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Abstract

The Convergence-Zone model shows how sparse, random memory patterns can lead

to one-shot storage and high capacity in the hippocampal component of the episodic

memory system. This paper presents a biologically more realistic version of the

model, with continuously-weighted connections and storage through Hebbian learn-
ing and normalization. In contrast to the gradual weight adaptation in many neural

network models, episodic memory turns out to require high learning rates. Nor-

malization allows earlier patterns to be overwritten, introducing time-dependent

forgetting similar to the hippocampus.
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1 Introduction

Several recent results suggest that the episodic memory system consists of two
components: the hippocampal formation serves as a fast, temporary storage
where the traces are created immediately as the experiences come in, and the
neocortex organizes and stores the experiences for the lifetime of the individual
(1; 3; 4; 7). The hippocampal component of this system has been studied in
detail for a long time, and although much is known about its anatomy and
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Fig. 1. The Convergence-Zone model of hippocampal episodic memory.

The perceptual input pattern is stored in the bidirectional weights between the
feature map units and the binding units. During retrieval, a partial input pattern

will reactivate the binding pattern, which in turn reactivates the complete input

pattern.

function, how exactly it manages to accurately store a large number of memory
traces for several days is still not well understood.

Computational modeling can serve as an important tool in formulating and
testing hypotheses about the hippocampal memory system. For example, the
Convergence-Zone model (6, Figure 1) shows why the memory encoding ar-
eas can be much smaller than the perceptual maps, why they could consist
of rather coarse computational units, and be only sparsely connected to the
perceptual maps. In this model, an input to be stored is presented as a pattern
of activation across a set of feature maps, representing high-level abstractions
of sensory information. The memory is stored as a sparse, random pattern
of activation in a binding layer, which is a convergence zone (2) representing
the hippocampus. At each presentation, the connections between the active
units in the feature maps and in the binding layer are turned on. When an
incomplete pattern is presented on the feature maps, the binding layer pattern
is activated, which in turn activates the complete pattern in the feature maps.

The Convergence-Zone model can answer several questions about the prop-
erties of sparse, random representations in the hippocampus, but it is an
abstract, high-level model. The connections between the feature map and the
binding layer of the convergence zone memory are represented as binary val-
ues, and learning occurs by switching a given set of connections from inactive
to active. This paper focuses on a biologically more realistic implementation
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Fig. 2. Capacity with di�erent learning rates. The probability of correct re-

trieval is shown as a function of total number of patterns stored. The plots are
averages of 8 runs on a model consisting of 4 feature maps, each with 4000 units,

and a binding layer of 200 units with binding patterns of 20 units. Higher learning

rates result in better capacity.

of the model, with continuously-weighted connections and Hebbian weight
adjustments. The model shows that episodic memory requires high learning
rates, and that normalization can account for the temporary nature of the
encoding of memories in the hippocampus.

2 Hebbian learning and one-shot learning

In the �rst experiment, at each presentation the connections between the
active feature map units and the binding layer units were increased according
to a given learning rate. The weights were initially 0, and were limited to [0,
1]. Whereas in the old version of the model the weights were turned from 0 to
1 in one shot, the idea was to check whether maximal retrieval accuracy, and
thus largest capacity, could be achieved by using an intermediate learning rate
between 0 and 1, and therefore intermediate weight values. Such a learning
rate would allow �ne tuning of the connection weights, and the model could
then make subtle distinctions between various patterns stored in memory.
To examine this factor we varied the learning rate for a given architecture
(Figure 2).

All learning rates showed the same general trend: there was initially a high
level of retrieval accuracy followed by a sharp decline as more patterns were
stored. However, interestingly the drop o� point was higher for higher rates,
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i.e. the learning rates near 1.0 resulted in the highest capacity. Apparently the
one-shot nature of episodic memory requires di�erent kind of learning than
is usually required of neural network models. It is not necessary to represent
similarities between inputs; instead, it is necessary to store the patterns exactly
as they are, and it is best done with maximal changes.

3 Normalization and forgetting

To prevent the weights from increasing without bounds, Hebbian learning is
usually combined with normalization (instead of posing hard limits on the
weight values). Normalization is biologically realistic due to limited resources
of the neuron and decay of unused connections (5; 8), but it also results in an
important e�ect in the episodic memory model: it introduces time-dependent
forgetting. Without normalization, traces are sometimes lost because their rep-
resentations overlap, but each trace is equally likely to be preserved or lost: it
does not matter when they were stored. With normalization, the earlier traces
gradually become more di�cult to retrieve. This way the memory retains each
trace for only a limited amount of time, as is the case in the hippocampus.

There are several ways of implementing normalization:

(1) The sum of output weights of feature map neurons can be kept constant
(2) All output weights of the active feature map units can be decayed by a

constant factor
(3) The sum of input weights of the binding units can be kept constant
(4) The input weights of the active binding units can be decayed
(5) All weights in the system can be decayed at each time step. All these

methods were implemented and tested, however, they resulted in very
similar behavior.

Figure 3 shows the forgetting pro�les for the �rst type of normalization. Time
is in the x-axis, and the number of patterns stored is shown in the y-axis. The
z-value shows how likely it is that the pattern stored at a particular time in
the past will be retrieved after a given number of patterns have been stored.
As can be seen from the graph, there is a limited time window during which
the old patterns can be recalled, and a gradual drop o� after that, much like
in the hippocampus. Smaller learning rates generally make the drop o� more
gradual.

In the model so far, the weights have been bidirectional, representing the
strength of association between a feature map unit and a binding unit. With
normalization, it is possible that the weights in the two directions become dif-
ferent. Such a unidirectional model was also tested; the forward propagating
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Fig. 3. Forgetting based on normalization. The same model was used as in

Figure 2, with a learning rate of 1.0. Normalization was performed on the binding
units, as in (3) above. The probability of correct retrieval is plotted as a function of

the total number of patterns stored, and the time of storage. There is a temporal

window when a pattern can be retrieved, and a sharp decline after that.

weights were normalized per active feature map unit, and the reverse weights
were normalized per active binding layer unit. The results were quite similar
to the bidirectional model, suggesting that bidirectionality is a valid approxi-
mation.

4 Conclusion

A biologically more realistic version of the convergence zone model of hip-
pocampal episodic memory was presented. The e�ects of continually-weighted
connections and Hebbian weight adaptation was tested, to better model the
gradual increases and decreases of strengths possible with neural connections.
The simulations show that the one-shot nature of episodic memory requires
large learning rates, in contrast to standard neural network models. In ad-
dition, weight normalization allows earlier patterns to be overwritten, estab-
lishing a mechanism for temporary storage, similar to the function of the
hippocampus.
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