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THE ADAPTIVE ADVANTAGE OF SYM BOLIC THEFT OVER SENSORIM OTOR 

TOIL: GROUNDING LANGUAGE IN PERCEPTUAL CATEGORIES 

 

 

 

Abstract 
Using neural nets to simulate learning and the genetic algorithm to simulate 
evolution in a toy world of mushrooms and mushroom-foragers, we place two 
ways of acquiring categories into direct competition with one another: In (1) 
"sensorimotor toil,”  new categories are acquired through real-time, feedback-
corrected, trial and error experience in sorting them. In (2) "symbolic theft,”  new 
categories are acquired by hearsay from propositions – boolean combinations of 
symbols describing them. In competition, symbolic theft always beats 
sensorimotor toil.  We hypothesize that this is the basis of the adaptive advantage 
of language. Entry-level categories must still be learned by toil, however, to avoid 
an infinite regress (the “symbol grounding problem”). Changes in the internal 
representations of categories must take place during the course of learning by toil. 
These changes can be analyzed in terms of the compression of within-category 
similarities and the expansion of between-category differences. These allow 
regions of similarity space to be separated, bounded and named, and then the 
names can be combined and recombined to describe new categories, grounded 
recursively in the old ones. Such compression/expansion effects, called 
"categorical perception" (CP), have previously been reported with categories 
acquired by sensorimotor toil; we show that they can also arise from symbolic 
theft alone. The picture of natural language and its origins that emerges from this 
analysis is that of a powerful hybrid symbolic/sensorimotor capacity, infinitely 
superior to its purely sensorimotor precursors, but still grounded in and dependent 
on them. It can spare us from untold time and effort learning things the hard way, 
through direct experience, but it remain anchored in and translatable into the 
language of experience.  
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THE ADAPTIVE ADVANTAGE OF SYM BOLIC THEFT OVER SENSORIM OTOR 

TOIL: GROUNDING LANGUAGE IN PERCEPTUAL CATEGORIES 

 

1. Language Evolution: A M artian Perspective 

 

Whatever the adaptive advantage of language was, it was indisputably triumphant. If all our 

linguistic capabilities were subtracted from the repertoire of our species today, very little 

would be left. Not only would all the fruits of science, technology and culture vanish, but our 

development and socialization would be arrested at the stage still occupied currently by the 

members of all other species, along with only the severely retarded members of our own. 

Buried somewhere among all those undeniable benefits that we would lose if we lost language 

there must be a clue to what language’s original bonus was, the competitive edge that set us 

inexorably on our unique evolutionary path, distinct from all the nonspeaking species (Harnad, 

Steklis & Lancaster 1976; Steels 1997). 

 

There has been no scarcity of conjectures as to what that competitive edge might have been: It 

helped us hunt; it helped us make tools; it helped us socialize. There is undoubtedly some merit 

in such speculations, but it is hard to imagine how to test them. Language is famously silent in 

the archeological and paleontological record, requiring interpreters to speak for it; but it is the 

validity of those very interpretations that is at issue here. 

 

Perhaps we need to take a step back, and look at our linguistic capacity from the proverbial 

Martian anthropologist's perspective: Human beings clearly become capable of doing many 

things in their world, and from what they can do, it can also be inferred that they know a lot 

about that world. Without too much loss of generality, the Martian could describe that 

knowledge as being about the kinds of things there are in the world, and what to do with them. 

In other words, the knowledge is knowledge of categories: objects, events, states, properties 

and actions. 

 

Where do those categories come from? A Martian anthropologist with a sufficiently long-range 

database could not fail to notice that some of our categories we already have at birth or soon 
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after, whereas others we acquire through our interactions with the world (Harnad, 1976). By 

analogy with the concept of wealth, the Martian might describe the categories acquired 

through the efforts of a lifetime to be those that are earned through honest toil, whereas those 

that we are born with and hence not required to earn he might be tempted to regard as ill-

gotten gains -- unless his database was really very long-range, in which case he would notice 

that even our inborn categories had to be earned through honest toil: not our own individual 

toil, nor even that of our ancestors, but that of a more complicated, collective phenomenon 

that our (ingenious) Martian anthropologist might want to call evolution. 

 

So, relieved that none of our categories were acquired other than through honest toil, our 

Martian might take a close look at precisely what we had done to earn those that we did not 

inherit. He would find that the way we earned our categories was through laborious, real-time 

trial and error, guided by corrective feedback from the consequences of sorting things correctly 

or incorrectly (Catania & Harnad, 1988). As in many cases the basis for sorting things 

correctly was far from obvious, he would note that our honest toil was underwritten by a 

substantial inborn gift, that of eventually being able to find the basis for sorting things 

correctly, somehow. A brilliant cognitive theorist, our Martian would immediately deduce that 

in our heads there must be a very powerful device for learning to detect those critical features 

of things (as projected onto our sensory surfaces) on the basis of which they can be 

categorized correctly (Harnad, 1996b). Hence he would not be surprised that this laborious 

process takes time and effort -- time and effort he would call "acquiring categories by 

Sensorimotor Toil" (henceforth Toil). 

 

Our Martian moralist would be surprised, however, indeed shocked, that the vast majority of 

our categories turn out not to be learned by Toil after all, even after discounting the ones we 

are born with. At first the Martian thinks that these unearned categories simply appear 

spontaneously; but upon closer inspection of his data he deduces that we must in fact be 

stealing them from one another somehow. For whenever there is evidence that one of us has 

acquired a new category without first having performed the prerequisite hours, weeks or years 

of Toil, in the laborious real-time cycle of trial, error and feedback, there is always a relatively 

brief vocal episode between that individual and another one who has himself either previously 

earned that category through sensorimotor Toil, or has had a very brief vocal encounter with 

yet another individual who has himself either… and so on. 
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Without blinking, our Martian dubs this violation of his own planet's Protestant work ethic "the 

acquisition of categories by Theft," and immediately begins to search for the damage done to 

the victims of this heinous epistemic crime. To his surprise, however, he finds that (except in 

very rare cases, dubbed "plagiarism," in which the thief falsely claims to have acquired the 

stolen category through his own honest toil), category Theft seems to be largely a victimless 

crime. 

 

Ever the brilliant cognitive theorist, our Martian would quickly discern that the mechanism 

underlying Theft must be related to the one underlying Toil, and that in principle it was all 

quite simple. The clue was in the vocal episode: All earthlings start with an initial repertoire of 

categories acquired by sensorimotor Toil (supplemented by some inborn ones); these 

categories are grounded by the internal mechanism that learns to detect their distinguishing 

features from their sensorimotor projections. These grounded categories are then assigned an 

arbitrary symbolic name (lately a vocal one, but long ago a gestural one, his database tells him 

[Steklis & Harnad, 1976]). This name resembles neither the members of the category, nor their 

features, nor is it part of any instrumental action that one might perform on the members of the 

category. It is an arbitrary symbol, of a kind with which our Martian theorist is already quite 

familiar with, from his knowledge of the eternal Platonic truths of logic and mathematics, valid 

everywhere in the Universe, which can all be encoded in formal symbolic notation (Harnad, 

1990). 

 

When our Martian analyses more closely the brief vocal interactions that always seem to 

mediate Theft, he finds that they can always be construed in the form of a proposition that has 

been heard by the thief. A proposition is just a series of symbols that can be interpreted as 

making a claim that can be either true or false. The Martian knows that propositions can 

always be interpreted as statements about category membership. He quickly deduces that 

propositions make it possible to acquire new categories in the form of recombinations of old 

ones, as long as all the symbols for the old categories are already grounded in Toil (individual 

or evolutionary). He accordingly conjectures that the adaptive advantage of language is 

specifically the advantage of Symbolic Theft over Sensorimotor Toil, a victimless crime that 

allows knowledge to be acquired without the risks or costs of direct trial and error experience. 
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Can the adaptive advantage of Symbolic Theft over Sensorimotor Toil be demonstrated 

without the benefit of the Martian Anthropologist's evolutionary database (in which he can 

review at leisure the videotape of the real-time origins of language)? We will try to 

demonstrate them in a computer simulated toy world considerably more impoverished than the 

one studied by the Martian. It will be a world consisting of mushrooms and mushroom foragers 

who must learn what to do with which kind of mushroom in order to survive and reproduce 

(Parisi, Cecconi & Nolfi, 1990; Cangelosi & Parisi, 1998). This artificial-life approach to 

modeling language evolution has itself evolved appreciably in the last decade (Cangelosi & 

Parisi, 2002; Kirby, 2000; Steels, 1997;) and is based on languages whose terms are grounded 

in the objects in the simulated world (Steels, 2002; Cangelosi, 2001; Steels & Kaplan, 1999). 

 

Before we describe the simulation we must introduce some theoretical considerations that are 

too fallible to be attributed to our Martian theorist: One concerns a fundamental limitation on 

the acquisition of categories by Symbolic Theft (the symbol grounding problem) and the other 

concerns the mechanism underlying the acquisition of categories by Sensorimotor Toil 

(categorical perception). 

 

1.1.  The Symbol Grounding Problem 

Just as the values of the tokens in a currency system cannot be based on still further tokens of 

currency in the system, on pain of infinite regress -- needing instead to be grounded in 

something like a gold standard or some other material resource that has face-value -- so the 

meanings of the tokens in a symbol system cannot be based on just further symbol-tokens in 

the system. This is called the symbol grounding problem (Harnad, 1990). Our candidate for the 

face-valid groundwork of meaning is perceptual categories. The meanings of symbols can 

always be cashed into further symbols, but ultimately they must be cashed into something in 

the world that the symbols denote. Whatever it is inside a symbol system that allows it to pick 

out the things its symbols are about, on the basis of sensorimotor interactions with them 

(Harnad, 1992; 1995), will ground those symbols; those grounded symbols can then be 

combined and recombined in higher-level symbolic transactions that inherit the meanings of the 

ground-level symbols. A simple example is "zebra," a higher-level symbol that can inherit its 

meaning from the symbols "striped" and "horse," provided "striped" and "horse" are either 
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ground-level symbols, or grounded recursively in ground-level symbols by this same means 

(Harnad 1996a; Cangelosi, Greco & Harnad, 2001). 

 

The key to this hierarchical system of inheritance is the fact that most if not all symbolic 

expressions can be construed as propositions about set (i.e., category) membership. Our 

Martian had immediately intuited this: The simplest proposition "P," which merely asserts that 

the truth-value of P is true, is asserting that P belongs to the set of true propositions and not 

the set of false propositions. In the classical syllogism: "All men are Mortal. Socrates is a Man. 

Therefore Socrates is Mortal," it is again transparent that these are all propositions about 

category membership. It requires only a little more reflection to construe all the sentences in 

this paragraph in the same way, and even to redraw them as Venn Diagrams depicting set 

membership and set inclusion. Perceptual categories are the gold standard for this network of 

abstractions that leads, bottom-up, from "horse," "striped" and "zebra" all the way to 

"goodness," "truth" and "beauty."  

 

1.2. Categorical Perception 

Can perceptual categories bear the weight of grounding an entire symbolic edifice of 

abstraction? Some parts of the world that our senses must categorize and tag with a symbolic 

name do obligingly sort themselves into disjunct, discrete categories that admit of no overlap 

or confusion, so our senses can duly detect and distinguish them. For these happy categories it 

does look as if the perceptual groundwork can bear the burden. But in those parts of the world 

where there is anything approaching the "blooming, buzzing confusion" that William James 

wrote about, the world alone, and passive senses (or even active, moving, Gibsonian ones; 

Gibson, 1979) are not enough. Here even an active sensorimotor system needs help in 

detecting the invariants in the sensorimotor interaction with the world that afford the ability to 

sort the subtler, more confusable things into their proper categories. Neural networks are 

natural candidates for the mechanism that can learn to detect the invariants in the sensorimotor 

flux that will eventually allow things to be sorted correctly (Harnad, 1992; 1993). This is the 

process we have agreed to call Toil. 

 

A sensorimotor system with human-scale category learning capacities must be a plastic 

(modifiable) one: Inside the system, the internal representations of categories must be able to 
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change in such a way as to sort themselves, reliably and correctly. It is perhaps an 

oversimplification to think of these internal representations as being embedded in a great, 

multidimensional similarity space, in which things position themselves in terms of their 

distances from one another, but this simplification is behind the many regularities that have 

been revealed by the psychophysical method of multidimensional scaling (Livingston & 

Andrews, 1995) which has been applied to category learning and representation in human 

subjects (Andrews, Livingston & Harnad, 1998). What has been found is that during the 

course of category learning by what we have called sensorimotor Toil, the structure of internal 

similarity space changes in such a way as to compress the perceived differences between 

members of the same category and expand the differences between members of different 

categories, with the effect of separating categories in similarity space that were highly 

interconfusable prior to the Toil (Andrews, Livingston & Harnad, 1998; Goldstone, 1994; 

Pevtzow & Harnad, 1997). This compression/separation in turn allows an all-or-none 

(categorical) boundary to be placed between the regions of similarity space occupied by 

members of different categories, thereby allowing them to be assigned distinct symbolic names. 

 

These compression/separation effect has come to be called categorical perception (CP) 

(Harnad 1987) and has been observed with both inborn categories and learnt ones, in human 

subjects (Goldstone, 1994; Pevtzow & Harnad, 1997) as well as in animals and in neural nets 

(Cangelosi, Greco & Harnad, 2001; Harnad, Hanson & Lubin 1991; 1995; Nakisa & Plunkett, 

1998; Tijsseling & Harnad, 1997). The neural nets offer the advantage that they give us an idea 

of what the functional role of CP might be, and what they suggest is that CP occurs in the 

service of categorization. It can be seen, for example, as changes in the receptive fields of 

hidden units in the supervised backpropagation nets that will be used in this study. What will be 

analyzed for the first time here is how the CP "warping" of similarity space that occurs when 

categories are acquired by sensorimotor Toil is transferred and further warped when categories 

are acquired by Theft. Categorical perception induced by language can thus be seen as an 

instance of the Whorfian Hypothesis (Whorf 1964), according to which our language 

influences the way the world looks to us.  

 

 

2. The M ushroom World 
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Our simulations take place in a mushroom world (Cangelosi & Parisi, 1998; Harnad, 1987) in 

which little virtual organisms forage among the mushrooms, learning what to do with them 

(eat or don't eat, mark or don't mark, return or don't return). The foragers feed, reproduce and 

die. They must learn that mushrooms with feature A (i.e. those with black spots on their tops, 

as illustrated in Figure 1) are to be eaten; mushrooms with feature B (i.e. a dark stalk) are to 

have their location marked, and mushrooms with both features A and B (i.e. both black-

spotted top and dark stalk) are to be eaten, marked and returned to. All mushrooms also have 

three irrelevant features, C, D and E, which the foragers must learn to ignore. 

 

Apart from being able to move around in the environment and to learn to categorize the 

mushrooms they encounter, the foragers also have the ability to vocalize. When they approach 

a mushroom, they (innately) emit a call associated with what they are about to do to that 

mushroom (EAT, MARK). The correct action pattern (eat, mark), coupled (innately) with the 

correct call (EAT, MARK) are learned during the foragers' lifetime through supervised 

learning (Sensorimotor Toil). Under some conditions, the foragers also receive as input, over 

and above the features of the mushroom itself (+/-A, +/-B, +/-C, +/-D, +/-E), the call of 

another forager. This will be used to test the adaptive role of the Theft strategy. Note, 

however, that in the present simulations the thief steals only the knowledge, not the mushroom 

(cf. note 1 for simulations on environments with shared resources).  

 

The foragers' world is a 2-dimensional (2D) grid of 400 cells (20x20). The environment 

contains 40 randomly located mushrooms, 10 per category. Mushrooms are grouped in four 

categories according to the presence/absence of features A and B: 00, A0, 0B, and AB (Figure 

1). In each world there are 40 mushrooms: 10 instances of each of the four categories. Our 

ecological interpretation of the marking behavior is that it has two functions: Both the inedible 

0B and the edible AB mushrooms have a toxin that is painful when inhaled, but digging into 

the earth (marking) immediately after exposure blocks all negative effects. There is also a 

delayed contingency on the AB mushrooms only, which is that wherever they appear, many 

more mushrooms of the same kind will soon grow in their place. So with AB mushrooms it is 

adaptive to remember to return to the marked spots. 
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Figure 1: 2D world with one forager and the four samples of mushrooms. Mushroom 

feature A is the presence of black dots on the top; feature B is a dark stalk. Mushroom 

position corresponds to the normalized relative angle between forager's orientation and 

the closest mushroom. 

 

Feature A is the black-spotted top and feature B is the dark stalk. Mushroom position is 

encoded as the normalized relative angle between the direction the forager is facing and the 

direction of the closest mushroom. In this simulation, the foraging is done by only one forager 

at a time. As it moves, the forager perceives only the closest mushroom. For each mushroom, 

the input to the forager consists of the 5 +/- features plus its location relative to the forager, 

expressed as the angle α, between its position and the direction the forager is facing. The angle 

is then normalized to the interval [0, 1]. The five visual features A, B, C, D, E are encoded in a 

binary localist representation consisting of five units each of which encodes the 

presence/absence of one feature. An A0 mushroom would be encoded as 10*** , with 1 

standing for the presence of feature A, 0 for the absence of feature B and ***  being either 0 or 

1 for the 3 irrelevant features, C, D, and E. 0B mushrooms are encoded as 01*** , and AB as 

11*** . The calls that can be produced in the presence of the mushroom are also encoded in a 

localist binary system. There are 3 units for each of the three calls: 1**  EAT, *1*  MARK and 

**1 RETURN, so EAT+MARK+RETURN would be 111. Like the Calls, the three actions of 

eating, marking and returning are encoded with localist units. 
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3. The Neural Network and Genetic Algorithm 

 

The forager's neural network processes the sensory information about the closest mushroom 

and activates the output units corresponding to the movement, action and call patterns. The net 

has a feedforward architecture (Figure 2) with 8 input, 5 hidden and 8 output units. The first 

input unit encodes the angle to the closest mushroom. Five input units encode the visual 

features and three input units encode incoming calls (if any). Two output units encode the four 

possible movements (one step forward, turn 90 degrees right, turn 90 degrees left, or stay in 

place) in binary. Three action units encode the action patterns eat, mark, and return, and three 

call units encode the corresponding three calls, EAT, MARK, and RETURN. 

 

 

 

Figure 2 - Neural network architecture. 

 

A forager's lifetime lasts for 2000 actions (100 actions in 20 epochs). Each epoch consists of 

sampling a different distribution of 40 mushrooms. Each action consists of two spreads of 

activation in the neural network, one for the action (movement and action/call) and one for an 

imitation task. The forager first produces a movement and an action/call output using the input 

information from the physical features of the mushroom. The forager's neural network then 

undergoes a cycle of learning based on the backpropagation algorithm (Rumelhart, Hinton & 

Williams, 1986). 
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The net's action and call outputs are compared with what they should have been; this difference 

is then backpropagated so as to weaken incorrect connections and strengthen correct ones. In 

this way the forager learns to categorize the mushrooms by performing the correct action and 

call. In the second spread of activation the forager also learns to imitate the call. It receives as 

input only the correct call for that kind of mushroom, which it must imitate in its call output 

units. This learning is likewise supervised by backpropagation. 

 

The population of foragers is also subject to selection and reproduction as generated by the 

genetic algorithm (Goldberg, 1989). The population size is 100 foragers and remains constant 

across generations. The initial population consists of 100 neural nets with a random weight 

matrix. During the forager's lifetime its individual fitness is computed according to a formula 

that assigns points for each time a forager reaches a mushroom and performs the right action 

on it (eat/mark/return) according to features A and B. At the beginning of its life, a forager 

does not become much fitter from the first mushrooms it encounters because it takes some 

time to learn to categorize them correctly. As errors decrease, the forager's fitness increases. 

At the end of their life-cycles, the 20 foragers with the highest fitness in each generation are 

selected and allowed to reproduce by engendering 5 offspring each. The new population of 

100 (20x5) newborns is subject to random mutation of their initial connection weights for the 

motor behavior, as well as for the actions and calls (thick arrows in Figure 2); in other words, 

there is neither any Lamarckian inheritance of learned weights nor any Baldwinian evolution of 

initial weights to set them closer to the final stage of the learning of 00, A0, 0B and AB 

categories. This selection cycle is repeated until the final generation. 

 

4. Grounding Eat and Mark Directly Through Toil 

 

Two experimental conditions were compared: Toil and Theft. Foragers live for two life-stages 

of 2000 actions each. The first life-stage is identical for both populations: they all learn, 

through sensorimotor Toil, to eat mushrooms with feature A and to mark mushrooms with 

feature B. (AB mushrooms are accordingly both eaten and marked.) Return is not taught 

during the first life-stage. The input is always the mushroom's position and features, as shown 

in Table 1. In the second life-stage, foragers in the Toil condition go on to learn to return to 
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AB mushrooms in the same way they had learned to eat and mark them through honest toil: 

trial and error supervised by the consequences of returning or not returning (Catania & Harnad 

1988). In contrast, foragers in the Theft condition learn to return on the basis of hearing the 

vocalization of the mushrooms' names. 

 

 

Table 1 - Input and backpropagation for Toil and Theft learning and for imitation learning 

 
Condition 

Feature  
Input 

Call 
Input 

Behavior 
Backprop 

Call 
Backprop 

TOIL EAT-MARK YES NO YES YES 

TOIL RETURN YES NO YES YES 

THEFT RETURN NO YES YES YES 

IMITATION NO YES NO YES 

 

 

We ran ten replications for each of the two conditions. In the first 200 generations, the 

foragers only live for the first life-stage. From generation 200 to generation 210 they live on 

for a second life-stage and must learn the return behavior. The first 200 generations are 

necessary to evolve and stabilize the ability to explore the world and to approach mushrooms. 

After the foragers are able to move in the 2D environment and to approach mushrooms, they 

learn the basic categories plus their names, EAT and MARK. The average fitness of the ten 

replications is shown in Figure 3. The populations that evolve in these 10 runs are the same 

ones that are then used in the Toil and Theft conditions from generations 200 to 210. 
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Figure 3 - Average fitness of the best 20 individuals in ten replications. Foragers lived 

one life-stage and only eating and marking was taught. 

 

 

 

In the next runs, the second life-stage differs for the Toil and Theft groups: The Toil group 

learns to return and to vocalize RETURN on the basis of the feature input alone, as in the 

previous life-stage. Their input and supervision conditions are shown in Table 1. In the Theft 

condition the foragers rely on other foragers' calls to learn to return. They do not receive the 

feature input, only the vocalization input. 

 

Our hypothesis is that the Theft strategy is more adaptive (i.e. results in greater fitness and 

more mushroom collection) than the Toil strategy. To test this, we compare foragers' behavior 

for the two conditions statistically. For our purposes we count the number of AB mushrooms 

that are correctly returned to. The average of the best 20 foragers in all 10 replications is 54.7 

AB mushrooms for Theft and 44.1 for Toil. That is, Thieves successfully return to more AB 

mushrooms than do Toilers. This means that learning to return from the grounded names EAT 

and MARK is more adaptive than learning it through direct toil based on sampling the physical 

features of the mushrooms. To compare the two conditions, we performed a repeated 

measures analysis of variance (MANOVA) on the 10 seeds. The dependent variables were the 

number of AB mushrooms collected at generation 210 averaged over the 20 fittest individuals 

in all 10 generations. The independent variable was Theft vs. Toil. The difference between the 
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two conditions was significant [F(1,9)=136.7 p<0.0001]. Means and standard deviations are 

shown in Figure 4. 
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Figure 4 - Mean number of AB mushrooms correctly returned to in Toil and Theft 

simulations 

 

5. Theft vs Toil: Simulating Direct Competition 

 

A direct way to study the adaptive advantage of Theft over Toil is to see how they fare in 

competition against one another. We ran 10 competitive simulations, using the genotypes of 

generation 200 from the previous 10 runs. From generation 201 to 220, the 100 foragers of 

each population are randomly divided into 50 Thieves and 50 Toilers for the learning to return. 

There is no real on-line competition in our simulations because in each run, only one individual 

is tested in its world. The number of AB mushrooms to which a forager is able to return will 

strongly affect its fitness. Direct competition occurs only at the end of the life cycle, in the 

selection of the fittest 20 to reproduce. Direct competition for variable mushroom resources in 

shared environments has been studied separately in other simulations (note 1); in the present 

ecology, the assumption is that mushrooms are abundant and that the only fitness challenge is 

to emerge among the top 20 eaters/markers of the generation. Figure 5 shows the proportion 

of Thieves in the overall population of the 10 replications of Theft vs Toil (from generation 
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200 to 220). Even though Thieves are only 50% of the population at generation 201, they 

gradually come to outnumber Toilers, so that in less than 10 generations the whole population 

consists of Thieves. 
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Figure 5 - Percentage of Thieves in the 10 competitive simulations. 

 

 

6. What Changes During Learning? Analysis of Internal Representations 

 

In this section we compare the changes in the foragers' hidden-unit representations for the 

mushrooms to determine what it is that changes internally during Toil and Theft. The 

activations of the 5 hidden units are recorded during a test cycle in which the forager is 

exposed to all the mushrooms as input. We will report the analysis of a single case study using 

the network of the fittest individual in seed 8. These results are representative of the learning 

dynamics in all nets that successfully learned to categorize mushrooms. 

 

We first used Principal Components Analysis (PCA) to display the network's internal states in 

two dimensions, thereby reducing the 5 activations to 2 factor scores. PCA, however, has the 

limitation that the different conditions cannot be compared directly because of differences in 
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scale. For each PCA, factor scores are normalized to a distribution with a mean of 0 and a 

standard deviation of 1. Hence this analysis can only be used to compare internal 

representations within each condition, not between conditions. 
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Figure 6 - Similarity space for network with random weights. Factors are obtained after 

PCA on the activation values of the five hidden units. 
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Figure 7 - Similarity space for network that learned to eat, mark, and return by Toil. 
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Figure 6 and 7 show the effect of category learning (Toil) on the distances between the internal 

representations of the mushrooms in hidden unit similarity space. In Figure 6, prior to Toil, the 

four kinds of mushroom are not clearly distinguishable. During the course of learning the 

actions/calls eat-mark-return, the representations form four separable clusters. We will now 

show how these representations can be used to analyze the effects of Toil and Theft learning 

on similarity space directly. 

 

7. Categorical Perception Effects 

 

The change in our networks' hidden-unit representations during the course of category learning 

can be analyzed and understood in terms of learned categorical perception (CP) effects 

(Harnad 1987, Goldstone 1994; Andrews et al., 1998), i.e. the compression of within-category 

distances and the expansion of between-category distances. CP has already been demonstrated 

to occur with Toil learning (Harnad et al., 1991; 1995; Goldstone et al., 1996; Csato et al., 

submitted); we will now extend this to an examination of what happens to the internal 

representations with Theft learning. 

 

To overcome the limitations of the previous principal component analysis, we record the 

Euclidean distances between and within categories using the coordinates of the five hidden unit 

activations directly. At the end of each simulation, the 5 fittest foragers in each population are 

tested by giving them 40-mushroom samples as input. The hidden unit activations for each kind 

of mushroom are saved for three input conditions: (1) Features-only (only the 5-bit feature 

input); (2) Calls-only (only the 3-bit call input) and (3) Features+Calls (both types of input). 

The within-category distances are calculated as the mean squared Euclidean distances between 

each individual mushroom's coordinates and its category mean. There are four means, one for 

00, A0, 0B, and AB respectively. These parameters reflect the within-category similarity 

amongst the members of each category: the lower the average within-category distance for a 

category, the more similar the hidden-unit representations of its members. Between-category 

distances are calculated as the distances between the category means. These reflect the 

dissimilarity between the members of different categories: the higher the average between-
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category distance for a pair of categories, the greater the difference between the hidden-unit 

representations of their respective members. 

 

Four learning conditions are used to analyze within-category and between-category distances 

for CP effects: (1) Pre-learning, for random-weight nets before learning; (2) No-return, for 

nets that were only taught to eat and to call EAT, and to mark and to call MARK, (3) Toil, for 

nets that also learned to return and to call RETURN with feature input, (4) and Theft for 

learning to return from calls alone. In every replication one mean was obtained for each of the 

10 between- and within-category distances (4 within measures for each category, plus 6 

between measures for all the possible pairings of the 4 categories) by averaging the distances 

derived from the 5 fittest foragers. These 10 mean distances were collected for each of the 

three input conditions. Because we have 10 replications, the 10 means for each distance can be 

used as dependent variables in two separate analyses of variance, one for within-category, the 

other for between-category distances. Our MANOVA for the within-category distances had 

two independent variables: LEARNING CONDITIONS with 3 levels (Pre, No, Toil) and 

CATEGORY TYPE with 4 levels (Eat, Mark, Return, Do-nothing) (note 2). 

 

We used a repeated measure MANOVA because all levels of CATEGORY TYPE and 

LEARNING CONDITIONS involve repeated measures in the same set of nets. (We excluded 

the Theft condition in which the within-category distance is 0 because all ten samples of 

mushrooms use the same call input.) The chart of the average within-category distances in the 

4x3 conditions is shown in Figure 8. 
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Figure 8 - Average within-category distances in the three conditions. The curve for Mark 

is not shown because it coincides with the curve for Eat. 

 

 

The two main effects are statistically significant ( F(2,18)=917.6 and p<0.00001 for 

LEARNING and F(3,27)=18.8 and p<0.00001 for CATEGORY TYPE); the interaction is not 

significant. Using the post-hoc Duncan test with a significance threshold of p<.01 to compare 

the means for each independent variable, all the comparisons in the LEARNING condition 

were significant. That is, within-category distances decrease significantly from Pre-learning to 

No-return to Toil. The biggest decrease is between the (random) Pre-learning and all the post-

learning nets (Figure 8). In the four levels of CATEGORY TYPE, all means differ from each 

other except the Eat and Mark within-distances. That is, the within-category distance for Eat 

and Mark is the same, whereas the within distance of Do-nothing is the biggest and that of 

Return the smallest.  

 

MANOVA for the between-category distances had two repeated variables: LEARNING 

CONDITIONS with 4 levels (Pre, No, Toil, Theft) and CATEGORY COMPARISONS with 4 

levels (Eat Versus Mark, Eat vs Return, Eat vs Do-nothing, Return vs Do-nothing). The Mark 

vs Return and Mark vs Do-nothing comparisons are not included in the analysis because their 

means are very similar to the parallel comparisons Eat vs Return and Eat vs Do-nothing, 

respectively (Table 2). We then go on to generalize the results for the Eat vs Mark 
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comparisons. The between-category distances for the 4x4 repeated measure design are shown 

in Table 2 and Figure 9. 

 

Table 2 - Table of means for the MANOVA of within-category distances 

COMPARISON PRE NO-RET TOIL THEFT 

EAT ↔↔↔↔ MARK .57 1.47 1.47 1.42 

RETURN ↔↔↔↔ EAT .42 1.01 1.10 1.25 

RETURN ↔↔↔↔ MARK .39 1.01 1.12 1.25 

EAT ↔↔↔↔ Do-nothing .42 1.04 1.02 .93 

MARK ↔↔↔↔ Do-nothing .45 1.04 1.02 .95 

RETURN ↔↔↔↔ Do-nothing .54 1.42 1.52 1.61 
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Figure 9 - Between-category distances in the four conditions. Return vs Mark and Mark 

vs Do-nothing are not shown because they are congruent with Return vs Eat and Eat vs 

Do-nothing respectively. 

 

 

The two main effects are significant ( F(3,27)=3771.6 and p<0.00001 for LEARNING and 

F(3,27)=868.6 and p<0.00001 for COMPARISONS) as is their interaction (F(9,81)=75.7 and 
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p<.00001). Duncan tests revealed, first, a significant difference in the distance between the 

Pre-learning nets and all the post-learning nets. (This expected effect only shows that any kind 

of systematic learning will increase between-category distances compared to random initial 

distances.) Comparing Toil vs Theft specifically, we see that all distances between Return and 

the other three categories are greater in the Theft nets. Learning Return by Theft has the effect 

of separating this category more from the others. The mean differences were all significant for 

Return vs Eat, Return vs Mark, and Return vs Do-nothing, 1.25, 1.25 and 1.25, respectively, 

in the Theft nets, and 1.10, 1.12, and 1.52 in the Toil nets. The Theft learning of Return caused 

the between-category distances not involving Return to decrease. [A last effect is that in all 

learning conditions the Eat vs Mark and Return vs Do-nothing distances are greater then the 

other pairs because the Hamming distances of their I/O codes are maximal (e.g. features A and 

B for Eat Vs Mark have the input contrast: 10 Vs 01).] 

 

Figure 10 shows the change in the distances between the internal representations of the A (Eat 

only), B (Mark only), A&B (Eat & Mark & Return), and not-A&not-B (neither Mark nor Eat 

nor Return) Mushrooms. Prior to Toil, the circles, proportional to the within-category 

distances, are large, and the rectangle, proportional to the between-category distances is small. 

After Toil learning, the within-category differences shrink and the between-category distances 

expand. 

 

Figure 11 then traces the between-category expansion to Theft Learning: The thin dashed 

rectangle is proportional to the between-category distances before learning (random). The 

thick dashed line is what they look like after Toil learning of Eat and Mark without Return; the 

thin continuous line is identical to Figure 9, that is, Toil learning of Eat and Mark, with Return, 

and the thick continuous line is for Theft learning of Return. Note the increased separation 

between A&B and not-A&not-B induced by Theft alone. 
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Figure 10 - 2D projections of between-category distances (quadrilateral sides) and within-

category distances (circle radius) in the Pre-learning condition and after Toil learning of 

Eat, Mark,and Return. All distances except Eat vs Mark correspond to the actual 

Euclidean distances in 5 dimensional hidden unit space. 
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Figure 11 - 2D projections of the between-category distances (quadrilateral sides) in the 

four conditions. All distances, except Eat vs Mark, are comparable and reflect the actual 

Euclidean distances between categories (cf. length legend). Note that the distances 

between Return and all the other categories (Return vs Eat, Return vs Mark, Return vs 

Do-nothing) are the highest in the Theft condition. 

 

 

8. Conclusions 

 

We have shown that a strategy of acquiring new categories by Symbolic Theft completely 

outperforms a strategy of acquiring them by Sensorimotor Toil as long as it is grounded in 

categories acquired by Toil. The internal mechanism that makes both kinds of category 
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acquisition possible does so by deforming or “warping”  internal similarity space so as to 

compress the internal representation of members of the same category and to separate those of 

different categories. The warping occurs primarily in the service of Toil, but Theft not only 

inherits the warped similarity space but can warp it further. This warping of similarity space in 

the service of sensorimotor and symbolic learning is called categorical perception and can be 

interpreted as a form of Whorfian effect (Whorf, 1964) in which language influences how the 

world looks to us. 

 

From the standpoint of our Martian anthropologist, the influence would run roughly like this:  

All other species on this planet get their categories by toil alone, either cumulative, 

evolutionary toil or individual lifetime toil: Individuals encounter things, must learn by trial and 

error what to do with what, and to do so, they must form internal representations that reliably 

sort things into their proper categories. In the process of doing so, they keep learning to see 

the world differently, detecting the invariants, compressing the similarities and enhancing the 

differences that allow them to sort things the way they need to be sorted, guided by feedback 

from the consequences of sorting adaptively and maladaptively (as in the mushroom world). 

 

That’s how it proceeded on our planet until one species discovered a better way: First acquire 

an entry-level set of categories the honest way, like everyone else, but then assign them 

arbitrary names. (Those names could start as nonarbitrary functional or imitative gestures at 

first, by-products of practical, collective social actions or even deliberate mimicry, but their 

nonarbitrary features would be irrelevant once they were used just to name; and vocal gestures 

would be least encumbered with other practical tasks, hence most readily available for arbitrary 

naming, especially across distances, out of eye-shot, and in the dark.) Once the entry-level 

categories had accompanying names, the whole world of combinatory possibilities opened up 

and a lively trade in new categories could begin (probably more in the spirit of barter than 

theft, and, within a kin-line, one of sharing categories along with other goods). In trading 

categories as they traded combinations of symbols, our species also traded “world-views,”  for 

each category acquired by hearsay also brought with it some rearrangement of the internal 

representation of categories, a “warping”  that was Whorfian, whether merely the subtle 

compression that results from learning that A is always conjoined with B, or the fundamental 

restructuring dictated by a radical scientific discovery. 
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Only our Martian knows the specific initial conditions in which the generative power of names 

and their boolean combinations made themselves felt biologically on our planet, but perhaps 

our simulations suggest how its benefits might have mushroomed, inducing a series of 

Baldwinian adaptations inclining ever our successful ancestors to name categories and to string 

names together so as to describe new categories to one another with ever more fervor and 

commitment. 

 

Can results from a 3-bit toy world really cast light on the rich and complex phenomenon of the 

origin and adaptive value of natural language? This is really a question about whether such 

findings will “scale up”  to human size in the real world. This scaling problem -- common to 

most fields of cognitive modeling where the tasks themselves tend not to be lifesize or to have 

face validity -- can only be solved by actually trying to scale our models upward, incorporating 

more and more of the real-world complexity and constraints into them. This is how our own 

research program will continue. In this paper, however, we wanted to enter our own toy 

candidate into the competition with the other toy models (tool-make, hunt-help, chit-chat, etc.; 

Knight et al., 2000) for the provenance of our species’  most powerful and remarkable trait. In 

other work, we have investigated categorical perception with continuous stimuli (Tijsseling & 

Harnad, 1997), the transfer of grounding to higher-order categories (Cangelosi, Greco & 

Harnad, 2001) and the emergence of syntax and compositional languages (e.g. Cangelosi, 

2001). 
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Notes 

 

(1) In simulations conducted by Emma Smith and Gianni Valenti (unpublished data, BSc 

Theses, Department of Psychology, University of Southampton, 1997) we have shown that 

when the scarcity of the mushrooms is varied, Theft beats Toil when there are plenty of 

mushrooms for everyone, but when the mushrooms are scarce and vocalizing risks losing 

the mushroom to the Thief, Toil beats Theft and the foragers are mute. Further studies 

analyzing kinship showed that under conditions of scarcity vocalizing to relatives only 

beats vocalizing to everyone. Of course a mushroom world is too simple, and foraging 

categories are not the only ones that can benefit from Theft. The pattern may be different 

for categories related to danger, territory, mating, dominance, or instructing offspring. 

(2) We will use the names Eat, Mark, Return, and Do-nothing (i.e. non-A, non-B mushrooms) 

to refer to the four categories. Return categories could also be called Eat+Mark+Return 

because the Return category implies the co-occurrence of behaviors/calls Eat and Mark 


