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ABSTRACT

This paper addresses the problem of classifying observa-
tions when features are context-sensitive, especially when
the testing set involves a context that is different from the
training set. The paper begins with a precise definition of
the problem, then general strategies are presented for
enhancing the performance of classification algorithms on
this type of problem. These strategies are tested on three
domains. The first domain is the diagnosis of gas turbine
engines. The problem is to diagnose a faulty engine in one
context, such as warm weather, when the fault has previ-
ously been seen only in another context, such as cold
weather. The second domain is speech recognition. The
context is given by the identity of the speaker. The
problem is to recognize words spoken by a new speaker,
not represented in the training set. The third domain is
medical prognosis. The problem is to predict whether a
patient with hepatitis will live or die. The context is the
age of the patient. For all three domains, exploiting
context results in substantially more accurate classifica-
tion.

INTRODUCTION

A large body of research in machine learning is
concerned with algorithms for classifying observations,
where the observations are described by vectors in a multi-
dimensional space of features. It often happens that a
feature is context-sensitive. For example, when diagnos-
ing spinal diseases, the significance of a certain level of
flexibility in the spine depends on the age of the patient.
This paper addresses the classification of observations
when the features are context-sensitive.

In empirical studies of classification algorithms, it is
common to randomly divide a set of data into a testing set
and a training set. In this paper, for two of the three
domains, the testing set and the training set have been
deliberately chosen so that the contextual features range
over values in the training set that are different from the
values in the testing set. This adds an extra level of diffi-
culty to the classification problem.

The paper begins with a precise definition of context.
General strategies for exploiting contextual information
are then given. The strategies are tested on three domains.
First, the paper shows how contextual information can
improve the diagnosis of faults in an aircraft gas turbine
engine. The classification algorithms used on the engine
data were a form of instance-based learning (IBL) [1, 2, 3]
and a form of multivariate linear regression (MLR) [4].
Both algorithms benefit from contextual information.
Second, the paper shows how context can be used to
improve speech recognition. The speech recognition data
were classified using IBL and cascade-correlation (CC)
[5]. Again, both algorithms benefit from exploiting
context. Third, the paper shows how context can be used
to improve the accuracy of medical prognosis. Hepatitis
data were classified using IBL.

The presentation of the results in the three test
domains is followed by a discussion of the interpretation
of the results. The work presented here is then compared
with related work by other researchers and future work is
discussed. Finally, the conclusion is given. For the three
domains (engine diagnosis, speech recognition, and
medical prognosis) and three classification algorithms
(IBL, MLR, and CC) studied here, exploiting contextual
information results in a significant increase in accuracy of
classification.
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DEFINITION OF CONTEXT

This section presents a precise definition of context.
Let  be a finite set of classes. Let  be an -dimensional

feature space. Let  be a member of

; that is,  and . We will use

 to represent a variable and  to

represent a constant in . Let  be a probability dis-
tribution defined on . In the definitions that follow,
we will assume that  is a discrete distribution. It is easy
to extend these definitions for the continuous case.

Primary Feature: Feature  (where ) is a

primary featurefor predicting the class  when there is a

value  of  and there is a value  of  such that:

(1)

In other words, the probability that , given

, is different from the probability that .

Contextual Feature: Feature  (where ) is a

contextual featurefor predicting the class  when  is

not a primary feature for predicting the class  and there

is a value  of  such that:

(2)

In other words, if  is a contextual feature, then we can

make a better prediction when we know the value  of

than we can make when the value is unknown, assuming
that we know the values of the other features,

.

The definitions above refer to the class . In the

following, we will assume that the class is fixed, so that
we do not need to explicitly mention the class.

Irrelevant Feature: Feature  (where ) is an

irrelevant feature when  isneither a primary featurenor

a contextual feature.

Context-Sensitive Feature: A primary feature  is

context-sensitive to a contextual feature  when there are

values , , and , such that:

(3)

The primary concern here is strategies for handling
context-sensitive features.
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Table 1 illustrates the above definitions. Since
 and , it follows

that  is a primary feature:

(4)

Since  equals  for all values

 and , it follows that  is not a primary feature.

However,  is not an irrelevant feature, since:

(5)

Therefore  is a contextual feature. Furthermore, primary

feature  is context-sensitive to the contextual feature

, since:

(6)

and

(7)

Finally,  is an irrelevant feature, since, for all values ,

, , and :

(8)

When  is unknown, it is often possible to use back-
ground knowledge to distinguish primary, contextual, and

Table 1: Examples of the different types of features.

class primary contextual irrelevant probability

0 0 0 0 0.03
0 0 0 1 0.03
0 0 1 0 0.08
0 0 1 1 0.08
0 1 0 0 0.07
0 1 0 1 0.07
0 1 1 0 0.07
0 1 1 1 0.07
1 0 0 0 0.07
1 0 0 1 0.07
1 0 1 0 0.07
1 0 1 1 0.07
1 1 0 0 0.03
1 1 0 1 0.03
1 1 1 0 0.08
1 1 1 1 0.08

x0 x1 x2 x3 p
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irrelevant features. Examples of this use of background
knowledge will be presented later in the paper.

STRATEGIES FOR EXPLOITING CONTEXT

Katz et al. [6] list four strategies for using contextual
information when classifying:

1. Contextual normalization: The contextual features
can be used to normalize the context-sensitive pri-
mary features, prior to classification. The intent is to
process context-sensitive features in a way that
reduces their sensitivity to the context.

2. Contextual expansion:A feature space composed of
primary features can be expanded with contextual fea-
tures. The contextual features can be treated by the
classifier in the same manner as the primary features.

3. Contextual classifier selection:Classification can
proceed in two steps: First select a specialized classi-
fier from a set of classifiers, based on the contextual
features. Then apply the specialized classifier to the
primary features.

4. Contextual classification adjustment:The two steps
in strategy 3 can be reversed: First classify, using only
the primary features. Then make an adjustment to the
classification, based on the contextual features.

This paper examines strategies 1 and 2. A fifth strategy is
also investigated:

5. Contextual weighting: The contextual features can
be used to weight the primary features, prior to classi-
fication. The intent of weighting is to assign more
importance to features that, in a given context, are
more useful for classification.

The purpose of contextual normalization is to treat all
features equally, by removing the affects of context and
measurement scale. Contextual weighting has a different
purpose: to prefer some features over other features, if
they may improve accuracy.

THE CLASSIFICATION ALGORITHMS

To demonstrate the generality of the above strategies,
three different classification algorithms were used, a form
of instance-based learning (IBL) [1, 2, 3], multivariate
linear regression (MLR) [4], and cascade-correlation (CC)
[5].

Instance-based learning [1, 2] is closely related to the
nearest neighbor pattern recognition paradigm [3]. Predic-
tions are made by matching new data to stored data, using
a measure of similarity to find the best matches [3]. The
algorithm used here is a simple form of IBL, known as
single-nearest neighbor pattern recognition. The algorithm
is given, as input, an observation (a feature vector) in the

testing set. To classify this observation, the algorithm
simply looks for the most similar observation in the
training set (the single nearest neighbor). The output of the
algorithm is the class of the nearest neighbor in the
training set. The measure of similarity used here is based
on the sum of the absolute values of the differences

between the elements of the vectors. If  and  are two

feature vectors, then the similarity between  and  is
defined as:

(9)

In this paper, IBL will be used to refer to this simple form
of instance-based learning. IBL easily handles both
symbolic [1] and real-valued [2] features and classes.

Multivariate linear regression [4] models data with a
system of linear equations. Like IBL, MLR easily handles
both symbolic and real-valued features and classes. The
algorithm used here is a form of MLR that is suitable for
symbolic classes, known as linear discriminant analysis.
In this paper, MLR will be used to refer to this form of
multivariate linear regression. Suppose that there are
distinct classes. In the training phase, MLR generates
linear equations, one for each of the  classes. The general
form of the  linear equations is:

(10)

For example, consider the linear equation for one of the
classes, class . In the training phase, for each observation

in the training set,  is set to the value 1 when the obser-

vation belongs to class . Otherwise,  is set to 0. The

in the equation for class  are selected from among the
features available in the feature space. MLR uses the

forward selection procedure to select the  [4]. Standard

linear regression techniques are used to find the best

values for the constant coefficients  in the linear

equation [7]. In the testing phase, MLR is given the values

of the  variables for each observation in the testing set.

To predict the class of an observation, MLR calculates the
values of the  linear equations. This yields  values for

, one value for each of the  classes. The predicted class

of the observation is the class with the largest calculated
value.

Cascade-correlation (CC) [5] is a form of neural
network algorithm. Like IBL and MLR, CC easily handles
both symbolic and real-valued features and classes. The
CC algorithm is similar to feed-forward neural networks
trained with back-propagation. An interesting characteris-
tic of the CC algorithm is that the network architecture is
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not specified by the user; it is determined automatically, by
the CC algorithm. The network begins the training phase
with no hidden-layer nodes. Hidden-layer nodes are then
added, one-by-one, until a given performance criterion is
met.

GAS TURBINE ENGINE DIAGNOSIS

This section compares contextual normalization
(strategy 1) with other popular forms of normalization.
Strategies 2 to 5 are not examined in this section. The
application is fault diagnosis of an aircraft gas turbine
engine. The feature space consists of about 100 continuous
primary features (engine performance parameters, such as
thrust, fuel flow, and temperature) and 5 continuous con-
textual features (ambient weather conditions, such as
external air temperature, barometric pressure, and
humidity). The observations fall in eight classes: seven
classes of deliberately implanted faults and a healthy class
[7].

The amount of thrust produced by an engine is a
primary feature for diagnosing faults in the engine. The
exterior air temperature is a contextual feature, since the
engine’s performance is sensitive to the exterior air tem-
perature. Exterior air temperature is not a primary feature,
since knowing the exterior air temperature,by itself, does
not help us to make a diagnosis. The experimental design
ensures this, since the faults were deliberately implanted.
This background knowledge lets us distinguish primary
and contextual features, without having to determine the
probability distribution.

The data consist of 242 observations, divided into two
sets of roughly the same size. One set of observations was
collected during warmer weather and the second set was
collected during cooler weather. One set was used as the
training set and the other as the testing set, then the sets
were swapped and the process was repeated. Thus the
sample size for testing purposes is 242.

The data were analyzed using two classification algo-
rithms, IBL and MLR. IBL and MLR were also used to
preprocess the data by contextual normalization [7].

The following methods for normalization were exper-
imentally evaluated:

1. no normalization (use raw feature data)

2. normalization without context, using

a. normalization by minimum and maximum value
in the training set (the minimum is normalized to
0 and the maximum is normalized to 1)

b. normalization by average and standard deviation
in the training set (subtract the average and divide
by the standard deviation)

c. normalization by percentile in the training set (if
10% of the values of a feature are below a certain

level, then that level is normalized to 0.1)

d. normalization by average and standard deviation
in a set of healthy baseline observations (chosen
to span a range of ambient conditions)

3. contextual normalization (strategy 1), using

a. IBL (trained with healthy baseline observations)

b. MLR (trained with healthy baseline observations)

Of the five strategies for exploiting context, discussed
above, only one was applied to the gas turbine engine data:

Contextual normalization: Let  be a vector of primary

features and let  be a vector of contextual features. Con-

textual normalization transforms  to a vector  of nor-

malized features, using the context . The following
formula was used for contextual normalization:

(11)

In (11),  is the expected value of  and  is the

expected variation of , as a function of the context .

The values of  and  were estimated using IBL

and MLR, trained with healthy observations (spanning a
range of ambient conditions) [7].

Table 2 (derived from Table 5 in [7]) shows the results
of this experiment. For IBL, the average score without
contextual normalization is 42% and the average score
with contextual normalization is 55%, an improvement of
13%. For MLR, the average score without contextual nor-
malization is 39% and the average score with contextual
normalization is 46%, an improvement of 7%. According
to the Studentt-test, contextual normalization is signifi-
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Table 2: A comparison of various methods of normalization.

classifier normalization
no. correct
(of 242)

percent
correct

IBL none 102 42
IBL min/max train 101 42
IBL avg/dev train 97 40
IBL percentile train 92 38
IBL avg/dev baseline 111 46
IBL IBL 139 57
IBL MLR 128 53
MLR none 100 41
MLR min/max train 100 41
MLR avg/dev train 100 41
MLR percentile train 74 31
MLR avg/dev baseline 100 41
MLR IBL 103 43
MLR MLR 119 49
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cantly better than all of the alternatives that were
examined [7].

SPEECH RECOGNITION

This section examines strategies 1, 2, and 5: contex-
tual normalization, contextual expansion, and contextual
weighting. The problem is to recognize a vowel spoken by
an arbitrary speaker. There are ten continuous primary
features (derived from spectral data) and two discrete con-
textual features (the speaker’s identity and sex). The
observations fall in eleven classes (eleven different
vowels) [8].

For speech recognition, spectral data is a primary
feature for recognizing a vowel. The sex of the speaker is a
contextual feature, since we can achieve better recognition
by exploiting the fact that a man’s voice tends to sound
different from a woman’s voice. Sex is not a primary
feature, since knowing the speaker’s sex,by itself, does
not help us to recognize a vowel. The experimental design
ensures this, since all speakers spoke the same set of
vowels. This background knowledge lets us distinguish
primary and contextual features, without having to
determine the probability distribution.

The data were divided into a training set and a testing
set. Each of the eleven vowels was spoken six times by
each speaker. The training set is from four male and four
female speakers (  observations). The
testing set is from four new male and three new female
speakers (  observations). Using a wide
variety of neural network algorithms, Robinson [9]
achieved accuracies ranging from 33% to 56% correct on
the testing set. The mean score was 49%, with a standard
deviation of 6%. Table 3 summarizes Robinson’s results.

Three of the five strategies discussed above were
applied to the data:

Contextual normalization: Each feature was normalized

by equation (11), where the context vector  was simply

the speaker’s identity. The values of  and  were

estimated simply by taking the average and standard

deviation of  for the speaker . In a practical applica-

tion, this will require storing speech samples from a new
speaker in a buffer, until enough data are collected to
calculate the average and standard deviation.

Contextual expansion: The sex of the speaker was
treated as another feature. This strategy is not applicable to
the speaker’s identity, since the speakers in the testing set
are distinct from the speakers in the training set.

Contextual weighting: Let  be a vector of primary

features and let  be a vector of contextual features. As

with contextual normalization, the context vector  is

11 6 8×× 528=

11 6 7×× 462=

c

µi c( ) σi c( )

xi c

x

c

c

simply the speaker’s identity. The features were multiplied
by weights, where the weight  for a feature  was the

ratio of inter-class deviation  to intra-class deviation

:

(12)

The inter-class deviation of a feature indicates the
variation in a feature’s value, across class boundaries. It is

the average, for all speakers  in the training set, of the
standard deviation of the feature, across all classes (all
vowels), for a given speaker. Let  be the

standard deviations of  for each of the  speakers in the

training set. The inter-class deviation of  is:

(13)

The intra-class deviation of a feature indicates the
variation in a feature’s value, within a class boundary. It is
the average, for all speakers in the training set and all
classes, of the standard deviation of the feature, for a given
speaker and a given class. Let , where

and , be the standard deviations of  for each of

Table 3: Robinson’s (1989) results with the vowel data.

classifier
no. of
hidden
units

no.
correct
(of 462)

percent
correct

Single-layer perceptron - 154 33
Multi layer perceptron 88 234 51
Multi-layer perceptron 22 206 45
Multi-layer perceptron 11 203 44

Modified Kanerva Model 528 231 50
Modified Kanerva Model 88 197 43

Radial Basis Function 528 247 53
Radial Basis Function 88 220 48
Gaussian node network 528 252 55
Gaussian node network 88 247 53
Gaussian node network 22 250 54
Gaussian node network 11 211 47
Square node network 88 253 55
Square node network 22 236 51
Square node network 11 217 50

Nearest neighbor - 260 56
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the  speakers and  classes in the training set. The intra-
class deviation of  is:

(14)

The ratio of inter-class deviation to intra-class deviation is
high when a feature varies greatly across class boundaries,
but varies little within a class. A high weight (a high ratio)
suggests that the feature will be useful for classification.
This is a form of contextual weighting, because the weight
is calculated on the basis of the speaker’s identity, which is
a contextual feature.

Table 4 shows the results of using different combina-
tions of these three strategies with IBL. These results show
that there is a form of synergy here, since the sum of the
improvements of each strategy used separately is less than
the improvement of the three strategies used together
(  +  + % for the sum
of the three strategies used separately versus

% for the three strategies used together).

The three strategies were also tested with cascade-
correlation [5]. Because of the time required for training
CC, results were gathered for only two cases: With no pre-
processing, cascade-correlation correctly classified 216
observations (47%). With preprocessing by all three strate-
gies, cascade-correlation correctly classified 236 observa-
tions (51%). This shows that contextual information can
be of benefit for both neural networks and nearest
neighbor pattern recognition.

HEPATITIS PROGNOSIS

Similar to the previous section, this section examines
strategies 1, 2, and 5: contextual normalization, contextual
expansion, and contextual weighting. The problem is to
determine whether hepatitis patients will live or die from
their disease. There are seventeen primary features, of
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Table 4: The three strategies applied to the vowel data.

strategy 1:
contextual
normaliza-

tion

strategy 2:
contextual
expansion

strategy 5:
contextual
weighting

no. correct
(of 462)

percent
correct

No No No 258 56
No No Yes 269 58
No Yes No 253 55
No Yes Yes 272 59
Yes No No 267 58
Yes No Yes 295 64
Yes Yes No 273 59
Yes Yes Yes 305 66

58 56−( ) 55 56−( ) 58 56−( ) 3=

66 56− 10=

which twelve are discrete (such as “patient is taking
steroids”, “patient reports fatigue”) and five are continu-
ous (such as “patient’s bilirubin level”). There are two
contextual features, of which one is discrete (patient’s sex)
and one is continuous (patient’s age). The patient’s sex
was not used in the following experiments, since 90% of
the patients were male. The observations fall in two
classes (live or die) [10]. There are many missing values in
the hepatitis data. These were filled in by using the single-
nearest neighbor algorithm with the training data.

For hepatitis prognosis, bilirubin level is a primary
feature for determining whether the patient will die from
the disease. The age of the patient is a contextual feature,
since we can achieve more accurate prognoses by using
the patient’s age. Age is not a primary feature, since
knowing the patient’s age,by itself, does not help us to
make a prognosis. In support of this claim, compare rows
one and three in Table 5. Adding age as a feature actually
reduces accuracy. Background knowledge does not help us
to determine whether age is primary or contextual, since it
is plausible that the patient’s age could be a primary factor
in hepatitis prognosis. In this case, we must use the data to
estimate the probability distribution. The data suggest that
age is a contextual feature.

The data were divided into a training set and a testing
set. Unlike the previous two experiments, there was no
systematic distinction between the training and testing
sets. The data consist of 155 observations, which were
randomly split to make 10 pairs of training and testing
sets. In each pair, there were 100 training observations and
55 testing observations. Thus the total number of observa-
tions for testing purposes was 550.

Three of the five strategies discussed above were
applied to the data:

Contextual normalization: Each feature was normalized

by equation (11), where the context vector  is simply the
patient’s age. Age was converted into a discrete feature by
dividing age into five intervals, with an equal number of

Table 5: The three strategies applied to the hepatitis data.

strategy 1:
contextual
normaliza-

tion

strategy 2:
contextual
expansion

strategy 5:
contextual
weighting

no. correct
(of 550)

percent
correct

No No No 393 71
No No Yes 393 71
No Yes No 390 71
No Yes Yes 391 71
Yes No No 454 83
Yes No Yes 460 84
Yes Yes No 457 83
Yes Yes Yes 464 84

c
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patients in each interval. The values of  and

were estimated by taking the average and standard

deviation of  for each interval . This is different from

the method used for contextual normalization with the
continuous contextual features in gas turbine engine
diagnosis [7]. Note that equation (11) does not require
continuous features; it works well with the boolean
features in the hepatitis data, when true and false are repre-
sented by one and zero.

Contextual expansion:The age of the patient was treated
as another feature. This strategy is not useful for the
patient’s sex, since so few patients are female.

Contextual weighting: The features were multiplied by
weights, where the weight for a feature was the ratio of
inter-class deviation to intra-class deviation, as in equation
(12). The inter-class deviation and the intra-class deviation
were calculated using the five age intervals.

Table 5 shows the results of using different combina-
tions of the three strategies (contextual normalization,
contextual expansion, and contextual weighting) with
IBL. As in the previous section, there is a form of synergy
here, since the sum of the improvements of each strategy
used separately is less than the improvement of the three
strategies together (  +  +

% for the sum of the three strategies

versus % for the three strategies used
together). In this case, however, the synergy is not as
marked as it is in the previous section. This may be due to
the fact that there is no systematic difference between the
training and testing sets in the hepatitis data, while the
testing set for the vowel data uses different speakers from
the training set.

For comparison, other researchers have reported accu-
racies of 80% [11] and 83% [12] on the hepatitis data. It is
interesting that a single-nearest neighbor algorithm can
match or surpass these results, when strategies are
employed to use the contextual information contained in
the data.

DISCUSSION OF RESULTS

The results reported above indicate that contextual
normalization and contextual weighting can significantly
improve the accuracy of classification. Contextual
expansion is less effective than contextual normalization
and contextual weighting, although it appears useful,
when used in conjunction with the other techniques.

Equation (11) (a form of contextual normalization)
has three characteristics:

1. The normalized features all have the same scale, so
we can directly compare features that were originally
measured with different scales.

µi c( ) σi c( )

xi c

71 71−( ) 71 71−( )
83 71−( ) 12=

84 71− 13=

2. Equation (11) tends to weight features according to
their relevance for classification. Features that are far
from average, in a given context, are normalized to
values that are far from zero. That is, a surprising fea-
ture will get a high absolute value. A feature that is
irrelevant will tend to have a high variation, so it will
tend to be normalized to a value near zero. A feature
that is near average will also be normalized to a value
near zero. Note that this is true for boolean features,
as well as continuous features.

3. Equation (11) compensates for variations in a feature
that are due to variations in the context. Thus it
reduces the impact of the context, allowing the classi-
fication system to generalize across different contexts
more easily.

Equation (11) is only one possible form of contextual nor-
malization. For example, another form of contextual nor-
malization could use a context-sensitive estimate of the
minimum and maximum values to normalize a feature.

Contextual weighting is a new technique for using
contextual information. The idea of contextual weighting
is to assign more weight to the features that seem more
useful for classification, in a given context. Equation (12)
is only one possible form of contextual weighting. For
example, another form of contextual weighting might vary
the weight as a function of the context. With equation (12),
the weight is calculated using contextual information, but
the weight does not change as a function of the context.

Note that equation (11) is a linear transformation of

the data when the context  is constant, but it is a
nonlinear transformation when the context is variable.
Equation (12) is a linear transformation of the data, both

when the context  is constant and when it is variable,
since the weight  is fixed; it does not vary with the

context .

Of the three classification algorithms, IBL gained the
most from contextual normalization and contextual
weighting. The form of IBL that was used here (single-
nearest neighbor with sum of absolute values as a distance
measure) is particularly sensitive to the scales of the
features. If one feature ranges from 0 to 100 and the
remaining features range from 0 to 1, then the first feature
will have much more influence on the distance measure
than the remaining features. Therefore IBL can benefit sig-
nificantly from contextual normalization, which attempts
to equalize scales. MLR and CC are designed to be unaf-
fected by linear transformations of the features. Therefore
they do not favor features with larger ranges. However,
this strength is also a weakness, because MLR and CC
cannot benefit from preprocessing of the data that
increases the scale of more significant variables. For
example, contextual weighting (using equation (12)) has
no effect on MLR and it has only minor effects on CC.

c

c
wi

c
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It seems natural that contextual normalization and
contextual weighting combine synergistically. Raw data
consist of features that have essentially random scales.
The scale of a feature usually has no relation to the impor-
tance of the feature for classification. Contextual normal-
ization adjusts the features so that their scales are more
equal. It seems plausible that, in many cases, assigning
equal scales to the features is better for classification than
assigning random scales to the features. Contextual
weighting emphasizes the features that are most relevant
for classification. Again, it seems plausible that, in many
cases, contextual weighting will work better when the
features have first been adjusted, so that they have equal
scales. Thus the synergy found in the experiments reported
here is to be expected.

RELATED WORK

The work described here is most closely related to [6].
However, [6] did not give a precise definition of the dis-
tinction between contextual features (their terminology:
parameters or global features) and primary features (their
terminology: features). They examined only contextual
classifier selection, using neural networks to classify
images, with context such as lighting. They found that
contextual classifier selection resulted in increased
accuracy and efficiency. They did not address the difficul-
ties that arise when the context in the testing set is
different from the context in the training set.

This work is also related to work in speech recogni-
tion on speaker normalization [8]. However, the work on
speaker normalization tends to be specific to speech recog-
nition. Here, the concern is with general-purpose strate-
gies for exploiting context.

FUTURE WORK

Future work will extend the list of strategies, the list
of domains that have been examined, and the list of classi-
fication algorithms that have been tested. It may also be
possible and interesting to develop a general theory of
strategies for exploiting context.

Due to its simplicity, IBL can easily be enhanced with
strategies for exploiting context. Other classification algo-
rithms can also be enhanced, but it may require more
effort. It should be possible to modify algorithms such as
MLR and CC so that they can benefit from a form of con-
textual weighting. For example, instead of preprocessing
the data by multiplying the features by weights, a classifi-
cation algorithm can be designed to take the original data
and the set of weights as two separate sets of inputs. The
algorithm can then use the weights to adjust its internal
processing of the original data. MLR could use the contex-

tual weights to decide which features it should include in
its linear equations.

Another possibility is to design classification algo-
rithms that can automatically distinguish primary features
from contextual features. The definitions given in
equations (1) and (2) should allow automatic distinction.

CONCLUSIONS

The general problem examined here is to accurately
classify observations that have context-sensitive features.
Examples are: the diagnosis of spinal problems, given that
spinal tests are sensitive to the age of the patient; the
diagnosis of gas turbine engine faults, given that engine
performance is sensitive to ambient weather conditions;
the recognition of speech, given that different speakers
have different voices; the prognosis of hepatitis, given the
patient’s age; the classification of images, given varying
lighting conditions. There is clearly a need for general
strategies for exploiting contextual information. The
results presented here demonstrate that contextual infor-
mation can be used to increase the accuracy of classifiers,
particularly when the context in the testing set is different
from the context in the training set.
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