded faster reaction
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times than color naming (see MacLeod, 1991). However, this experiment
also produced a most unexpected result. Reaction times for word-reading
trials were slower when color naming had been performed on the previous
trial (i.e., there was a switch cost), but Allport et al. failed to detect a switch
cost for color-naming trials that followed performance of the word-reading
task. In other words, the switch cost appeared to be confined to the switch
from the nondominant into the dominant (i.e., better learned, easier) task.

More recent experiments have replicated this asymmetry in switch costs
(Allport & Wylie, 2000; Wylie & Allport, 2000). Allport and Wylie found
that there is a cost for a switch into the color-naming task, but it is smaller
than the cost of a switch into the word-reading task. Meuter and Allport
(1999) reported an analogous finding when subjects switched between digit
naming in their dominant and nondominant languages. This paradoxical
finding—Ilarger reaction time costs for a switch into a better learned, more
dominant task—is difficult to explain if switch costs reflect the time taken
to reconfigure the cognitive system for the upcoming task. Why should a
switchinto an easier, better learned task take longer to complete than aswitch
into a less familiar task? Allport et al. argue that the result can be explained
if the primary determinant of the switch cost is the nature of the previous
task. When subjects name the color of an incongruent Stroop stimulus, All-
port et a. hypothesize that inhibition of the word-reading task may be re-
quired. According to the task carryover account, this inhibition will persist
on a switch trial where word-reading is now appropriate, leading to a large
switch cost. But in the absence of any requirement to suppress color naming
in order to perform the word-reading task, there will be no carryover of
inhibition into color naming switch trials, hence the small or absent switch
Ccosts.

Item specific costs. Allport and Wylie (2000, Experiment 5) investigated
the extent to which the switch cost is caused by the repetition of stimuli
between the two tasks. Subjects aternated between short runs of color nam-
ing and word reading, but only a subset of the stimuli that appeared in the
word-reading task were also presented for color naming. Thus, it was possi-
ble to compare two types of stimuli in the word-reading task: ‘‘primed”’
stimuli, which had also appeared recently in the color-naming task, and *‘ un-
primed’’ stimuli, which were only ever seen in the word-reading task. Allport
and Wylie found that the reaction time to primed stimuli on switch trials
was slower than the reaction time to unprimed stimuli, but there was no
reliable difference in reaction time between primed and unprimed stimuli on
repeat trials. Thus, there was a greater switch cost when the stimulus on the
switch trial was primed. This item specific component of the switch cost
provides further evidence for the hypothesis that switch costs involve a
carryover effect caused by prior performance of adifferent task. The finding
suggests that stimuli might themselves evoke the task sets with which they
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were recently associated, even when this task set is not appropriate. As a
result, Allport and Wylie (2000) have updated the ‘‘task set inertia’’ (TSl)
theory of Allport et al. (1994). They propose an ‘‘associative- TSI’ account
of switch costs, according to which stimuli are able to evoke recently associ-
ated task setsfrom memory. When astimulus appears on onetrial, associated
withtask A, and then reappears on asubsequent switch trial, requiring perfor-
mance of task B, Allport and Wylie hypothesize that task set A may neverthe-
less be evoked by the presentation of the stimulus (cf. perceptual *‘trigger
conditions’ in Norman & Shallice, 1986). The resulting competition be-
tween task sets A and B may lead to an extended response selection process,
explaining the enhanced switch cost obtained for word reading when the
stimulus was recently presented for color naming.

Evidence for the Exogenous Control Process Account

In arguing for the exogenous control process account, Monsell and col-
leagues (Monsell et al., 2000; Rogers & Monsell, 1995) have demonstrated
the robustness of the switch cost even when subjects have long intervals
between trials to prepare for the upcoming task. They provided evidence that
there is no further reduction in switch costs after the first 600 ms or so of
the preparation interval: an asymptotic ‘‘residual switch cost’’ remains (e.g.,
Rogers & Monsdll, 1995). This is hypothesized to correspond with the time
taken by the execution of the exogenous control process, which must await
stimulus presentation and is therefore insensitive to the preparation interval.

A second line of evidence for the exogenous control process account
comes from studies which have investigated task switching using the alter-
nating runs paradigm when there are more than two trials of each task before
a switch. Experiments with run lengths of four (Rogers & Monsell, 1995,
Experiment 6) and eight (Monsell, Azuma, Eimer, Le Pelley, & Strafford,
1998) trials before each switch have found that the cost of task switching
is confined to the first trial of arun (see Fig. 1). Rogers and Monsell (1995)
argue that if switch costs result from a carryover effect from the previous
task, they should dissipate more gradualy, rather than being limited to the
first trial of arun. Similarly, Monsell (1996) points out that *‘ although having
ample time to prepare before a predictable task switch does not eliminate
switch cost, performing the task just once appears to do so’’ (p. 138). This
pattern of results does not seem to be compatible with the idea that switch
costs simply reflect a form of priming. It can more easily be explained if
switch costs reflect a one-off process of task set reconfiguration at the begin-
ning of switch trials.

An empirical argument against the task carryover account has been made
by Monsell et a. (2000). They demonstrated a number of cases in which
the cost of a switch from a stronger to a weaker task is greater than the cost
of a switch in the reverse direction, i.e., the opposite asymmetry of switch
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FIG. 1. Mean reaction time (RT) and error rate in Rogers and Monsell’s (1995) Experi-
ment 6, as a function of the position in arun of four trials, averaged over both tasks, adapted
from Rogers and Monsell (1995, Fig. 5).

costs to that reported by Allport et a. (1994). Thus, it does not seem to be
a general rule that switches from a less dominant to a more dominant task
yield greater RT costs than switches in the reverse direction.

Ironically, recent evidence (e.g., Meiran et al., 2000; Salthouse, Fristoe,
McGurthy, & Hambrick, 1998) has also shown that it is not a general rule
that switch costs are confined to the first trial in a run. Nevertheless, it till
appears to be a challenge to the task carryover account that switch costs can
be confined to thefirst trial in arun, at least sometimes. Similarly, the finding
of larger costs of a switch into a dominant task, even if it is not universal,
appears to challenge the exogenous control process account.

It is of course possible that the switch cost measures a combination of
both a carryover of task set (leading to an extended response selection pro-
cess) and an exogenous control process (see Meiran, 2000a, 2000b, for such
an account). Indeed, Monsell et a. (2000, p. 254) have pointed out that ‘it
is perfectly possible that an extra ‘control’ process is required precisely in
order to overcome. . . interference, onceit arises as the result of the stimulus
retrieving a recently activated task-set or the inhibition associated with a
recently suppressed task-set.”” Thus, the task carryover and exogenous con-
trol process accounts need not be mutually exclusive. However, before con-
sidering a combination of these two accounts, we should first investigate the
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abilities of each one to account for the data on its own. To do this, each
account needs to be specified more precisely in order to assessits consistency
with the available empirical data (of course, a sufficiently vague theory is
consistent with any empirical data). Second, we need to establish where the
crucial differences between the theories lie and which differences are better
classified as differences in emphasis. Computational modeling can play a
rolein both of these steps. First, by implementing atheory in acomputational
model, the theory can be specified precisely, allowing a clear assessment of
its ability to explain the empirical data. Second, if it were possible to produce
a model onto which two competing theories may be mapped, this would
suggest that the difference between the theories is not a fundamental one.

A crucia area of disagreement is the extent to which involuntary persis-
tence of task sets can explain the dramatic improvement in reaction time
from thefirst to the second trial in arun, following a switch of task. Although
Monsell et al. (2000) ‘‘certainly accept that there are relatively long-term
carry-over effects of the kind that Allport and colleagues have demon-
strated,’”’ they are inclined to doubt whether the dramatic improvement in
RT from switch trials to immediately successive nonswitch trials can be ex-
plained ‘‘even in part’’ by a carryover effect. Thus, the exogenous control
process account does not deny that reaction time in some circumstances may
be affected by a carryover of task set, but it claims that this is insufficient
as an explanation of the drop in reaction time from switch to subsequent
nonswitch trials.

In order to test this claim, we have implemented a version of the task
carryover account in a computational model. In the remainder of thisarticle,
we take an existing computational model of task performance in pure-block
conditions and extend it in accordance with the task carryover account of
switch costs. Wethen test its performance in mixed-blocks against the empir-
ical data. Our reasoning is as follows. If an existing computational model
of pure-block performance, augmented with the mechanisms required by the
task carryover account of task switching, can produce similar behavior to
subjects in comparable experimental conditions, then the task carryover ac-
count would be strengthened. Furthermore, if the model is successful, this
would indicate that, contrary to the arguments of Rogers and Monsell (1995)
and Monsell et al. (2000), a task carryover account can offer a sufficient
explanation of the relevant set of task-switching phenomena. Thus, the exog-
enous control process invoked by alternative accounts may be unnecessary
to explain the cost of task switching.

The experimental tasks that will be simulated are word reading and color
naming in response to Stroop stimuli. This domain was chosen for three
reasons. First, a relatively large corpus of data has been accumulated con-
cerning the effects of switching between dominant and nondominant tasks
on reaction times in domains such as Stroop word reading/color naming
(Allport et a., 1994; Allport & Wylie, 1999, 2000; Monsell et al., 2000),
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bilingual language switching (Meuter & Allport, 1999), and pairs of tasks
with different S-R compatibility (Monsell et al., 2000). Thus, there is enough
data to allow the evaluation of a computational model against the perfor-
mance of human subjects. A second reason for this choice is the theoretical
weight attached to the finding of ‘‘paradoxical’”’ asymmetric switch costs
(Allport et al., 1994; Monsell et a., 2000), which requires a pair of tasks of
different ‘‘strengths.”’ The final reason is that an influential model of the
Stroop effect has been developed by Cohen and colleagues (Cohen,
Braver, & O'Reilly, 1996; Cohen, Dunbar, & McClelland, 1990; Cohen &
Huston, 1994; Cohen & Servan-Schreiber, 1992; see also Phaf, Van der
Heijder, & Hudson, 1990; Zhang, Zhang, & Kornblum, 1999). Thus, an ex-
isting computational model of pure-block performance is aready available.

Thisstrategy issimilar to the approach taken by L ogan and Gordon (2001),
who added control processesto an existing model of visual attention (Bunde-
sen, 1990) in order to simulate situations that require switching between
tasks. However, the type of model employed by Logan and Gordon (2001)
and the phenomena simulated are rather different from those tackled here,
making direct comparison between the two models difficult.

THE MODEL

Although the present model is based on the earlier models of the Stroop
task by Cohen, Dunbar, and McClelland (1990) and Cohen and Huston
(1994), it also has many modifications. Below, we provide afull description
of our model, followed by a brief comparison with the earlier models on
which it is based.

We have implemented an interactive activation model (McClelland &
Rumelhart, 1981), composed of two separate pathways, for word reading
and color naming (see Fig. 2). In each pathway, there are three input units
(representing, in the word pathway, the words ‘‘red,”” ‘*green,”” and *‘blue”’
and, in the color pathway, the colors red, green, and blue). In addition, each
pathway has three output units, representing the responses ‘‘red,”” ‘*green,”’
and ‘“‘blue.”’ In other words, each possible response is represented twice,
once in the word-reading pathway and once in the color-naming pathway.
Thus, the model has a total of six input units and six output units. Each
input unit has a positive connection with its corresponding output unit. For
example, in order to simulate a stimulus of the word “‘red’’ written in green
ink color, the*‘red’’ word input unit and the **green’’ color input unit would
both be activated. This would send activation to the ‘‘red’” output unit in
the word-reading pathway and the ‘‘green’’ output unit in the color-naming
pathway.

Processing in the model, i.e., the passing of activation between units along
their connections, isiterated for a number of cycles. This allows the simula-
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FIG. 2. Architecture of the present model.

tion of reaction time: on each cycle, ‘‘evidence'’ is collected from the activa-
tion values of the six output units, two of which represent each possible
response, ‘‘red,”” ‘‘green,”’ or ‘‘blue.”” When the evidence for one of these
three responses passes a fixed threshold, the trial is terminated. In this way,
it is possible to compare the number of cycles required for the model to
reach its response threshold with the mean reaction time of human subjects.

The connection strengths from the input to the output units are stronger
in the word-reading pathway than in the color-naming pathway. This simu-
lates the greater experience that people have of naming written words than
colors. As aresult, the word-reading output units become more strongly ac-
tive than the color-naming output units when the model is presented with
a Stroop stimulus. The evidence for the response represented in the word-
reading pathway istherefore greater than the evidence for the response repre-
sented in the color-naming pathway and as a result the model will tend to
respond by ‘‘reading out’’ the word that it is presented with. However, since
people are able to name the ink color of a color-word, even when the color
and word are incongruent, some mechanism is required to prevent the model
from always executing the word-reading task. Thisis provided by the color-
naming and word-reading ‘‘task demand’’ units, which send activation to
their corresponding pathways. For example, when the color-naming task de-
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mand unit is activated, it sends activation to the output units in the color-
naming pathway, allowing them to win competition with the output unitsin
the word-reading pathway. As well as sending a positive input to the output
units of their corresponding pathway, the task demand units also send a nega-
tive (i.e., inhibitory) input to the output units of the other pathway.

The word-reading and color-naming output units also send activation back
to the task demand units. This introduces feedback as well as feedforward
connectivity into the model, allowing activity in the color and word pathways
to modulate activity in the task demand units. Similar connectionswere intro-
duced into the model of Cohen and Huston (1994) in order to simulate phe-
nomena such as attentional capture, where stimuli are able to *‘draw atten-
tion”” to themselves (e.g., Posner, 1980). The task demand units receive an
additional *‘top-down control input,”” which specifies which task the model
should perform. The word and color output units are interconnected, so that
congruent word and color response units (e.g., the two ‘‘red’’ units) have
reciprocal positive connections and incongruent pairs of units (e.g., word
“‘red’’ /color green) have reciprocal negative connections. Finally, there are
lateral inhibitory connections between al units within the word output
““modul€’’ (i.e., set of word output units), color output module and task de-
mand module. This encourages the network to settle into stable states with
no more than one unit active in each module.

Comparison with Earlier Models

Although the model is based on the earlier models of Cohen, Dunbar, and
McClelland (1990) and Cohen and Huston (1994), its architecture differs
from them in two main respects. First, there are three possible words and
colors (red, green, and blue) in the present model as opposed to just two in
the earlier models. This was chosen because the Cohen et a. (1990) model
has been criticized for failing to capture differences between word reading
and color naming when the set sizeis increased beyond two (Kanne, Balota,
Spieler, & Faust, 1998; but see Cohen, Usher, & McClelland, 1998, for a
reply).

A second difference is that, unlike our model, the earlier models included
a ‘‘winner-take-all’’ response layer. In the Cohen et a. (1990) model, the
units corresponding to the word and color output units in the present model
sent inputsinto apair of response units. Thustheword-reading ‘‘red’’ output
unit and the color-naming ‘‘red’’ output unit sent activationtoasingle‘‘red’”’
response unit. Evidence was collected from these response units in order to
determine when each trial should end. These additional units are unnecessary
in the present model: since we have interconnected the word and color output
units there is a beneficial effect of activating congruent output units and a
detrimental effect of activating incongruent output units. This plays a role
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in our model similar to the convergent inputs into the response units of the
Cohen et a. (1990) and Cohen and Huston (1994) models.

Implementation of the Task Carryover Account

The model was extended in two ways in order to implement the task carry-
over account of task switch costs. First, rather than reinitializing the network
at the beginning of every trial, the model was modified so that the state of
the task demand units can persist into successive trials. As aresult, the most
recently implemented task set remains active at the beginning of the next
trial and the most recently inhibited task set remains inhibited. This can be
seen as an implementation of the hypothesis put forward by Allport et al.
(1994) that control states persist, involuntarily, from one trial to the next.
The most simple way to implement this would be to start each trial with the
task demand units in the state they were in at the end of the previous trial.
However, this could well lead to ‘‘perseverative’’ behavior, with the model
unableto switch from onetask into the other. Thus, a*‘ squashing’’ parameter
was introduced so that the activation levels of the task demand units follow-
ing each response are squashed, i.e., set to some proportion of their activation
levels at the end of the previous trial. Such reductions in activation levels
between trials are common in models of sequential processes (e.g., Burgess,
1995; Dayan, 1998; O'Reilly & Farah, 1999) and seem to be biologicaly
plausible. The task demand units in our model are thought to reflect activity
in prefrontal cortex (see Miller & Cohen, 2001) and single-cell recording
studies of monkeys performing cognitive tasks have demonstrated a sharp
reduction in thefiring rate of cellsin prefrontal cortex following the produc-
tion of a response (see Fuster, 1997, pp. 121-134; for an example in some
ways akin to the task switching paradigm see Asaad, Rainer, & Miller,
2000).

An additional requirement for an implementation of the associative-TSI
account, as opposed to the earlier theory of Allport et a. (1994), is some
mechanism for individual stimuli to evoke task sets with which they have
recently been associated. In order to achieve this, we added a connection
from each of the stimulusinput unitsto both task demand units. Thus, stimuli
are able to evoke task sets by providing an extrainput into the task demand
units. The weights of these connections between stimulus input and task
demand units are determined by Hebbian learning at the end of each trid,
so that the weights between coactive units are adjusted in proportion to the
product of their activation values. One potential danger with this learning
algorithm is that the weights between a pair of repeatedly coactive units will
grow without bound, which may lead to such a strong input into the task
demand units that the model is unable to switch task. In order to avoid this
problem, the weights between stimulus input and task demand units are reset
to zero at the end of each trial, before the new weights are calculated, so



12 GILBERT AND SHALLICE

that the effects of learning on trial N persist only for trial N + 1. Thisisa
simplifying assumption rather than a theoretical position which we adopt.
There is strong evidence for such item-specific priming effects lasting for
longer than one trial (e.g., Allport & Wylie, 2000, Experiment 5; Waszak,
Hommel, & Allport, submitted). However, long-term priming effects, though
clearly of great interest, are not addressed in this work.

Multiple Inputs to Task Demand Units

As well as the control input that indicates which task is to be performed,
each task demand unit also receives an input from the stimulus input units,
from the color and word output units and from the other task demand unit.
When we discuss the model’s performance we refer especialy to two of
these inputs: the control input, which indicates which task is currently appro-
priate (we refer to this as the ‘‘top-down input’’), and the input that the task
demand units receive from the stimulus input units (we refer to this as the
“‘bottom-up input’’). Onecrucial feature of the top-down input isthat itisnot
equal for the two task demand units. We assume that the control mechanism
provided by the task demand units is required more for the color than the
word task, since the color-naming pathway is weaker (see, e.g., LaBerge &
Samuels, 1974; Posner & Snyder, 1975 for similar ideas). Thus, the top-
down input received by the color task demand unit, when color naming is
the required task, is greater than the top-down input received by the word
task demand unit on word-reading trials. As we shall see, this difference in
top-down input plays an important role in the model’s behavior.

Operation of the Model

The steps taken to simulate atrial are as follows:. (1) For trials other than
the first, the task demand units are set to a proportion of their activation
values at the end of the previoustrial. This proportion is set by the squashing
parameter discussed above. The activations of the stimulus input and output
units are set to zero.! (2) The appropriate top-down input is added to the net
input of the color or the word task demand unit, depending on which task
isrequired. Thisinput is added to the task demand unit’s net input on every
cycle. (3) The preparation interval begins. With all of the stimulus input
units set to zero, the top-down input is applied to the task demand units for
the number of cycles set as the preparation interval. The activation levels of
the output units are not updated during this period. (4) After the end of the
preparation interval, the appropriate task demand unit is activated as before
and either one or two of the stimulus input units have their activation values

1 A more sophisticated model might incorporate persisting activation of the output units.
This could be used in an attempt to simulate trial-to-trial effects of response repetition, which
has been shown to interact with task switching (e.g., Rogers & Monsell, 1995). However,
such effects are beyond the scope of the present model.
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set to the maximum value, until the end of the trial. In order to simulate
neutral trials (affording a response in only one of the tasks, e.g., **Xxxxx’
written in blue ink or ‘‘green’” written black ink), just one of the stimulus
input units is activated in this way. Congruent (e.g., ‘‘red’’ in red ink) and
incongruent (e.g., ‘‘red”’ in blue ink) trials are ssimulated by activating two
stimulus input units, one in the word-reading pathway and one in the color-
naming pathway. (5) Activation is alowed to propagate until a response
threshold is reached (see below). The number of cycles since stimulus pre-
sentation is recorded as the *‘reaction time.””’

Activation Level and Weight Update

Activation levels are determined by the standard interactive activation
equations (McClelland & Rumelhart, 1981). On every cycle, the net input
for each unit is calculated by summing the activation values of every unit
from which it receives a connection, multiplied in each case by the appro-
priate connection weight. In addition, units in the task demand, word and
color modules each have a bias, a constant which is added to their net inputs
on every cycle as well as the inputs received from other units. Each unit's
activation value is then updated according to the following equations:

If the net input is positive: Aact = step X net X (max — act) (1)
If the net input is negative: Aact = step X net X (act — min) (2)

Where act = current activation, step = step size, net = net input, max =
maximum activation value, and min = minimum activation value. The step
size parameter determines the magnitude of the change in activation on each
cycle, setting the speed of processing. When the activation values have been
updated for each unit, the net inputs are calculated again and a new cycle
begins. On each cycle, a random noise term is also added to the activation
values of each unit. This term is drawn from a Gaussian distribution, with
a mean of zero; the standard deviation of this distribution determines how
much disruption is caused by noise on each cycle. After noise has been
added, the activation levels of any units outside the maximum and minimum
values are reset to the relevant extreme.

At the end of each trial, the weights between the stimulus input and task
demand units are set according to the following equation:

w; = lrate X g X & 3

In this equation, w; is the weight of the connection from unit j to unit i, Irate
sets the learning rate (i.e., the magnitude of the change in weights for each
trial), and & and & are the activation levels of units j and i respectively.
Note that this equation does not take into account the previous weight of the
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connection between thetwo relevant units. Thus, these weights are cal cul ated
anew at the end of each trial, i.e., the weights derived from the activation
levels of the units at the end of trial N only affect the model’s behavior for
triad N + 1.

Response Threshold

The purpose of the response threshold is to provide a way to determine
the moment when enough evidence has been accumulated from the word
and color output units for a response to be emitted. This is implemented as
follows. At the end of each cycle, the word or color output unit with the
greatest level of activation is compared with each other word and color out-
put unit, except for the unit which commands the same response in the other
stimulus dimension (e.g., the red color-naming output unit if the red word-
reading output unit has the highest activation level). The difference in activar
tion between the most active unit and the next most active unit is calculated.
When this difference passes a fixed threshold the trial is terminated. Thus,
aresponse is simulated as occurring when the amount of evidence for that
response exceeds the evidence for any other response by a fixed amount.
This is essentialy a ‘‘random walk’” model (see Logan & Gordon, 2001,
Nosofsky & Palmeri, 1997; Palmeri, 1997). A similar response threshold,
based on the amount of evidence for the different responses, was used by
Cohen et al. (1990).

PERFORMANCE OF THE MODEL

The parameters, including the connection weights, were initially set by
hand and remain fixed for thefirst set of simulations described below, except
where stated (see the Appendix for parameter values). We show later that
the model’s behavior generally remains similar when the parameters are set
to random values within a certain range. Thus, the properties of the model
result from its general processing characteristics rather than the specific pa-
rameter values that were chosen.

Whenever incongruent stimuli are used in the simulations reported below,
the same stimulus is presented on every trial, whichever the task (except
where stated). A small set of stimuli istypically used for both tasksin experi-
mental studies of task switching. Since the effects of learning only last for
one tria in the model, it was necessary in the basic ssimulations to use the
same stimulus on every trial, to simulate the possible contribution of item-
specific effects which are assumed to have occurred in previous studies of
task switching. Thisis of course a major simplification, which is addressed
further in a later section.

In each of the following simulations, mean reaction times are based on
50,000 simulated reaction times. Trials where the model produced an incor-
rect response, or where reaction time was greater than 400 cycles (corre-
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sponding to around 2500 ms according to linear regressions of simulated on
empirical data) were counted as errors and excluded from the reaction time
analyses. For every simulation below where the performance of the model
is being compared with a specific set of empirical data, we have performed
a linear regression of the simulation data (in cycles) on the empirical data
(in milliseconds) and reported the model’s simulations in milliseconds.
Where the model is not being compared with any specific data set, we have
used the regression equation derived from the model’s simulation of the
Stroop interference and facilitation data (see below).

Stroop Interference and Facilitation

The first aspect of the model’s performance to be investigated is whether
it can accurately predict the reaction times of subjectsin pure blocks of word
reading and color naming with neutral, incongruent, and congruent Stroop
stimuli (see MacLeod, 1991, for areview). Cohen et al. (1990) demonstrated
that their model was able to simulate three important findings in pure blocks
of the Stroop tasks. word-reading reaction times are faster than color-naming
reaction times; the word-reading task interferes more with the color-naming
task than vice versa (i.e., there isagreater difference between neutral, incon-
gruent, and congruent trials in the color-naming task); and the cost of incon-
gruent trials, in comparison with neutral trials, is greater than the benefit of
congruent trials. Pure blocks of word-reading and color-naming were simu-
lated, with no preparation interval. As shown in Fig. 3, the model accurately
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FIG. 3. Performance of the model in pure blocks of the standard Stroop task, with equiva-
lent empirical data, based on Dunbar and MacLeod (1984, Experiment 1B). Simulated
RTs = 5.8 * cycles + 318 ms.
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reproduces all three aspects of the data which were discussed in relation to
the Cohen et a. model. Errors were infrequent (<0.5% for every trial type).

Each of these phenomenacan be readily explained in terms of the architec-
ture and processing of the model. Word-reading responses are faster than
color-naming responses because of the stronger connection strengths in the
word pathway which lead to stronger activation of the output units and there-
fore a faster rate of evidence accumulation. The color-naming task suffers
much greater interference from the word-reading task than vice versa be-
cause the connections in the word pathway are sufficiently strong to cause
strong activation in the output units, even when the task demand units favor
the color-naming task. The greater cost of incongruent trials, in comparison
with the benefit of congruent trials, can be explained in terms of the activer
tion function used [Egs. (1) and (2)]. The effect of a positive net input into
a unit is reduced, the higher the activation value of that unit (the same is
true of the somewhat different activation function used by Cohen et al., 1990,
and Cohen & Huston, 1994). Thus, the greater the positive input to a unit,
the less will be the contribution of additional positive inputs. Consequently,
adding an extra positive input to an active output unit from a congruent
stimulus dimension will have less effect than adding a positive input to a
less active (incorrect) output unit from an incongruent stimulus.

The simulation of the Stroop interference and facilitation data is not a
demanding test of the present model which, despite several differences, is
based on an existent model of the Stroop task (Cohen et al., 1990; Cohen &
Huston, 1994). A more interesting question concerns the ability of the model
to generalize beyond the mean reaction times found in pure blocks and pre-
dict reaction times when subjects switch between the two tasks within the
same block.

Task Switching in Mixed Blocks

To test the ability of the model to predict reaction times in mixed blocks
of word reading and color naming, the alternating runs paradigm (Rogers &
Monsell, 1995) was simulated with a run length of four before each switch
of task. If switch costs are found, this would then allow one to investigate
whether they are confined to the first trial of a run, as the empirical data
would suggest (Rogers & Monsell, 1995, Experiment 6). Again, there was
no preparation interval in this simulation.

The mean reaction times of the model when it performs four trials of word
reading, followed by four trials of color naming, and then a further four
trials of word reading areillustrated in Figs. 4a (with item repetition allowed
between the two tasks) and 4b (without item repetition). The model was reset
after each 12-trial run, so that the mean reaction time on the first word-
reading trial was not affected by a previous color-naming trial. Four features
of the model’s performance are noteworthy. First, the model does produce
switch costs; that is, switch trials have longer reaction times than nonswitch
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equation used in Fig. 3.
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trials. Second, this switch cost appears to be confined to the first tria, as
found by Rogers and Monsell (1995). Inspection of Fig. 4a shows that there
is a very smal increase in RT on the first repeat trial compared with the
second: 19.7 ms for the word task and 6.3 ms for the color task. However,
this effect is negligible in comparison with the RT drop from the first to the
second trial: 273 ms for the word task and 123 ms for the color task.

The third noteworthy feature of Fig. 4, especialy Fig. 44, is that switch
costs are markedly asymmetrical: much larger for the word than the color
task. This is the pattern reported by Allport et al. (1994) and Allport and
Wylie (2000). The switch cost asymmetry is less extreme in Fig. 4b, in line
with some recent empirical evidence (Waszak et a., submitted); we return
to this below. Finally, the model produces a slightly increased RT on the
first tria of the run, even though this does not follow the performance of
any other tasks. Such ‘‘restart costs’ have been observed by Allport and
Wylie (2000) and Gopher, Armony, and Greenshpan (2000).

Errors were relatively infrequent (<5% in al conditions), but were more
common in the color task than in the word task and on switch in comparison
with nonswitch trials. However, since reaction times have received greater
attention than errorsin studies of task switching, error rates are not discussed
in the following simulations.

Explanations of the Observed Phenomena

Switch/restart costs. In order to understand why the model produces
switch costs, we need to look at the role of the task demand units in its
behavior. Recall that the task demand units bias processing in the word and
color pathways so that the intended task is facilitated (i.e., receives positive
connections) and the unintended task isinhibited (i.e., receives negative con-
nections). Thus, the task demand units help to resolve competition between
the two tasks, leading to one of the output unitsin the correct response dimen-
sion (color or word) becoming most active. The model was run without noise
in order to produce Fig. 5, which illustrates the activation levels of the two
task demand units over the course of a switch and a nonswitch trial, both
for the color and the word task. The vertical lines indicate the moment of
response execution, i.e., the moment when the difference between the activa-
tion levels of the most active and the second most active output unit passed
the threshold. Although the activation levels after the end of the trial are
shown in Fig. 5, for illustrative purposes, the next trial immediately follows
response execution when the model is actually run.

On switch trials, the task demand units take longer to reach the activation
levels required to facilitate the intended task and inhibit the unintended one.
Thus, competition between the responses is extended, in comparison with
nonswitch trials, because the task demand units are less effective at biasing
the network toward the correct task. Thisisfor two reasons. First, the activa-
tion values of the task demand units have the wrong sign at the beginning
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of thetrial and so takelonger to reach activation levelswhich would facilitate
the intended task and inhibit the unintended one. This is caused by the car-
ryover of the task demand units' activation values from the previous trial.
A second reason for the relative ineffectiveness of the task demand units on
switch trials results from the network’s learning mechanism and the repeti-
tion of the same item for both tasks. Thisitem-specific effect will be investi-
gated in more detail below.

Restart costs arise because, on the first trial of a run, the network lacks
the facilitation caused by a carryover of task set from switch to subsequent
nonswitch trials. Since they only reflect the absence of a facilitatory effect,
rather than being caused by an inhibitory effect combined with the carryover
of a competing task set, restart costs are more modest than switch costs.

Switch costs confined to the first trial in a run. A determinant of the size
of switch costs in the model is the state of the task demand units at the
end of the trial preceding the switch. This determines the magnitude of the
carryover of task set: if the task demand units are very active at the end of
one trial, this will cause a large carryover into the subsequent trial. As Fig.
5 shows, athough the task demand units have inappropriate activation levels
at the start of switch trials, their activation levels become appropriate for the
required task by the end of such trials. The stimulus input units become
associated with these new values by Hebbian learning. Consequently, the
appropriate task demand activations are carried over into the immediately
successive nonswitch trial. In other words, the original cause of the switch
cost (incorrect task demand unit activations) is dissipated by the end of the
switch trial. It therefore does not contribute to successive nonswitch trials
in the run. (At the end of a switch trial, the task demand units generally have
a weaker activation than they do at the end of a nonswitch trial, since they
started with inappropriate activations at the beginning of the trial. Asaresuilt,
the first nonswitch trial after a switch may receive a weaker carryover of the
appropriate task than subsequent nonswitch trials. This accounts for the very
slight improvement which is observed between the first and second repeat
trial.)

One might ask whether this account would be tenable in a model where
there was long-term learning between the stimulus input and task demand
units (to account for long-term item-specific priming effects). Long-term
connections between stimulus input and task demand units may contribute
to the switch cost, and these connections will not have dissipated by the end
of the switch trial. However, it is assumed that the long-term connection
weightswill have aslow enough decay that the contribution of these connec-
tions will not be noticeably different from tria to tria. Thus, the effect of
long-term connection weights between stimulus input and task demand units
will effectively be constant over successive trialsin arun and will not cause
agradua reduction in RT from tria to trial. Note that switch costs confined
to thefirst trial in arun are not dependent on the model’ s learning rule, the
effects of which last for just one trial. The same pattern of datais seen in
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Fig. 4b, where there is no item repetition. Rogers and Monsell (1995) are
therefore incorrect to argue that the task carryover account of switch costs
is incompatible with such costs being limited to the first trial of a run. As
Fig. 4 shows, amodel in which the only source of switch costsis a carryover
of task set is capable of producing this pattern of data.

Asymmetric switch costs. Examination of Fig. 5 aso reveals a reason for
asymmetric switch costs. Comparison of the word and color switch trials
shows that, on the color switch trial, the task demand units quickly become
strongly activated in the appropriate manner for the color-naming task but
on the word switch tria the task demand units continue to favor the color
task until just before the moment of response execution. This is due to
the difference in the strength of top-down inputs for the two task demand
units. Recall that a larger value is added to the net input of the color task
demand unit on color trials than is added to the net input of the word task
demand unit on word trials. Thus, on switch trials, reconfiguration of the
task demand units for the intended task is slower for the word-reading task
than the color-naming task, hence the paradoxical asymmetry in switch costs.

It should be noted that this explanation of asymmetric switch costs differs
from the explanation proposed by Allport et al. (1994). Allport and col-
leagues propose that the color task requires strong suppression of word read-
ing, but not vice versa. As a result, the word task in strongly suppressed
following a switch from color naming. This generates a large switch cost in
the word task, but there is a smaller cost for switches into the color task
since it was not previously suppressed or was suppressed to a lesser degree.
We agree that differences in ‘‘competitor suppression’’ between the two
tasks are plausible (equal excitatory and inhibitory weights from the color
and word task demand units were implemented as a simplifying assumption).
However, the model shows that a paradoxical asymmetry in switch costs can
result from differences in top-down inputs for the two tasks, regardiess of
their possible differences in the requirement for competitor suppression.

It would be problematic if the model rigidly predicted asymmetric switch
costs, with a larger cost of switches into the dominant task. As discussed
above, a number of experiments have been carried out which have yielded
an asymmetry of switch costs in the reverse direction (i.e., greater switch
costs for switches into the weaker task; see Monsell et al., 2000). However,
we will see later that the asymmetry in switch costs observed in Fig. 4a and
(to a lesser degree) Fig. 4b is sensitive to certain parameter manipulations.
Thus, it is possible for the model to produce asymmetric switch costs with
alarger cost for switches into the weaker task. The circumstances that give
rise to this, both experimentally and in the model, are discussed below.

Reverse Sroop Interference

One of the pieces of evidence for the task carryover account of switch
costs is the “‘reverse Stroop’” interference seen on word switch trials (e.g.,
Allport et al., 1994; Allport & Wylie, 2000). On switch trials, word reading
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is substantially slower for incongruent than neutral stimuli but the difference
is generaly negligible on nonswitch trials, suggesting a carryover of the
color task set into word switch trials. This contrasts with color naming, which
shows a large difference between incongruent and neutral stimuli for both
switch and nonswitch trials. As can be seen from Fig. 6, the model aso
shows this effect. On word nonswitch trials, the color pathway is too weak
to interfere noticeably with activity in the word pathway. As a result there
islittle difference in reaction time to neutral and incongruent stimuli on word
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nonswitch trials. But on word switch trials, the carryover of task set facili-
tates the color pathway and inhibits the word pathway. This causes the color
pathway to be strong enough, and the word pathway to be weak enough, for
interference to occur, hence the difference in reaction time between incon-
gruent and neutral stimuli on switch trials. When the task is color naming,
the word pathway is sufficiently strong to cause interference even on non-
switch trials when the color and word are incongruent. Thus, thereis alarge
difference between reaction times to incongruent and neutral stimuli both
on switch and nonswitch trials.

Item-Specific Switch Costs

In an experiment which was discussed in the introduction, Allport and
Wylie (2000, Experiment 5) investigated the extent to which switch costs
might be contingent on repetition of the same stimulus items between the
two tasks. They found that the cost of a switch into the word task was sub-
stantially higher if the stimulus on the switch trial had earlier appeared in a
color-naming trial. However, there was no significant difference in reaction
time between these *‘primed’’ and ‘‘unprimed’’ stimuli on nonswitch trials.
Thus, there appears to be a strongly item-specific component of the switch
cost. It is clear that priming from the color task cannot affect subsequent
word nonswitch reaction times in the model for the simple reason that learn-
ing between the stimulus input and task demand units only lastsfor onetrial.
As aresult, even if there is a greater reaction time on word switch trials for
primed stimuli (i.e., stimuli just seen in the color-naming task), this priming
will have decayed before the following word nonswitch trial.

Thisis not a satisfactory account of the interaction between stimulus repe-
tition and switch/nonswitch trials because we have aready seen evidence
for priming effects that last for more than one tria (Allport & Wylie, 2000,
Experiment 5; Waszak et al., submitted). The simplifying assumption that
learning effects last for only one trial does not allow us to test the model’s
simulation of the interaction between item repetition and switch/nonswitch
trials. Thus, to provide a stronger and more principled test of the model, we
allowed learning to last beyond a single trial for this simulation only.

Equation (3) was modified so that the weight at the end of the last trial
was added to the new weight, i.e., there was no decay in the connection
strengths between the stimulus input and task demand units. First, the model
was presented with a sequence of four nonrepeating incongruent stimuli (re-
ferred to as **ABCD’"), the first two for color naming and the last two for
word reading, in order to obtain baseline reaction times for unprimed stim-
uli.2 Then, after reinitializing the network, an ‘**‘ABBC’’ sequence was pre-

2|n order to obtain these unprimed baseline RTs, Hebbian weights were only allowed to
persist for one tria (as in the earlier simulations), and different stimuli were presented on
consecutivetrials. Thiswas necessary because there are only three possible incongruent stimuli
with nonoverlapping stimulus representations.
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sented, again with color naming for the first two trials and word reading for
thelast two. Finally, an ‘**ABCB’’ sequence was presented. (As before, each
of these simulations was run 50,000 times). By comparing the mean reaction
time to the second B stimulus in the ABBC sequence with the C stimulus
in the ABCD sequence, it is possible to assess the effect of item repetition
on word switch trials. Likewise, comparing the mean reaction time to the
second B stimulusin the ABCB sequence with the D stimulusin the ABCD
sequence should reveal the effect of item repetition on word nonswitch trials.
Since there was no decay in the connection strengths between the stimulus
input and task demand units, the distance between prime and probe trias
had no effect on the model’s behavior. Figure 7 shows the results of these
simulations.

The model does an excellent job of simulating the interaction between
item repetition and trial type (switch/nonswitch) for word-reading reaction
times. Not only does item repetition between the color and word tasks lead
to dower response times in the word-reading task, this effect is essentialy
confined to switch trials. The explanation is as follows. When a stimulus is
presented for color naming, the Hebbian learning at the end of the trial leads
to a positive connection weights from the stimulus input units to the color
task demand unit, and negative connection weights from the stimulus input
units to the word task demand unit. If the same stimulus is presented on a
subsequent wordreading trial, it sends some activation to the color task de-
mand unit and inhibition to the word task demand unit. This means that the

Empirical Data Simulation Data

800 800
o )
& 3
£ 700 E 700
] -]
E
i 600 A E 600
8 5
S 500 - S 500
(] (]
o o

400 . 400 T

Switch Non-Switch Switch Non-Switch
Condition Condition
—a— Primed

—e— Unprimed

FIG. 7. Simulated and experimental effects of item repetition across both tasks on word-
reading switch and nonswitch trials. Empirical data are based on Allport and Wylie (2000,
Fig. 6). Simulated RTs = 5.6 * cycles + 221 ms.



A PDP MODEL OF TASK SWITCHING 25

task demand units take longer to reach appropriate activation values for the
word task, since the top-down activation they receive is countered, to some
extent, by the inappropriate bottom-up (i.e., stimulus-driven) activation. On
nonswitch trials, the task demand units start off favoring the word task and
inhibiting the color task. Since the word pathway is much stronger than the
color pathway, the precise values of the task demand units have very little
effect on word-reading trials when they already favor the word task. Thus,
an incorrect bottom-up activation of the task demand units on a word non-
switch trial has little effect on the model’s behavior.

Similar simulations were run to assess the effects of priming from word-
reading to color-naming trials; these revealed two differences between the
two tasks. First, although the mean reaction time was slower for primed than
unprimed color-naming switch trials, this effect was smaller than in the
word-reading task. This is because the color-naming top-down input is
stronger, alowing it to oppose the inappropriate bottom-up activation more
effectively. Second, unlike in the word-reading task where the effect of item
repetition is very small on nonswitch in comparison with switch trials, the
relative size of the effect on color-naming nonswitch trials, in comparison
with switch trials, was greater than half. This is because the color-naming
pathway, unlike the word-reading pathway, is heavily dependent on the task
demand units even on nonswitch trials. Support for these two predictions
was recently obtained, using a picture—word Stroop task, by Waszak et al.
(submitted), who found that the effect of item repetition on reaction times
in the less dominant picture-naming task was smaller than the effect on word-
reading switch trials, and it was just as large on switch and nonswitch trials.
Note that the model’s simulation of item repetition increases the switch cost
substantially in the word-reading task, but very little in the color-naming
task, where switch and nonswitch trials are affected similarly. This accounts
for the greater asymmetry in switch costs between the two tasks when item
repetition is allowed (compare Figs. 4a and 4b), as found by Waszak et al.
(submitted).

Now that we have seen the effect of item repetition on word switch and
nonswitch trials, another explanation of reverse Stroop interference is possi-
ble. Recall that incongruent word switch trials are slower than neutral trials,
but there is no difference in reaction time to incongruent and neutral stimuli
on word nonswitch trials. By definition, a neutral stimulusin onetask cannot
appear as a stimulus in the other task. Thus, for neutral trias, there was no
item repetition between the two tasks. However, in the above simulation,
the same incongruent stimulus was used in both tasks. In other words, the
incongruent stimulus on the word switch trial was primed, but the neutral
stimulus was not. Reinterpreted in this way, the reverse Stroop data shows
the same pattern of results as the itemspecific data: a difference between
primed and unprimed stimuli on switch, but not nonswitch trials (at least in
the word task). In order to assess the contribution of item-specific priming
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effects to reverse Stroop interference, we reran the smulations illustrated in
Fig. 6, this time using a different incongruent stimulus for the word and
color tasks. Essentially the same pattern of results was found, but with a
smaller difference between incongruent and neutral stimuli on the word
switch trial. Thus, item-specific priming effects can play aroleinthe model’s
simulation of reverse Stroop interference, but such interference is seen even
in the absence of any item-specific effects.

Effects of Neutral Trials

Many experiments (e.g., Allport & Wylie, 2000, Experiment 4; Rogers &
Monsell, 1995, Experiment 1) have found that switch costs are reduced, but
not eliminated, when neutral stimuli are used. Inspection of Fig. 6 shows
that the model aso produces reduced switch costs when the stimulusis neu-
tral, both in the word and color tasks. This can be explained in terms of the
earlier explanations of reverse Stroop interference. Incongruent switch trials
are dower than neutral switch trials, but there is asmaller differencein reac-
tion time between incongruent and neutral nonswitch trials. Thus, the differ-
ence in reaction time between switch and nonswitch trials (i.e., the switch
cost) is larger for incongruent than neutral stimuli. Thisis because response
selection in incongruent trials is particularly slow following a switch of task.

A second example of the effect of neutral trials on switch costsis reported
by Allport and Wylie (2000, Experiment 1; also reported in Wylie & Allport,
2000, Experiment 1). In this experiment, the focus was the effect of neutral
trials in the previous task on subsequent switch costs rather than the effect
of neutral stimuli on switch trials. Allport and Wylie found that the cost of
a switch into the word-reading task was greatly increased when the stimuli
in the previous color-naming task were changed from neutral to incongruent,
even though the word-reading stimuli were always incongruent. Similarly,
the model’s mean word-reading switch cost increases from approximately
151 to 273 ms when the stimulus for the previous color-naming tria is
changed from neutral to incongruent, using incongruent stimuli for word
reading in both cases.

The main cause of this effect is the absence of item repetition between the
two tasks when a neutral stimulus is used, as discussed above, as a possible
explanation of reverse Stroop interference. Another contributing factor to
the reduced switch cost following the appearance of neutral stimuli in previ-
oustrialsisthat, on neutral trials, a response can be selected before the task
demand units have become strongly active. This means that the task demand
units have smaller activation values at the end of neutral than incongruent
trials, leading to a greater carryover of task set into switch trials following
incongruent stimuli in the other task. Thus, even when items are not repeated
between the two tasks, the model produces a larger switch cost following
incongruent stimuli.
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Preparation

Preparation is simulated by activating the task demand units in advance
of the stimulus input units, without activating the output units. As Fig. 8
shows, the preparation interval has a large facilitatory effect on the reaction
times for switch trials, but little effect on nonswitch RTs: the preparation
interval is therefore able to reduce switch costs, as found by Meiran (1996)
and Rogers and Monsell (1995, Experiment 3). In this respect, the model’s
simulation of the empirical data is successful. However, one aspect of the
model’s behavior does not fit the experimenta evidence. In the model, the
switch cost is entirely eliminated at the longest preparation interval of 150
cycles; this correspondswith an interval of approximately 1200 msaccording
to the regression equation derived from the model’ s simulation of the Stroop
interference and facilitation data. In contrast, some experimental investiga-
tionsinto task switching have found residual switch costs even at preparation
intervals aslong as 8 s (Kimberg, Aguirre, & D’Esposito, 2000). Thisforms
a central plank in the evidence for the exogenous control process account
of switch costs (Rogers & Monsell, 1995).

However, other studies have found that the switch cost is virtualy elimi-
nated by the preparation interval (De Jong et a., submitted; Meiran, 1996;
Meiran et a., 2000; Tornay & Milan, 2001). On the basis of this and other
evidence, De Jong (2000) has argued that the residual switch cost does not
result from some inexorable limitation in subjects’ ability to prepare for a
switch of tasks, but rather from their occasional failure to make effective
use of the preparation interval. This is perfectly compatible with the model
presented here, although it is not necessary to assume, as does De Jong, that
subjects are either fully prepared or not at all prepared for the new task at
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FIG. 8. Simulated effects of the preparation interval on reaction time. Simulated RTs
were calculated with the regression eguation used in Fig. 3.
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the moment of stimulus onset. Thus, the model’ sfailure to produce aresidual
switch cost may result from the way that the preparation interval is simulated
rather than reflecting a more serious problem.

Another potential shortcoming of the model’s simulation of preparation
is that some authors have reported that preparation, while reducing switch
costs, does not seem to reduce the amount of Stroop-like interference be-
tween tasks (e.g., De Jong, 1995; Meiran, 1996). The model would predict
some reduction in Stroop interference with preparation. However, this reduc-
tion in Stroop-like interference with preparation has been found by other
researchers (Goschke, 2000; Sudevan & Taylor, 1987), so it is not clear
whether this should be considered a problem for the model.

EFFECTS OF PARAMETER SETTINGS

The model produces a good fit to a large body of empirical data from
task-switching experiments. However, it has a number of free parameters
which were set by hand. It is possible that the model owes its successes to
the specific parameter settings chosen. If this is the case, then the model
cannot be said to provide strong support for the task carryover account of
switch costs, since it might be able to fit any set of data with the appropriate
parameter settings (see Roberts & Pashler, 2000). It would be more impres-
sive if it could be shown that the properties of the model result from the
general principles which govern its operation rather than its specific parame-
ters. We investigated this question by evaluating the effects of setting the
parameters to random values (within certain limits).

The model was run 1000 times with a random value selected for each
weight and each other free parameter on every run, with the exception of
minimum and maximum activation values and step size (see the Appendix
for alist of parameters and their possible values). Each run consisted of 500
simulated reaction times in each condition to provide mean reaction times.
In keeping with a central assumption of the model, the connections from
stimulus input to output units had a greater strength in the word pathway
than in the color pathway, reflecting the greater strength of the word task
(Cohen et d., 1990). On each run, two random values were chosen for the
connection strengths from the stimulus input units to the word and color
output units. If the value for the color units was greater than the value for
the word units, another pair of values was chosen until the word output units
received a stronger connection than the color output units. Similarly, the
level of top-down control input for the color task demand unit was greater
than the level of top-down control input for the word task demand unit.

Before these simulations could be run, it was necessary to establish limits
for the random values chosen for each parameter. This was done by taking
the model with the standard parameter settings and adjusting each parameter
in turn, to establish its maximum and minimum values, outside of which the
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model produced unacceptably high error rates. We defined *‘ unacceptably
high’’ as an error rate of 20% or more for one or more trial typesin are-
peating run of word-reading and color-naming trials using the same incon-
gruent stimulus on every trial.

The level of top-down control input to the color task demand unit had no
upper limit above which the model’ s performance deteriorated. It was there-
fore given a maximum value which made the standard parameter setting
exactly midway between the maximum and the minimum values. The noise
parameter was allowed to vary between zero and its standard setting. We
assumed that, since the maximum and minimum parameter values were cho-
sen with the noise parameter at its standard setting, making thisthe maximum
noise setting should ensure that the mgjority of simulations do not produce
an excessive number of errors.

Results

Models that produced an error rate of greater than 10% on any tria type
were excluded from the following analyses (as before, reaction times of
greater than 400 cycles were counted as errors). This led to 366 simulations
of 1000 being excluded (see Table 1).

TABLE 1
Thirteen Properties of the Model and the Percentage of Models Showing Those Properties
When Their Parameters Are Set to Random Values

Percentage
Property of models
Al Word reading is faster than color naming in pure blocks 88.5
A2. In pure blocks there is a greater effect of incongruent and congruent 76.3
stimuli in the color task than in the word task
A3. In pure blocks, interference from incongruent stimuli is greater than 66.9
facilitation from congruent stimuli
B1. Switch trials are slower than repeat trials 98.9
B2. Switch costs are confined to the first tria in arun 72.7
B3. There is a greater cost of switches into the word task than switches 77.1
into the color task
B4. Reverse Stroop interference occurs on word switch trials 100.0
B5. Less reverse Stroop interference occurs on word nonswitch trials 99.5
B6. Reaction time is slower on word switch trials when the stimulus was 98.3
seen on the previous color-naming trial
B7. There is a smaller effect of item repetition between the two tasks, or 93.9
no effect, on word nonswitch trias (for those models with prop-
erty B6)
B8. Smaller switch costs occur when the subject is presented with neu- 99.2
tral stimuli than when incongruent stimuli are used
B9. Switch costs in the word task, using incongruent stimuli, are greater 99.8

following color naming with incongruent stimuli than following
color naming with neutral stimuli
B10. A reduction in switch costs occurs with the preparation interval 99.7
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We have taken 13 empirical phenomena simulated above and categorized
them into those that relate to performance in pure blocks of the Stroop tasks
(A1-A3) and those that relate to task-switching in mixed blocks (B1-B10).
Table 1 shows the percentage of simulations with each of these properties.
Operationally, property B2 (switch costs confined to the first trial in a run)
was defined as areduction in RT between the first and the second nonswitch
trial that amounted to less than 6.5% of the reduction in RT between the
switch trial and the second nonswitch trial, averaged over both tasks (thisis
approximately the reduction shown by the model with its standard parameter
settings). Property B10 was satisfied if switch costs were reduced by a 30-
cycle preparation interval.

Binomia tests showed that the models with random parameter settings
were more likely have each of these properties than not (p < .0001 for every
phenomenon). Thus, these phenomena are simulated by the model because
its architecture and general processing principles are predisposed toward
them rather than as a result of manipulation of the parameter settings.®

Only two of the task-switching phenomena are shown by less than 90%
of the models—switch costs confined to the first trial of a run (property
B2, shown by 73% of the models) and paradoxical asymmetric switch costs
(property B3, shown by 77% of the models). Interestingly, both of these
phenomena have not always been reported in the empirical literature (see
Meiran et al., 2000, and Salthouse et al., 1998, for evidence that switch costs
need not be confined to the first trial of arun; and Monsell et al., 2000, for
evidencethat switch costs need not be *‘ paradoxically’’ asymmetrical). Thus,
the phenomena that the models with random parameter settings are least
likely to produce are also those which have not always been observed in the
empirical data. In order to further investigate the model’s simulation of
switch costs being confined to thefirst trial in arun, we generated afrequency
histogram of the drop in reaction time from the first to the second nonswitch
trial, as a percentage of the drop in reaction time from the switch tria to the
second nonswitch trial (Fig. 9). As the figure shows, the majority of simula-
tions were in the bars representing 0-3% and 3—6%, indicating that there
was generadly little or no further drop in reaction time from the first to the

3 Only a subset of the parameter space was tested, in accordance with the assumption that
the bottom-up connections should be stronger in the word than the color pathway and the top-
down input stronger for the color than the word task. It is also important to show that the
model fails when these constraints are not met. This can be seen when one considers that the
only difference between the word and color pathways (i.e., the reason for one being called
“‘word"’ and not the other) is the strength of the bottom-up and top-down connections. Thus,
if the constraints concerning the strength of bottom-up and top-down connections were re-
versed, thiswould be equivalent to renaming the word task * color’” and the color task ‘‘word’’
in the present smulations. In this case, the three phenomena that reflect a direct comparison
between the two tasks (A1, A2, and B3) would not be shown by the majority of simulations
currently showing them.
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FIG. 9. Freguency histogram of the reduction in reaction time from the first to the second
nonswitch trial, as a percentage of the reduction from the switch trial to the second nonswitch
trial.

second nonswitch trial (as found by Rogers & Monsell, 1995). However,
there were some simulations that showed a larger drop in reaction time be-
tween nonswitch trials, and a few that showed an increase in reaction time
from the first to the second nonswitch trial.

Parameter Settings and Asymmetric Switch Costs

Although we have seen that the model does not rigidly predict a paradoxi-
cal asymmetry of switch costs when the parameters are set to random values,
we have not yet seen which parameter manipulations are responsible for this
variability in behavior. Only four of the model’s parameters have effects
which are specific to one of the two tasks: color and word pathway connec-
tion strengths and color and word level of top-down control input. Thus, any
differences between the model’s performance in the two tasks are due to
differences between the settings of these parameters for the color and word
tasks. As an important assumption of the model, the word pathway has
greater connection strengths than the color pathway and the color top-down
control input is greater than the word top-down control input. We investi-
gated the effects of these differences on asymmetric switch costs. Figure 10
shows the mean difference between the pathway strengths (favoring the word
task) and between the top-down control inputs (favoring the color task) sepa-
rately for modelswhich produce paradoxical and nonparadoxica asymmetric
switch costs. The ‘‘paradoxical models’ show a greater difference in top-
down level of task control than the ‘‘nonparadoxical models,”’ but the non-
paradoxical models show a greater difference in pathway strength than the
paradoxical models. Thus, nonparadoxical asymmetric switch costs seem to
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FIG. 10. Differences between the color and word tasks in top-down control input and
pathway strength for models showing a paradoxical and anonparadoxical asymmetry of switch
costs. Error bars represent standard error of the mean.

be produced by the combination of arelatively small difference in top-down
control input for the two tasks and a relatively large difference in pathway
strength.

The effect of top-down control input on asymmetric switch costs makes
sense in terms of the earlier explanation of asymmetric switch costs. Since
switch trials are slowed by the need to reconfigure the state of the task de-
mand units, asmaller top-down control input will lead to slower reconfigura-
tion of the task demand units and therefore larger switch costs. Thus, alarge
difference in the level of top-down control input for the two tasks, favoring
the color task, will lead to larger switch costs in the word than the color
task. But thisis clearly not the full explanation of asymmetric switch costs.
If the only reason for asymmetric switch costs were the difference in top-
down control inputs for the two tasks, we would expect the paradoxical
asymmetry every time, since the top-down control input is always larger for
the color task.

When the top-down control input for the two tasks is equal, but the path-
way strengths are different, the model still produces asymmetric switch costs.
This time, however, the switch cost is larger for switches into the nondomi-
nant task. Thus, two opposing effects seem to be occurring. When the level
of top-down control input for two tasks is different, all else being equal,
larger switch costs are produced in the dominant task (i.e., the task with the
smaller top-down control input). But different pathway strengths (all else
being equal) will produce larger switch costs in the nondominant task (i.e.,
the task with the weaker pathway strength). Thisis because the nondominant
task is more dependent on the task demand units than the dominant task.
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Thus, the effect of an inappropriate state of activation in the task demand
units (the cause of switch costsin the model) is greater for the nondominant
than the dominant task. It appears that the balance between these two forms
of asymmetry in task strength is largely responsible for the nature of the
asymmetric switch costs.

An experiment by Yeung (1999; also described in Monsell et al., 2000)
has provided results in line with the model’ s prediction that nonparadoxical
asymmetric switch costs should be associated with a small difference in top-
down control input between the two tasks. In this experiment, subjects again
switched between word-reading and color-naming tasks. A black color-word
was displayed on a colored rectangle, following the procedure of Glaser and
Glaser (1982). When the word and colored background were presented si-
multaneously on each trial, a paradoxical asymmetry was obtained, with
larger switch costs for the word task. But when the word was presented
320 ms after the appearance of the colored background on each trial, the
asymmetry in switch costs was reversed. Yeung (1999) suggests that this
procedure reduces the difference in top-down control input between the two
tasks, leading to a nonparadoxical asymmetry of switch costs. Thisis exactly
in line with the predictions of the model.

DISCUSSION

We have demonstrated than an implementation of one theory of the causes
of switch costs—the task carryover account—is able to reproduce a large
number of empirical phenomena that have been reported in the literature.
The model simulates the facilitation and interference effects found in Stroop
color naming and word reading, with asymmetric interference between the
two tasks and greater interference than facilitation, the existence of switch
costs, the asymmetry of those switch costs between dominant and nondomi-
nant tasks, the confinement of those switch costs to the first trial in a run,
reverse Stroop interference and its confinement to switch trials, the effects
of neutral stimuli on switch costs when they appear in the task being switched
from and when they appear in the task being switched into, item-specific
priming effects, and the interaction of item repetition with switch versus
nonswitch trials in the word task. The model also simulates the reduction of
switch costs by the preparation interval, although it does not produce residual
switch costs at long preparation intervals. Two of these effects have been
claimed to be problematic for theories such as Allport and Wylie' sto explain,
viz., switch costs confined to the first trial of arun (see Rogers & Monsell,
1995, Experiment 6) and nonparadoxical asymmetric switch costs (see
Monsell et a., 2000). The model has these properties as a result of its archi-
tecture and general processing principles rather than asaresult of the specific
parameter values that were chosen.
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Comparison with Other Models

Norman and Shallice (1986). Norman and Shallice (1986) have aso pro-
duced a model of the processesinvolved in the selection of routine and non-
routine actions (see also Cooper & Shallice, 2000; Shallice, 1982, 1988,
1994). Although it was not designed with the task-switching paradigm in
mind, the Norman—Shallice model has a great deal in common with the
model presented in this article. According to the Norman—Shallice model,
behavior is controlled by ‘‘schemata,’”” which select and coordinate the ele-
mentary processes involved in simple cognitive tasks. Individual schemata
can become selected in two ways. They can be triggered by environmental
cues, following which a process called ‘‘ contention scheduling’’ selects the
most active schema for the control of action. This is appropriate in routine
circumstances where environmental cues are sufficient to determine behav-
ioral responses. But in circumstances requiring the overriding of prepotent
responses to environmental cues, or in novel situations where there are no
learned associations between environmental cues and behavioral responses
available, the *‘ supervisory attentional system’’ (SAS) biases the contention
scheduling process by providing a top-down input favoring the appropriate
schema (and/or inhibiting unwanted schemata). The elements of this theory
can easily be mapped onto elements of the model presented in this article:
Schemata correspond to the task demand units, the environmental triggering
of schemata corresponds with the connections that form between the stimulus
input units and the task demand units, and the SAS corresponds with the
top-down control input into the task demand units.

However, one apparent discrepancy is that, whereas in the standard ver-
sion of the theory the SAS is only operative when nonroutine behavior is
required, the top-down control input into the task demand units is always
present. Thus, the model presented in this article does not entail astrict divi-
sion between routine behavior mediated by contention scheduling and non-
routine behavior which also requires the SAS. The model is equally consis-
tent with other models where there is a single action-controlling hierarchy
(e.g., Schwartz, Reed, Montgomery, Palmer, & Mayer, 1991)—the top-down
control input into the task demand units may reflect an input from higher
level to lower level schemata.

Extra process accounts of switch costs. As discussed in the introduction,
some researchers have explained switch costs in terms of the duration of a
stage-like executive control process that operates only on switch trias. Ver-
sions of the this account have been proposed by De Jong (2000), Monsell
et al. (1998, 2000), Rogers and Monsdll (1995), Rubinstein et al. (2001),
and others. We concur with Rogers and Monsell (1995; Monsell, 1996) that
stimulus-driven processes play an important rolein determining switch costs.
However, the present model indicates that the assumption of an extra process
only present on switch trials is not necessary to account for the findings
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reported so far. The crucial difference between the model presented in this
articleand the *‘ extraprocess ' models discussed aboveisthat, in the present
model, precisely the same computational processes occur on switch and non-
switch trials. The only difference between the two types of trial is in the
initial state of the network. Thus, the switch cost does not measure the dura-
tion of any distinct process.

Note that it is quite possible that, at least on some occasions, additional
processes may take place on switch trias. For example, a time-consuming
process of retrieving the now-appropriate task from memory may occur more
often on switch trials in some circumstances (Mayr & Kliegl, 2000). Indeed,
one could examine the behavior of the model when such additional assump-
tions are made. However, we have demonstrated above that such extra pro-
cesses on switch trials are not necessary to explain the switch cost.

Yeung (1999). Yeung (1999) has recently put forward a task carryover
model of switch costs. Although very different inimplementation, this model
is very similar to the present one at a deeper theoretical level.* As in the
current model, Yeung's model simulates switch costs as an extended re-
sponse selection process resulting from a carryover of task set, although
Yeung's model incorporates separate response activation and response reso-
Iution stages rather than the single response selection stage that takes place
in our model. Yeung's model, like ours, explains paradoxical asymmetric
switch costsin termsof agreater top-down control input for the nondominant
task. Unlike our model, however, the carryover of task set isidentical every
time the subject switches task (it is a constant added to the ‘‘readiness’’ of
the most recently performed task). One further difference is that there is no
mechanism for stimulus-driven retrieval of task set in this model, although
it could presumably be accommodated by a small extension of the model.
Yeung's model is implemented as a set of mathematical equations relating
reaction time to theoretical variables such as ‘‘task readiness.”” These equa-
tions are intended to be *‘ descriptive rather than explanatory with respect to
the nature of the response selection process.’”’ By implementing our model
in a PDP network, we aim to make the computational principles that may
underlie the behavioral effects of task-switching more explicit.

Concluding Comments

The model presented in this article implements the idea that switch costs
reflect an interference effect caused by a carryover of task set. We have
shown that this account can provide explanations for alarge body of empiri-
cal data. In general, supporters of aternative explanations of switch costs
have not provided quantitative predictions for this empirical data and so it
isdifficult to evaluate the ability of other theoriesto explain the effects simu-
lated by the model. One exception to thisisthe model put forward by Kieras,

4 The development of the present model and Yeung's model occurred independently
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Meyer, Ballas, and Lauber (2000). Kieras et al. have implemented the extra
process account proposed by Rubinstein et al. (2001), using the EPIC archi-
tecture (see, e.g., Meyer & Kieras, 1997, 1999). However, this model has
so far only been used to simulate a small set of data, from an unpublished
study by Lauber (1995), making direct comparison with our model difficult.
Meiran (2000a) has also put forward an explicit computational model of task
switching. Again, the nature of the model and the data it is used to simulate
make it difficult to compare our models directly.

It might seem that the task switching paradigm haslessrelevance to execu-
tive control if the switch cost simply reflects an interference effect caused
by a carryover of task set. However, we have two suggestions for the role
that the task switching paradigm can play in furthering our understanding
of executive control. First, even if switch costs result from an automatic
process of response conflict resolution, according to the present framework
they can still reflect states of executive contral, i.e., the top-down control
inputs that both tasks receive. Thus, it should be possible to study these
top-down control inputs indirectly, using the model to infer top-down input
settings from behavioral data. We have recently utilized this methodology
(Gilbert & Shallice, unpublished data; see Yeung, 1999 for a similar ap-
proach): We reasoned that if subjects were to perform a working memory
task at the same time as switching between previously |earned tasks of Stroop
word reading and color naming, this should interfere more strongly with the
(larger) color-naming top-down input than with the word-reading top-down
input. In order to simulate the effect of concurrent performance of aworking
memory task, we therefore reduced the color-naming top-down input to a
value closer to the weaker word-reading top-down input. When the color-
naming top-down input is strongly reduced, the model produces a reversed
asymmetry of switch costs (greater for the color-naming task), and this is
also what we found in our subjects. A second role for the task switching
paradigm in the study of executive control could occur once the effects of
a carryover of task set and stimulus-driven retrieval of task set are under-
stood. It would then be possible to attribute new findings in more complex
situations to the duration of executive processes involved in task switching.
In this respect, the current model could be used in the same way as it itself
uses the earlier model of Cohen et al. (1990).
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APPENDIX

Parameters of the Model, Standard Settings, and Permitted Range
When Set to Random Values

Possible range
Standard for random
Parameter setting values
Weights
Stimulus input units to word output units 35 1.9-4.2
Stimulus input units to color output units 19 1541
Task demand units to word/color output units® 25 1.6-5.7
Word/color output units to task demand units 1.0 0.0-6.7
Connections between color and word output units® 20 0.0-2.8
Within module inhibitory connections® —-20 —5.0-0.0
Other parameters
Bias for word/color output units -6.0 -11.3—-35
Bias for task demand units -4.0 —15.2-0.0
Top-down control input into color task demand unit 15.0 9.0-21.0
Top-down control input into word task demand unit 6.0 3.2-21.0
Learning rate between stimulus input and task demand 1.0 0.0-1.6
units
Response threshold 0.15 0.09-0.32
Minimum activation value -1.0 -10
Maximum activation value 1.0 1.0
Step size [see Eq. (1)] 0.0015 0.0015
‘*Squashing’’ of task demand unit activations between 80% 63-100%
trials
Noise (i.e., standard deviation of the distribution used to 0.006 0-0.006

provide noise terms added to activation values)

2 This parameter determines both the positive connection strength from (e.g.) the word task
demand unit to each of the word output units and the negative connection strength from (e.g.)
the word task demand unit to each of the color output units. Likewise, the positive and negative
connection strengths for the backprojections from the color and word output units to the task
demand units are determined by a single parameter.

P This parameter determines both the positive connection strengths between congruent words
and colors and the negative connection strengths between incongruent words and colors.

¢ This parameter determines the negative connection strengths between each member of the
task demand, word, and color modules.

REFERENCES

Allport, D. A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dy-
namic control of tasks. In C. Umilta & M. Moscovitch (Eds.), Attention and performance
XV (pp. 421-452). Cambridge, MA: MIT Press.

Allport, A., & Wylie, G. (2000). ‘ Task-switching’, stimulus-response bindings, and negative
priming. In S. Monsell & J. S. Driver (Eds.), Attention and performance XVIII: Control
of cognitive processes (pp. 35—70). Cambridge, MA: MIT Press.

Asaad, W. F., Rainer, G., & Miller, E. K. (2000). Task-specific neural activity in the primate
prefrontal cortex. Journal of Neurophysiology, 84, 451-459.



38 GILBERT AND SHALLICE

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control
processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motiva-
tion (Vol. 2). New York: Academic Press.

Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523-547.

Burgess, N. (1995). A solvable connectionist model of immediate recall of ordered lists. In
D. S. Touretzky, G. Tesauro, & T. K. Leen (Eds.), Advances in neural information pro-
cessing systems (pp. 51-58). Cambridge, MA: MIT Press.

Cohen, J. D., Braver, T. S,, & O'Rellly, R. C. (1996). A computational approach to prefrontal
cortex, cognitive control and schizophrenia: Recent development and current challenges.
Philosophical Transactions of the Royal Society B, 351, 1515-1527.

Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the control of automatic processes:
A parallel distributed processing account of the Stroop effect. Psychological Review, 97,
332-361.

Cohen, J. D., & Huston, T. A. (1994). Progressin the use of interactive models for understand-
ing attention and performance. In C. Umilta & M. Moscovitch (Eds.), Attention and
performance XV (pp. 453-476). Cambridge, MA: MIT Press.

Cohen, J. D., & Servan-Schreiber, D. (1992). Context, cortex and dopamine: A connectionist
approach to behavior and biology in schizophrenia. Psychological Review, 99, 45-77.

Cohen, J. D., Usher, M., & McClelland, J. L. (1998). A PDP approach to set size effects
within the Stroop task: Reply to Kanne, Balota, Spieler, and Faust (1998). Psychological
Review, 105, 188-194.

Cooper, R., & Shdlice, T. (2000). Contention scheduling and the control of routine activities.
Cognitive Neuropsychology, 17, 297-338.

Dayan, P. (1998). A hierarchical model of binocular rivalry. Neural Computation, 10, 1119—
1136.

De Jong, R. (1995). Strategical determinants of compatibility effects with task uncertainty.
Acta Psychologica, 88, 187—207.

De Jong, R. (2000). An intention-activation account of residual switch costs. In S. Monsell &
J. S. Driver (Eds.), Attention and performance XVII1: Control of cognitive processes (pp.
357-376). Cambridge, MA: MIT Press.

De Jong, R., Emans, B., Eenshuistra, R., & Wagenmakers, E-J. (submitted). Structural and
strategical determinants of intentional task control.

Dunbar, K., & MacLeod, C. (1984). A horse race of a different color: Stroop interference
patterns with transformed words. Journal of Experimental Psychology: Human Percep-
tion and Performance, 10, 622—639.

Fuster, J. M. (1997). The prefrontal cortex, 3rd ed. Philadelphia: Lippincott—Raven.

Glaser, M. O., & Glaser, W. R. (1982). Time course analysis of the Stroop phenomenon.
Journal of Experimental Psychology: Human Perception and Performance, 8, 875-894.

Gopher, D., Armony, L., & Greenshpan, Y. (2000). Switching tasks and attention policies.
Journal of Experimental Psychology: General, 129, 308—339.

Gopher, D., Weil, M., & Siegel, D. (1989). Practice under changing priorities: An approach
to training of complex skills. Acta Psychologica, 71, 147-179.

Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task-set switch-
ing. In S. Monsell & J. S. Driver (Eds.), Attention and performance XVIII: Control of
cognitive processes (pp. 331-355). Cambridge, MA: MIT Press.

Jersild, A. T. (1927). Menta set and shift. Archives of Psychology, Whole No. 89.

Kanne, S. M., Balota, D. A., Spieler, D. H., & Faust, M. E. (1998). Explorations of Cohen,



A PDP MODEL OF TASK SWITCHING 39

Dunbar, and McClelland’s (1990) Connectionist Model of Stroop Performance. Psycho-
logical Review, 105, 174-187.

Kieras, D. E., Meyer, D. E., Balas, J. A., & Lauber, E. J. (2000). Modern computational
perspectives on executive mental processes and cognitive control: Where to from here?
In S. Monsell & J. Driver (Eds.), Attention and Performance XVIII: Control of cognitive
processes. Cambridge, MA: MIT Press.

Kimberg, D. Y., Aguirre, G. K., & D’Esposito, M. (2000). Neural activity associated with
task-switching: AnfMRI study. Poster presented at meeting of the Cognitive Neuroscience
Society, San Francisco, April 2000.

Lauber, E. J. (1995). Executive control of task switching operations. Unpublished doctoral
dissertation, University of Michigan, Ann Arbor, MI.

Logan, G. D. (1979). On the use of aconcurrent memory |oad to measure attention and automa-
ticity. Journal of Experimental Psychology: Human Perception and Performance, 5, 189—
207.

Logan, G. D. (1980). Attention and automaticity in Stroop and priming tasks. Theory and
data. Cognitive Psychology, 12, 523-553.

Logan, G. D. (1985). Executive control of thought and action. Acta Psychologica, 60, 193—
210.

Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task
situations. Psychological Review, 108, 393-434.

MacLeod, C. M. (1991). Half acentury of research on the Stroop effect: Anintegrative review.
Psychological Bulletin, 109, 163—203.

Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: The role of back-
ward inhibition. Journal of Experimental Psychology: General, 129, 4-26.

Mayr, U., & Kliegl, R. (2000). Task-set switching and long-term memory retrieval. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 26, 1124—-1140.
McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context
effects in letter perception: Part 1. An account of basic findings. Psychological Review,

88, 159-188.

Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 22, 1423-1442.
Meiran, N. (2000&). Modeling cognitive control in task-switching. Psychological Research,

63, 234—249.

Meiran, N. (2000b). Reconfiguration of stimulus task sets and response task sets during task
switching. In S. Monsell & J. S. Driver (Eds.), Attention and performance XVI11: Control
of cognitive processes (pp. 377—-399). Cambridge, MA: MIT Press.

Meiran, N., Chorev, Z., & Sapir, A. (2000). Component processes in task switching. Cognitive
Psychology, 41, 211-253.

Meuter, R. F. 1., & Allport, D. A. (1999). Bilingual language switching in naming: Asymmetri-
cal costs of language selection. Journal of Memory and Language, 40, 25—40.

Meyer, D. E., & Kieras, D. E. (1997). EPIC—A computational theory of executive cognitive
processes and multiple-task performance: Part 1. Basic mechanisms. Psychological Re-
view, 104, 3-65.

Meyer, D. E., & Kieras, D. E. (1999). Precis to a practical unified theory of cognition and
action: Some lessons from computational modeling of human multiple-task performance.
In D. Gopher & A. Koriat (Eds.), Attention and performance XVII (pp. 15-88). Cam-
bridge, MA: MIT Press.

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function.
Annual Review of Neuroscience, 24, 167, 202.



40 GILBERT AND SHALLICE

Monsell, S. (1996). Control of mental processes. In V. Bruce (Ed.), Unsolved mysteries of
the mind (pp. 93-148). Hove, UK: Erlbaum/Taylor & Francis.

Monsell, S., Azuma, R., Eimer, M., Le Pelley, M., & Strafford, S. (1998). Does a prepared
task switch require an extra (control) process between stimulus onset and response selec-
tion? Poster presented at the 18th International Symposium on Attention and Perfor-
mance, Windsor, England.

Monsell, S., & Driver, J. S. (Eds.) (2000). Attention and performance XVII1: Control of cogni-
tive processes. Cambridge, MA: MIT Press.

Monsell, S, Taylor, T. J., & Murphy, K. (2001). Naming the color of aword: Is it responses
or task sets that compete? Memory & Cognition, 29, 137-151.

Monsell, S, Yeung, N. P.,, & Azuma, R. (2000). Reconfiguration of task-set: Is it easier to
switch to the weaker task? Psychological Research, 63, 250-264.

Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of
behaviour. In R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.), Consciousness and
self-regulation (Val. 4, pp. 1-18). New York: Plenum.

Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded
classification. Psychological Review, 104, 266—300.

O'Reilly, R. C., & Farah, M. J. (1999). Simulation and explanation in neuropsychology and
beyond. Cognitive Neuropsychology, 16, 49-72.

Palmeri, T. J. (1997). Exemplar similarity and the development of automaticity. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 23, 324—354.

Phaf, R. H., Van der Heijden, A. H. C., & Hudson, P. T. W. (1990). SLAM: A connectionist
model for attention in visual selection tasks. Cognitive Psychology, 22, 273-341.
Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology,

32, 3-25.

Posner, M. |., & Snyder, C. R. R. (1975). Attention and cognitive control. InR. L. Solso (Ed.),
Information processing and cognition: The Loyola Symposium. Hillsdale, NJ: Erlbaum.

Raberts, S., & Pashler, H. (2000). How persuasive isagood fit? A comment on theory testing.
Psychological Review, 107, 358—367.

Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive
tasks. Journal of Experimental Psychology: General, 124, 207-231.

Rogers, R. D., Sahakian, B. J., Hodges, J. R., Polkey, C. E., Kennard, C., & Robbins, T. W.
(1998). Dissociating executive mechanisms of task control following frontal |obe damage
and Parkinson’s disease. Brain, 121, 815-842.

Rubinstein, J.,, Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes
in task switching. Journal of Experimental Psychology: Human Perception and Perfor-
mance, 27, 763-797.

Salthouse, T. A., Fristoe, N., McGurthy, K. E., & Hambrick, D. Z. (1998). Relation of task
switching to speed, age, and fluid intelligence. Psychology and Aging, 13, 445-461.

Schwartz, M. F., Reed, E. S., Montgomery, M., Pamer, C., & Mayer, N. H. (1991). The
quantitative description of action disorganisation after brain damage: A case study. Cogni-
tive Neuropsychology, 8, 381-414.

Shallice, T. (1982). Specific impairments of planning. Philosophical Transactions of the Royal
Society of London B, 298, 199—-209.

Shallice, T. (1988). From neuropsychology to mental structure. Cambridge, UK: Cambridge
Univ. Press.

Shallice, T. (1994). Multiplelevels of control processes. In C. Umilta& M. Moscovitch (Eds.),
Attention and performance XV (pp. 395-420). Cambridge, MA: MIT Press.



A PDP MODEL OF TASK SWITCHING 41

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information pro-
cessing: I1. Perceptual learning, automatic attending, and a general theory. Psychological
Review, 84, 127-190.

Spector, A., & Biederman, I. (1976). Mental set and shift revisited. American Journal of
Psychology, 89, 669-679.

Spelke, E., Hirst, W., & Neisser, U. (1976). Skills of divided attention. Cognition, 4, 205—
230.

Stroop, J. R. (1935). Studies in interference in serial verbal reactions. Journal of Experimental
Psychology, 18, 643-662.

Sudevan, P., & Taylor, D. A. (1987). The cuing and priming of cognitive operations. Journal
of Experimental Psychology: Human Perception and Performance, 13, 89-103.

Tornay, F. J,, & Milan, E. G. (2001). A more complete task-set reconfiguration in random
than in predictable task switch. Quarterly Journal of Experimental Psychology, 54A,
785-803.

Waszak, F., Hommel, B., & Allport, A. (submitted). Task-switching and long-term priming:
Role of episodic S-R bindings in task-shift costs.

Wylie, G., & Allport, A. (2000). Task switching and the measurement of ‘‘switch costs.”’
Psychological Research, 63, 212-233.

Yeung (1999). Switching between simple cognitive tasks: interactions between executive con-
trol and task properties. Unpublished doctoral dissertation, University of Cambridge,
Cambridge, England.

Zhang, H., Zhang, J., & Kornblum, S. (1999). A parallel distributed processing model of
stimulus—stimulus and stimulus—response compatibility. Cognitive Psychology, 38, 386—
432.



	MAIN EMPIRICAL FINDINGS AND THEORETICAL INTERPRETATIONS
	FIGURE 1

	THE MODEL
	FIGURE 2

	PERFORMANCE OF THE MODEL
	FIGURE 3
	FIGURE 4
	FIGURE 5
	FIGURE 6
	FIGURE 7
	FIGURE 8

	EFFECTS OF PARAMETER SETTINGS
	TABLE 1
	FIGURE 9
	FIGURE 10

	DISCUSSION
	APPENDIX
	REFERENCES

