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Abstract

This report presents an empirical evaluation of four algorithms for automatically extracting
keywords and keyphrases from documents. The four algorithms are compared using five dif-
ferent collections of documents. For each document, we have a target set of keyphrases, which
were generated by hand. The target keyphrases were generated for human readers; they were
not tailored for any of the four keyphrase extraction algorithms. Each of the algorithms was
evaluated by the degree to which the algorithm’s keyphrases matched the manually generated
keyphrases. The four algorithms were (1) the AutoSummarize feature in Microsoft’s Word 97,
(2) an algorithm based on Eric Brill’s part-of-speech tagger, (3) the Summarize feature in Ver-
ity’s Search 97, and (4) NRC’s Extractor algorithm. For all five document collections, NRC’s
Extractor yields the best match with the manually generated keyphrases.1 
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1. Introduction
This report evaluates four different methods for automatically extracting keywords and key-
phrases from documents. Each method is implemented as software that takes an electronic docu-
ment as input and produces a list of phrases as output. We evaluate the methods by comparing
them with keyphrases generated by hand. 

By the term keyphrase, we mean a list of phrases such as many academic journals include at
the beginning of an article. Most journals use the terminology key word or keyword, but we pre-
fer keyphrase, since it seems that about half of all so-called keywords are in fact phrases of two
or more words. 

The task we consider here is to take a document as input and automatically generate a list (in
no particular order) of keyphrases as output. In general, this task could be called keyphrase gen-
eration, but all four algorithms that we evaluate here perform keyphrase extraction. With key-
phrase extraction, the output keyphrases always appear somewhere in the body of the input
document. Although authors occasionally supply keyphrases that they do not use in the body of
their articles, in our corpora, we find that the body of an average document contains 65%
(Section 4.6) to 90% (Section 4.3) of the author’s keyphrases. 

We evaluate the algorithms by comparing their output phrases with target phrases. In the five
corpora we investigate here, the target keyphrases are mostly supplied by the authors of the doc-
uments. Because the algorithms use keyphrase extraction, in general they cannot achieve 100%
agreement with the target phrases, since at least 10% of the target phrases do not appear in the
input text. However, generation of good keyphrases that do not appear in the input text is a much
more difficult task than extraction of good keyphrases from the input text. 

Keyphrase extraction may be viewed as a classification problem. A document can be seen as
a bag of phrases, where each phrase belongs in one of two possible classes: either it is a key-
phrase or it is a non-keyphrase. We approach this problem from the perspective of machine
learning research. We treat it as a problem of supervised learning from examples. We divide our
documents into two sets, training documents and testing documents. The training documents are
used to tune the keyphrase extraction algorithms, to attempt to maximize their performance. That
is, the training documents are used to teach the supervised learning algorithms how to distin-
guish keyphrases from non-keyphrases. The testing documents are used to evaluate the tuned
algorithms. 

The motivation for this work is the range of applications for keyphrases. There are at least
five general application areas for keyphrases: 
1. Text Summarization 

(a) Mini-summary: Automatic keyphrase extraction can provide a quick mini-summary for
a long document. For example, it could be a feature in a web browser; just click the sum-
marize button when browsing a long web page, and then a window pops up with the list
of keyphrases. It could also be a feature in a word processor. For example, Microsoft’s
Word 97 has this feature, as we discuss later. 

(b) Annotated Lists: Automatic keyphrase extraction can supply added information in a list
or table of contents. For example, each item in the hit list generated by a web search
engine could have a list of keyphrases in addition to the standard information (typically,
the URL, title, and first few words). This can be especially helpful for the many web
pages that have no title. As another example, a document viewer could use an annotated
table of contents to facilitate browsing through the document. The annotations for each
section of the document could be generated by running each section through a keyphrase
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extraction algorithm.
(c) Labels: Keyphrases can supply quickly understood labels for documents in a user inter-

face where there is a need to display a set of documents (e.g., file manager, mail tool,
etc.). It handles the problem that often file names or e-mail subjects are not adequate
labels. This can be useful, for example, in applications that use a spatial metaphor, where
documents are represented by points in a two- or three-dimensional space. The points
could be labelled by their keyphrases. 

(d) Highlights: It can highlight keyphrases in a long document, to facilitate skimming the
document. 

(e) Author Assistance: Automatic keyphrase extraction can help an author or editor who
wants to supply a list of keyphrases for a document. For example, the administrator of a
web site might want to have a keyphrase list at the top of each web page. The automati-
cally extracted phrases can be a starting point for further manual refinement by the
author or editor. 

(f) Text Compression: On a device with limited display capacity or limited bandwidth, key-
phrases can be a substitute for the full text. For example, an email message could be
reduced to a set of keyphrases for display on a pager; a web page could be reduced for
display on a portable wireless web browser. 

2. Human-Readable Index
(a) Journal Index: Automatic keyphrase extraction can be used to generate a human-read-

able index, for access to journal articles or magazine articles. A list of keyphrases, unlike
a list of all of the phrases that appear in the articles (a full-text index), will often be small
enough for a human reader to scroll through. Thus a keyphrase index can be browsed,
whereas a full-text index can only be searched. 

(b) Resource Access: It can provide automatic generation of a human-readable index for
access to resources, such as a yellow pages, want ads, etc.

(c) Internet Access: It can provide automatic generation of a human-readable index for
access to web pages, ftp, gopher, etc.

(d) On-the-fly Indexing: Automatic keyphrase extraction can generate a human-readable
index for a dynamically generated cluster of documents. For example, the hit list of a
conventional search engine could be presented as an alphabetical list of keyphrases,
instead of a ranked list of titles that match the query.

(e) Back-of-the-book Index: It can supply a human-readable index for a book or on-line
documentation. Although a list of keyphrases typically contains less than ten items,
whereas a back-of-the-book index may contain hundreds or thousands of items, an auto-
matic keyphrase extraction algorithm could be used to generate a back-of-the-book index
by breaking a long document into a series of short documents. For example, each page or
section of a book could be treated as one document.

3. Interactive Query Refinement
(a) Narrow Hit List: Automatic keyphrase extraction can provide suggestions for improv-

ing a query. Often a query with a conventional search engine returns a huge list of match-
ing documents. The user would like to narrow the list by adding new terms to the query,
but it is not clear what terms should be added. One way to generate suggestions for refin-
ing a query is to extract keyphrases from the documents in the hit list for the original
query. Conjunction of the new terms with the old query terms yields a shorter hit list. (A
new term might be contained in all of the documents in the original hit list, in which case
conjunction would not change the hit list, but the list of suggestions could be filtered to
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remove such terms.)
(b) Expand Hit List: New terms can be added to a query by disjunction, instead of conjunc-

tion, which will yield a longer hit list. (Again, filtering may be required.)
4. Machine-Readable Index

(a) Improved Precision: It can improve conventional search by improved weighting of
terms and phrases in a conventional search engine index table, resulting in more precise
retrieval of documents (i.e., fewer irrelevant documents).

(b) Compression: It can be used to compress the index tables that are used by conventional
search engines (full-text indexes), which can save memory space in constrained applica-
tions (portable computing) or very large applications (indexing very large document col-
lections).

5. Feature Extraction as Preprocessing for Further Machine Analysis
(a) Document Clustering: Extracted phrases may be used to generate feature vectors for

clustering or hierarchy construction (unsupervised learning of document classes). This is
useful for automatic generation of subject hierarchies. (Examples of subject hierarchies
are Yahoo, the Library of Congress catalog system, and the Dewey Decimal system.) 

(b) Document Classification: Extracted phrases may be used to generate feature vectors for
document classification (supervised learning of document classes). This is useful for
mail filtering, forwarding documents, and sorting documents.

This list is not intended to be exhaustive, and there may be some overlap in the items. The point
of the list is that there are many uses for keyphrases, so a tool for automatically generating good
keyphrases should have a sizable market. 

The goal of this report is to provide an objective evaluation of the four keyphrase extraction
algorithms. This requires a precise, formal measure of the quality of a list of keyphrases.
Section 2 discusses our performance measure in detail. There are (at least) three general criti-
cisms one might make of our method of evaluation. First, it takes human-generated keyphrases
as the standard by which machine-generated keyphrases are evaluated. An alternative would be
to choose a particular task, such as interactive query refinement, and compare the four algo-
rithms by evaluating them in the context of the given task. We decided against this alternative
approach, because there are so many tasks from which to choose. Second, granted that the evalu-
ation is to be based on comparing human-generated and machine-generated keyphrases, there are
many ways one might calculate a numerical performance score. In Section 2, we attempt to
address this concern by providing a thorough explanation and justification for our scoring
method. Third, granted our particular method for calculating a performance score, it could be
argued that authors are not qualified to produce good keyphrases. Trained library scientists may
be a better source for keyphrases. We examined some documents for which professional indexers
had supplied keyphrases, but we found that relatively few of these keyphrases appeared in the
bodies of the corresponding documents. It appears that professional indexers tend to generate
keyphrases using a substantial amount of information that is external to the given document.
Since all four algorithms that we evaluate here are based on keyphrase extraction, rather than
unrestricted keyphrase generation, we decided that it would be better to evaluate them by com-
parison with the authors’ keyphrases.

The four keyphrase extraction algorithms are discussed in Section 3. The four algorithms
are (1) the AutoSummarize feature in Microsoft’s Word 97, (2) an algorithm based on Eric
Brill’s part-of-speech tagger, (3) the Summarize feature in Verity’s Search 97, and (4) NRC’s
Extractor algorithm (patent pending).1 We should point out that only NRC’s Extractor is
explicitly designed to emulate human-generated keyphrases. Microsoft, Eric Brill, and Verity
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might not agree that it is appropriate to evaluate their software in manner of this report. Fur-
thermore, although we are using the AutoSummarize feature in Microsoft Word 97 with no
enhancements or alterations, we had to add some post-processing to Eric Brill’s part-of-
speech tagger and Verity’s Search 97, in order to apply them to this task. The results of our
experimental evaluations depend critically on this post-processing. Therefore this report is
not really an evaluation of Eric Brill’s part-of-speech tagger; it is an evaluation of a system
that includes Eric Brill’s part-of-speech tagger as an essential component. Likewise, this
report is not an evaluation of the Summarize feature in Verity’s Search 97; it is an evaluation
of a system that includes the Summarize feature as an essential component. 

The experiments are presented in Section 4. The five corpora are also discussed in this sec-
tion. Each corpus is described along with its corresponding experimental results. The five docu-
ment collections are (1) journal articles from five different academic journals, (2) email
messages from six NRC employees, (3) web pages from the Aliweb search engine, (4) web pages
from NASA, and (5) web pages from FIPS (the US Government’s Federal Information Process-
ing Standards). For these five corpora, given our experimental design and performance evalua-
tion metric, NRC’s Extractor algorithm has the best performance. 

In Section 5, we discuss the interpretation of the experimental results. Section 6 presents
related work, and Section 7 is the conclusion. 

2. Measuring Performance of the Algorithms
In this report, we measure the performance of the four keyphrase extraction algorithms by com-
paring their output to handmade keyphrases. The performance measure is based on the number
of matches between the machine-generated phrases and the human-generated phrases. In the fol-
lowing subsections, we define what we mean by matching phrases and we describe how the per-
formance measure is calculated from the number of matches. 

2.1 Criteria for Matching Phrases
If an author suggests the keyphrase “neural network” and a keyphrase generation algorithm sug-
gests the keyphrase “neural networks”, we want to count this as a match, although one phrase is
singular and the other is plural. On the other hand, if the author suggests “neural networks” and
the algorithm suggests “networks”, we do not want to count this as a match, since there are many
different kinds of networks. 

In the experiments that follow, we say that a handmade keyphrase matches a machine-gener-
ated keyphrase when they correspond to the same sequence of stems. A stem is what remains
when we remove the suffixes from a word. 

By this definition, “neural networks” matches “neural network”, but it does not match “net-
works”. The order in the sequence is important, so “helicopter skiing” does not match “skiing
helicopter”. To be more precise about our criteria for matching phrases, we need to say more
about how a word is converted to its stem. 

2.2 Stemming Words
The Porter (1980) and Lovins (1968) stemming algorithms are the two most popular algorithms
for stemming English words.2 Both algorithms use heuristic rules to remove or transform
English suffixes. Another approach to stemming is to use a dictionary that explicitly lists the
stem for every word that might be encountered in the given text. Heuristics are usually preferred
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to a dictionary, due to the labour involved in constructing the dictionary and the computer
resources (storage space and execution time) required to use the dictionary. 

The Lovins stemmer is more aggressive than the Porter stemmer. That is, the Lovins stemmer
is more likely to map two words to the same stem (psychology, psychologist), but it is also more
likely to make mistakes (police, policy). We have found that aggressive stemming is better for
keyphrase extraction than conservative stemming. In the experiments in this report, we have
used an aggressive stemming algorithm that we call the Iterated Lovins stemmer. The algorithm
repeatedly applies the Lovins stemmer, until the word stops changing. For example, given
“incredible” as input, the Lovins stemmer generates “incred” as output. Given “incred” as input,
it generates “incr” as output. With “incr” as input, the output is also “incr”. Thus the Iterated
Lovins algorithm, given “incredible” as input, generates “incr” as output. Iterating in this man-
ner will necessarily increase (or leave unchanged) the aggressiveness of any stemmer. 

Table 1 shows the result of applying the Porter, Lovins, and Iterated Lovins stemmer to some
sample words. The Iterated Lovins algorithm recognizes that “jealousness” and “jealousy” share
a common stem, whereas the Porter and Lovins stemmers map these two words to distinct stems.
On the other hand, the Lovins and Iterated Lovins stemmers map “police” and “policy” to the
same stem, whereas the Porter stemmer correctly distinguishes these words. 

Table 1: Samples of the behaviour of three different stemming algorithms. 

Word Porter Stem Lovins Stem Iterated Lovins Stem

memory memori memor memor

memorable memor memor memor

memorize memor memor memor

believes believ belief belief

belief belief belief belief

believable believ belief belief

science scienc sci sc

scientist scientist sci sc

scientific scientif scientif scientif

jealousness jealous jeal jeal

jealousy jealousi jealous jeal

realistic realist real real

reality realiti re re

incredible incred incred incr

incredulous incredul incredl incredl

beautiful beauti beaut beaut

beauty beauti beaut beaut

psychology psychologi psycholog psycholog

psychologist psychologist psycholog psycholog

police polic polic pol

policy polici polic pol

assemblies assembli assembl assembl

assembly assembli assemb assemb
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2.3 Method for Scoring Matches
We may view keyphrase extraction as a classification problem. If we think of a document as a set
of words and phrases, then the task is to classify each word or phrase into one of two categories:
either it is a keyphrase or it is not a keyphrase. We can evaluate an automatic keyphrase extrac-
tion algorithm by the degree to which its classifications correspond to the human-generated clas-
sifications. The outcome of applying a keyphrase extraction algorithm to a corpus can be neatly
summarized with a confusion matrix, as in Table 2. The variable a represents the number of
times that the human-generated phrase matches a machine-generated phrase. The variable d rep-
resents the number of times that the human and the machine agree that a phrase is not a key-
phrase. The variables b and c represent the number of times that the human and the machine
disagree on the classification of a phrase. 

We consider both “neural network” and “neural networks” to be matches for the phrase “neu-
ral network”. Therefore it is better to think of the task as classification of stemmed phrases,
rather than classification of whole phrases. The Iterated Lovins stemmer transforms both whole
phrases “neural network” and “neural networks” into the stemmed phrase “neur network”. If a
person suggests that “neural networks” is a good keyphrase for an article, we interpret that as
classifying the stemmed phrase “neur network” as a keyphrase. 

For examples of the relative values of the variables a, b, c, and d, consider an average journal
article. The average journal article has about 10,000 words (see Table 8). Depending on how we
go from words to phrases, this may correspond to about 3,500 unique whole phrases, which in
turn may correspond to about 2,500 unique stemmed phrases. Thus . The
author supplies an average of 7.5 keyphrases, of which about 82% appear in the full text, so
about 6 ( ) of the author’s keyphrases match phrases in the text. People never
suggest keyphrases that map to the same stemmed phrase. For example, no author would suggest
both “neural network” and “neural networks” as keyphrases for the same article. Therefore we
may assume that the author’s 6 whole phrases map to 6 unique stemmed phrases. Thus .
For every positive example of the target class (keyphrase), we have about 400 negative examples
(counter-examples; non-keyphrase):

(1)

The skewed distribution of the two classes makes this a difficult classification problem. 
We would like to have a single number that represents the performance of a keyphrase

extraction algorithm. In other words, we would like a suitable function that maps a, b, c, and d to
a single value. It is common to use accuracy to reduce a confusion matrix to a single value:

Table 2: The confusion matrix for keyphrase classification. 

Classified as a Keyphrase 
by the Human

Classified as Not a 
Keyphrase by the Human

Classified as a Keyphrase by the 
Machine

a b

Classified as Not a Keyphrase by the 
Machine

c d

a b c d 2500≈+ + +

7.5 0.82⋅ 6.15=

a c 6≈+

a c+
b d+
------------

6
2500 6–
---------------------

1
400
---------≈ ≈
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(2)

Unfortunately, there are some problems with using accuracy here. One problem is that, because
the class distribution is highly skewed, we can achieve very high accuracy by always guessing
the majority class. That is, if a trivial keyphrase extraction algorithm always generates an empty
set of keyphrases ( ), for any input document, its accuracy would be about 99.76%:

(3)

Clearly we do not want to assign such a high performance rating to such a poor algorithm.
Another problem with accuracy is that the space of candidate phrases (of size )

is not well defined. It depends on how we convert a document into a set of phrases. Each of the
four methods for keyphrase extraction has a different approach to generating candidate phrases;
each has a different size space of candidate phrases. The variable d is particularly sensitive to
this problem. We can estimate the other three variables by examining the machine-generated
keyphrases and the human-generated keyphrases. If we assume that all of the human-generated
keyphrases are in the space of candidate phrases, then  is simply the number of human-gen-
erated keyphrases. If we assume that machine-generated keyphrases never collapse to the same
stemmed phrase (e.g., the machine never gives both “neural network” and “neural networks” as
output keyphrases for a given input document), then  is simply the number of machine-gen-
erated keyphrases. Since a is the number of matches (where we define matching as above), we
can easily estimate a, b, and c. However, there is no way to estimate d by examining only the
machine-generated keyphrases and the human-generated keyphrases. We may be able to estimate
d by examining the given input document, but this estimate will be very sensitive to the method
for converting a document into a set of phrases. Therefore, we would like a performance measure
that is based only on a, b, and c. 

This issue is familiar to researchers in the field of information retrieval. In the standard para-
digm of information retrieval, a user enters a query in a search engine, which searches through a
document collection and returns a list of documents, chosen from the collection. It is assumed
that some of the documents in the collection are relevant to the query and the rest are irrelevant.
The performance of the search engine is evaluated by comparing the output of the search engine
to the relevance judgements of a human expert. We may view this as a classification problem,
where the two classes are relevant and irrelevant. This view leads to the confusion matrix in
Table 3. 

When we view information retrieval as a classification problem, we encounter the same dif-
ficulties as when we view keyphrase extraction as a classification problem. The number of irrel-

Table 3: The confusion matrix for information retrieval. 

Classified as Relevant by 
the Human

Classified as Irrelevant by 
the Human

Classified as Relevant by the 
Machine

a b

Classified as Irrelevant by the 
Machine

c d

accuracy
a d+

a b c d+ + +
------------------------------=

a b 0= =

a d+
a b c d+ + +
------------------------------

d
c d+
------------

2500 6–
2500

---------------------≈ 0.9976= =

a b c d+ + +

a c+

a b+
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evant documents  is typically much larger than the number of relevant documents , so
we have a highly skewed class distribution. Also, it can be difficult to estimate d, whereas esti-
mating a, b, and c is relatively easy. For example, when we use a search engine on the web, we
can directly estimate a, b, and c, but d depends on the size of the document collection that is
indexed by the search engine, which may be unknown to us, and may fluctuate daily. 

Researchers in information retrieval use precision and recall to evaluate the performance of
a search engine:

(4)

(5)

Precision is an estimate of the probability that, if a given search engine classifies a document as
relevant to a user’s query, then it really is relevant. Recall is an estimate of the probability that, if
a document is relevant to a user’s query, then a given search engine will classify it as relevant. 

There is a well-known trade-off between precision and recall. We can optimize one at the
expense of the other. For example, if we guess that the entire document collection is relevant,
then our recall is necessarily 100%, but our precision will be close to 0%. On the other hand, if
we take the document that we are most confident is relevant and guess that only this single doc-
ument is relevant to the user’s query, then our precision might be 100%, but our recall would be
close to 0%. We want a performance measure that yields a high score only when precision and
recall are balanced. A measure that is widely used in information retrieval is the F-measure (van
Rijsbergen, 1979; Lewis, 1995):

(6)

The F-measure is never greater than the average of precision and recall: 

(7)

To see why this is true, we begin with two definitions:

(8)

(9)

We can now define the F-measure in terms of the average:

(10)

(11)

It follows that the F-measure is less than the average by a quantity that is proportional to the
square of the imbalance between precision and recall, as represented by . When precision and
recall are not balanced, the F-measure is strictly less than the average of precision and recall.
When precision and recall are equal, the F-measure equals the average. 

b d+ a c+

precision
a

a b+
------------=

recall
a

a c+
------------=

F-measure
2 precision recall⋅ ⋅
precision recall+

-----------------------------------------------
2a

2a b c+ +
------------------------= =

2 precision recall⋅ ⋅
precision recall+

-----------------------------------------------
precision recall+

2
-----------------------------------------≤

avg
precision recall+

2
-----------------------------------------=

∆ precision avg– recall avg–= =

F-measure
2 avg ∆+( ) avg ∆–( )⋅ ⋅

avg ∆+( ) avg ∆–( )+
----------------------------------------------------------=

2 avg
2 ∆2

–( )
2avg

-------------------------------= avg
∆2

avg
--------–=

∆
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In the following experiments, we evaluate the performance of the keyphrase extraction algo-
rithms using the F-measure. We estimate  by the number of human-generated keyphrases,
which assumes that all of the human-generated keyphrases are in the space of candidate phrases,
and that humans never suggest keyphrases that map to the same stemmed phrase. We estimate

 by the number of machine-generated keyphrases, which assumes that machines never sug-
gest keyphrases that map to the same stemmed phrase. When calculating the number of matches
a, we allow at most one machine-generated phrase to match a human-generated phrase. Thus, if
the machine does suggest two keyphrases that map to the same stemmed phrase (contrary to our
preceding assumption), then at most one of these two keyphrases can count as a match. 

3. Four Algorithms for Extracting Keyphrases
This section discusses the four keyphrase extraction algorithms. We do not discuss the core rou-
tines of these algorithms, since they are either proprietary (in the case of Microsoft, Verity, and
NRC) or they are discussed elsewhere (in the case of Eric Brill’s work). What we describe is how
these algorithms were applied to the task of keyphrase extraction, in the experiments in
Section 4. 

3.1 Microsoft’s Word 97: The AutoSummarize Feature
Microsoft’s Word 97 is a complete word processing software package. In this report, we are only
concerned with the AutoSummarize feature in Word 97. The AutoSummarize feature is available
from the Tools menu. The main function of this feature is to identify important sentences in the
document that is being edited. The identified sentences can be highlighted or separated from the
remainder of the text. The user can specify a target percentage of the text for AutoSummarize to
mark as important. 

As a side-effect, when AutoSummarize is used, it also fills in the Keywords field of the doc-
ument’s Properties. The Properties form is available from the File menu. AutoSummarize
always generates exactly five keyphrases, if the document contains at least five distinct words.
The keyphrases are always single words, never phrases of two or more words. They are always in
lower case, even when they are abbreviations or proper nouns. There is no way for the user of
Word 97 to adjust the AutoSummarize feature. For example, it is not possible to ask it for six
keyphrases instead of five. 

In the following experiments, we used the five keyphrases produced by AutoSummarize with
no further processing. Unlike the other three algorithms, there was no tuning of the AutoSumma-
rize feature to the training data. 

In the remainder of this paper, we will use the phrase Microsoft’s Word 97 to mean automatic
keyphrase extraction using the AutoSummarize feature in Word 97. By Microsoft’s Word 97, we
do not mean the whole Word 97 software package. Microsoft does not claim that the AutoSum-
marize feature emulates human-generated keyphrases. Microsoft might not agree that the experi-
mental method that we use in this report is a fair test of the AutoSummarize feature. 

3.2 Eric Brill’s Part-of-Speech Tagger: Frequent Noun Phrases
In our corpora, almost all of the target keyphrases are noun phrases. The following simple pat-
tern matches most of the keyphrases: 

(12)

a c+

a b+

NN|NNS|NNP|NNPS|JJ( )* NN|NNS|NNP|NNPS|VBG( )
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This pattern means zero or more nouns or adjectives , followed by
one final noun or gerund . More precisely, NN represents a sin-
gular noun, NNS represents a plural noun, NNP represents a singular proper noun, NNPS repre-
sents a plural proper noun, JJ represents an adjective, and VBG represents a gerund.3 Table 4
shows an example of tagged keyphrases for an article from the journal Psycoloquy (one of the
articles in the Journal Article corpus, Section 4.3). In this example, only the keyphrase “Bayes’
theorem” does not match the pattern (12), due to the possessive POS.  

Keyphrases often correspond to frequent noun phrases in the text. This suggests the follow-
ing algorithm for automatic keyphrase extraction:

1. Tag each word in the given document by its part-of-speech.
2. Look for all sequences of tagged words that match the pattern (12).
3. Count the frequency of each matching sequence. 
4. Output the N most frequent matching sequences. 

This is essentially the algorithm we use, with some minor enhancements, which we will discuss
below. 

The most difficult part of this algorithm is part-of-speech tagging. For this purpose, we use
Eric Brill’s part-of-speech tagger (Brill, 1992, 1993, 1994).4 We quickly found that there were
two problems with the algorithm sketched above. First, the N most frequent matching sequences
tend to be almost entirely phrases consisting of a single word. If we want to extract multi-word
keyphrases, then the algorithm needs some adjustment. Second, the algorithm does not recognize
phrases that are minor variants of each other, such as “market”, “markets”, “marketing”. The fol-
lowing algorithm addresses these two concerns:

1. Use Eric Brill’s part-of-speech tagger to tag each word in the given document. 
2. Look for all single tagged words that match the pattern (12).
3. Look for all sequences of two tagged words that match the pattern.
4. Look for all sequences of three tagged words that match the pattern.
5. Stem the matching sequences using the Iterated Lovins stemmer (Section 2.2).
6. Count the frequency of each matching stemmed sequence.
7. For each of the N1 most frequent matching stemmed single words, output the most fre-

quent corresponding single whole word. That is, for a given stemmed single word, output
the most frequent un-stemmed word that the Iterated Lovins stemmer transforms into the

Table 4: An example of tagged keyphrases, taken from the Journal Article corpus. 

Author’s Keyphrases Tagged Keyphrases

base rate fallacy base/NN rate/NN fallacy/NN

Bayes’ theorem Bayes/NNP ’/POS theorem/NN

decision making decision/NN making/VBG

ecological validity ecological/JJ validity/NN

ethics ethics/NNS

fallacy fallacy/NN

judgment judgment/NN

probability probability/NN

NN|NNS|NNP|NNPS|JJ( )*
NN|NNS|NNP|NNPS|VBG( )
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given stemmed word.
8. For each of the N2 most frequent matching stemmed sequences of two words, output the

most frequent corresponding sequence of two whole words.
9. For each of the N3 most frequent matching stemmed sequences of three words, output the

most frequent corresponding sequence of three whole words. 
We selected training documents from the corpora, to tune the values of N1, N2, and N3 to maxi-
mize the F-measure. Thus this algorithm is a form of supervised learning from examples. To find
the best values of N1, N2, and N3 for the training data, we used exhaustive search. We did not
consider phrases of four or more words, since they are relatively rare in our corpora. The training
and testing are described in more detail in Section 4.2.

In the following, we will refer to this algorithm as Eric Brill’s Tagger, because the part-of-
speech tagger is the most important component of the algorithm. However, the tagger is only one
component in a larger system, so the reader should not make inferences from the performance of
the whole system to the performance of the tagger. Eric Brill has not suggested that this is an
appropriate usage of his tagger. 

3.3 Verity’s Search 97: The Summarize Feature
Verity’s Search 97 is a complete text retrieval system, including a search engine, an index
builder, and a web crawler. In this report, we are only concerned with the Summarize feature in
Search 97. The Summarize feature enables the search engine to display summaries of each docu-
ment in the hit list, along with the usual information, such as the document title. A summary in
Search 97 consists of a list of sentences, with highlighted keyphrases embedded in the sentences.
The user can control the number of sentences in a summary, by either specifying the number of
sentences desired or the percentage of the source document desired. 

To evaluate the keyphrases generated by Search 97, we need to remove them from their sur-
rounding sentences. We used the following procedure:

1. Use Verity’s Search 97 to generate a summary with N sentences, using the given docu-
ment as input. 

2. Look for all highlighted phrases in the resulting summary.
3. Stem the highlighted phrases using the Iterated Lovins stemmer (Section 2.2).
4. For each unique stemmed phrase, output the first corresponding highlighted phrase in the

summary. 
The Iterated Lovins stemmer is used to eliminate phrases that are minor variants of other phrases
that have already been output. The value of N was tuned using training documents, to maximize
the F-measure. We used exhaustive search to find the best value of N for the training data. Thus
this algorithm uses a simple form of supervised learning from examples. 

In the following, we refer to this algorithm as Verity’s Search 97, although Search 97 is only
a component of the system. Furthermore, only the Summarize feature of Search 97 is used in the
algorithm. Therefore the reader should not make inferences from the performance of this algo-
rithm to the performance of the whole Search 97 software package, or even the performance of
the Summarize feature, since we are not using this feature as it was intended to be used. 

3.4 NRC’s Extractor
NRC’s Extractor (patent pending) takes a document as input and generates a list of keyphrases as
output.5 The algorithm uses supervised learning from examples. Extractor was trained using the
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same documents as we used with Eric Brill’s Tagger and Verity’s Search 97. Extractor is
intended to emulate human-generated keyphrases. On most hardware platforms, Extractor can
process a typical document in about one second. 

4. Experiments
This section presents the results of our experimental evaluation of the four algorithms. We begin
with a description of the five document collections that were used in the experiments and the
experimental design. We then discuss each document collection separately, along with the exper-
imental results for the collection. We end with a summary of the results. 

4.1 Document Collections
The experiments in this report are based on five different document collections, listed in
Table 5. For each document, there is a target set of keyphrases, generated by hand. In the
Journal Article corpus, the keyphrases were created by the authors of the articles. In the
Email corpus, a university student created the keyphrases. In the three web page corpora, the
keyphrases were created by the authors of the web pages (as far as we know). 

4.2 Design of Experiments
As we discussed in Section 3, three of the four algorithms require training. We used 55 articles
from the Journal Article corpus and 235 messages from the Email Message corpus as training
data (roughly 75% of each collection). The remaining journal articles and email messages, and
all of the web pages, were used for testing.

The training of NRC’s Extractor involves a random component. That is, each time Extractor
is trained, it learns a slightly different model of the training data. Therefore we ran Extractor 10
times on each training collection. In the following results, we present the average and the stan-
dard deviation of the 10 runs. There is no random component to the training of Eric Brill’s Tag-
ger or Verity’s Search 97, so these algorithms were only run once on each training collection.
There is no training at all for Microsoft’s Word 97.

The three trainable algorithms were trained separately for the Journal Article corpus and the
Email Message Corpus. These two corpora have quite different characteristics (as we discuss
below), so we did not merge them. The most significant difference between them is the length of
the individual documents. The average journal article has 10,781 words, whereas the average
email message has 376 words. When testing with the 20 test articles from the Journal Article cor-
pus, the three trainable algorithms used the models that they induced from the 55 training arti-
cles. When testing with the 76 test messages from the Email Message corpus, the three trainable

Table 5: The five document collections.

Corpus Name Description Size

Journal Articles articles from five different academic journals 75

Email Messages email messages from six different NRC employees 311

Aliweb Web Pages web pages from the Aliweb search engine 90

NASA Web Pages web pages from NASA’s Langley Research Center 141

FIPS Web Pages web pages from the US Government’s Federal Information 
Processing Standards

35
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algorithms used the models that they induced from the 235 training messages. When testing with
the three web page corpora, we alternated between the Journal Article model and the Email
model, based on the length of the given web page. We used a threshold of 20K bytes to choose
the appropriate model. This threshold was chosen because almost all of the email messages are
shorter than 20K and almost all of the journal articles are longer than 20K. When a given web
page was shorter than 20K, the trainable algorithm used the model that it had induced from the
Email corpus. When the given web page was longer than 20K, the trainable algorithm used the
model that it had induced from the Journal Article corpus. This procedure was applied uniformly
to all three trainable algorithms (Eric Brill’s Tagger, Verity’s Search 97, and NRC’s Extractor). 

In all cases, the author’s keyphrases were removed from the documents before the text was
presented to the keyphrase extraction algorithms. The author’s keyphrases were used only for
tuning performance on the training documents and evaluating performance on the testing docu-
ments. 

4.3 Journal Articles
We selected 75 journal articles from five different journals, listed in Table 6. The full text of
each article is available on the web. The authors have supplied keyphrases for each of these arti-
cles. 

Three of the journals are about cognition (Psycoloquy, The Neuroscientist, Behavioral &
Brain Sciences Preprint Archive), one is about the hotel industry (Journal of the International
Academy of Hospitality Research), and one is about chemistry (Journal of Computer-Aided
Molecular Design). This mix of journals lets us see whether there is significant variation in per-
formance of the keyphrase extraction algorithms among journals in the same field (cognition)
and among journals in different fields (cognition, hotel industry, chemistry). Our experiments
indicate that the chemistry journal is particularly challenging for automatic keyphrase extraction. 

In Table 7, we show the distribution of words per keyphrase for the 75 journal articles. Most
authors use one or two words in a keyphrase. Occasionally they will use three words, but only
rarely will authors use four or five words. Table 8 gives some indication of how the statistics
vary among the five journals. Table 9 shows, for each journal, the percentage of the authors’
keyphrases that appear at least once in the full text of the article (excluding the keyword list, of
course).   

Table 6: Sources for the journal articles.

Documents Journal Name and URL

1-6
Journal of the International Academy of Hospitality Research
http://borg.lib.vt.edu/ejournals/JIAHR/jiahr.html

7-26
Psycoloquy
http://www.princeton.edu/~harnad/psyc.html

27-28
The Neuroscientist
http://www.theneuroscientist.com/

29-42
Journal of Computer-Aided Molecular Design
http://www.ibc.wustl.edu/jcamd/

43-75
Behavioral & Brain Sciences Preprint Archive
http://www.princeton.edu/~harnad/bbs.html
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In the following experiments, Psycoloquy was used as the testing set and the remaining jour-
nals were used as the training set. We chose this split because it resulted in roughly 75% training
cases and 25% testing cases. We did not use a random split, because we wanted to test the ability
of the learning algorithms to generalize across journals. A random 75/25 split would most likely
have resulted in a training set with samples of articles from all five journals. We wanted the test-
ing set to contain articles from a journal that was not represented in the training set. 

Table 10 shows the training and testing performance of the four algorithms. Note that the
Word 97 does not require training, but the other three algorithms were tuned with the training
documents, as described in Section 3. Table 11 breaks out the training set performance for the
four different journals. It is clear that the Journal of Computer-Aided Molecular Design is much

Table 7: Number of words per keyphrase for the Journal Article corpus. 

Words per Keyphrase Percent of Keyphrases

1 46.5%

2 44.5%

3 7.5%

4 1.1%

5 0.4%

1 to 5 100.0%

Table 8: Some statistics for each of the five journals. 

Journal Name
Number of 

Articles

Average Number of … ± Standard Deviation

Keyphrases per 
Document

Words per 
Keyphrase

Words per 
Document

Journal of the International Academy 
of Hospitality Research

6 6.2 ± 2.6 2.0 ± 0.8 6,299 ± 2,066

Psycoloquy 20 8.4 ± 3.1 1.5 ± 0.6 4,350 ± 2,726

The Neuroscientist 2 6.0 ± 1.4 1.8 ± 1.1 7,476 ± 856

Journal of Computer-Aided Molecu-
lar Design

14 4.7 ± 1.4 1.9 ± 0.6 6,474 ± 2,633

Behavioral & Brain Sciences Preprint 
Archive

33 8.4 ± 2.2 1.6 ± 0.7 17,522 ± 6,911

All Five Journals 75 7.5 ± 2.8 1.6 ± 0.7 10,781 ± 7,807

Table 9: Percentage of the authors’ keyphrases that appear in the corresponding full text. 

Journal Name Keyphrases in Full Text

Journal of the International Academy of Hospitality Research 70.3%

Psycoloquy 74.9%

The Neuroscientist 91.7%

Journal of Computer-Aided Molecular Design 78.8%

Behavioral & Brain Sciences Preprint Archive 87.4%

All Five Journals 81.6%



4. Experiments

Turney 15

more challenging than the other journals. This is likely due to the very specialized vocabulary of
chemistry.  

The experimental results show that NRC’s Extractor achieves the best performance on this
corpus, about 30% better than the nearest competitors ( ). Eric Brill’s Tag-
ger and Verity’s Search 97 are tied on the testing set articles. Microsoft’s Word 97 has the lowest
score for this corpus.

Table 12 shows the output keyphrases for the four algorithms and the authors’ keyphrases,
for the first three articles from the journal Psycoloquy. In this table, where the machine’s output
matches the author’s output, the matching phrase is italicized. The training of Extractor has a
random component, which is why the performance of Extractor is averaged over 10 separate
training runs. The examples of the output of Extractor, in Table 12 below, are chosen from the
run of the 10 training runs that is most typical (most like the average of the 10 runs; not the best
run). In this most typical run, the F-measure for Psycoloquy was 0.224, compared to an average
of 0.223 (see Table 10).  

Note that, for the second article, “Brain Rhythms, Cell Assemblies and Cognition: Evidence
from the Processing of Words and Pseudowords,” the author’s keyphrase “cell assembly” does
not match Extractor’s keyphrase “cell assemblies”, because the Iterated Lovins stemmer maps
“assembly” to “assemb”, but “assemblies” maps to “assembl” (see Table 1). These kinds of prob-
lems are inevitable with any purely mechanical performance measure. However, we believe that
the benefits of mechanical performance measures are greater than the costs. Mechanical perfor-
mance measures lack human knowledge of semantics, but they are precise, objective, repeatable,
unbiased, fast, and simple. 

Table 10: Performance of the four algorithms on the Journal Article corpus. 

Keyphrase Extraction 
Algorithm

Training Set Performance
55 Articles

Testing Set Performance
20 Articles

Precision Recall F-measure Precision Recall F-measure

Microsoft’s Word 97 0.098 0.069 0.081 0.170 0.102 0.127

Eric Brill’s Tagger 0.149 0.189 0.167 0.167 0.180 0.173

Verity’s Search 97 0.119 0.163 0.138 0.168 0.180 0.173

NRC’s Extractor 0.208 
± 0.020

0.228 
± 0.015

0.216 
± 0.008

0.226 
± 0.019

0.224 
± 0.026

0.223 
± 0.014

Table 11: Performance of the four algorithms on each of the five journals. 

Keyphrase Extraction 
Algorithm

F-measure on Training Set Journals Testing

Hospitality
6 Articles

Neuroscientist
2 Articles

Molecular
14 Articles

Brain
33 Articles

Psycoloquy
20 Articles

Microsoft’s Word 97 0.060 0.091 0.015 0.104 0.127

Eric Brill’s Tagger 0.176 0.133 0.073 0.199 0.173

Verity’s Search 97 0.182 0.229 0.080 0.145 0.173

NRC’s Extractor 0.238 
± 0.032

0.374 
± 0.059

0.133 
± 0.015

0.233 
± 0.009

0.223 
± 0.014

0.223 0.173⁄ 1.289=
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4.4 Email Messages
We collected 311 email messages from six different NRC employees. Most of the messages were
incoming mail, both internal NRC mail and external mail. We believe that these messages are
representative of typical messages that are exchanged in corporate and institutional environ-
ments. A university student created the keyphrases for the 311 email messages.6 The student was
asked to create the kind of keyphrases that are used for journal articles. We tried to avoid biasing
the student’s keyphrases in favour of any particular method for automatic keyphrase extraction,
but we did encourage the student to use phrases that appear in the body or subject field of the

Table 12: Examples of the output of the algorithms for Psycoloquy. 

Source of Keyphrases Keyphrases F-measure

1. “The Base Rate Fallacy Myth”

Author’s Keyphrases: base rate fallacy, Bayes' theorem, decision making, ecologi-
cal validity, ethics, fallacy, judgment, probability.

Microsoft’s Word 97: rate, base, information, judgment, psychology. 0.154

Eric Brill’s Tagger: rates, base, base rates, information, Psychology, judgments, 
decision, Social Psychology, decision makers.

0.118

Verity’s Search 97: base rate fallacy, judgment, base rates, subjects, probability. 0.462

NRC’s Extractor: base rates, information, psychology, judgments, probability, 
base rate fallacy, experiments.

0.400

2. “Brain Rhythms, Cell Assemblies and Cognition: Evidence 
from the Processing of Words and Pseudowords”

Author’s Keyphrases: brain theory, cell assembly, cognition, event related poten-
tials, ERP, electroencephalograph, EEG, gamma band, 
Hebb, language, lexical processing, magnetoencephalogra-
phy, MEG, psychophysiology, periodicity, power spectral 
analysis, synchrony. 

Microsoft’s Word 97: assembly, neuron, word, activity, process. 0.000

Eric Brill’s Tagger: neurons, activity, words, assembly, responses, processing, 
cell assembly, cell assemblies, spectral power.

0.077

Verity’s Search 97: cortical cell assemblies, word processing, Cell assembly 
activity, responses, activity, neurons, gamma-band 
responses, words, pseudowords.

0.000

NRC’s Extractor: cell assemblies, neurons, activity, words, cognitive process-
ing, gamma-band responses, EEG, Pulvermueller.

0.080

3. “On the Evolution of Consciousness and Language”

Author’s Keyphrases: consciousness, language, plans, motivation, evolution, 
motor system.

Microsoft’s Word 97: plan, consciousness, process, language, action. 0.545

Eric Brill’s Tagger: plans, action, consciousness, process, psychology, lan-
guage, planning mechanism, New York, episodic memory.

0.400

Verity’s Search 97: Psychology, plans, organize, Consciousness, plan-execut-
ing, behavior, actions, Language. 

0.429

NRC’s Extractor: plans, consciousness, language, behavior, planning mecha-
nism, organization, communication.

0.462
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corresponding email message. Since one individual created all of the keyphrases, this corpus is
likely to be more homogenous than the journal article corpus or the web page corpus. 

Table 13 shows the distribution of words per keyphrase for the email corpus. Like the journal
article corpus, most keyphrases have one to three words. The keyphrases in the email corpus tend
to be slightly longer than the keyphrases in the journal corpus. It seems likely that this is a
reflection of the tastes of the student, rather than an intrinsic property of the email corpus.
Table 14 indicates that there is relatively little variation in the statistical properties of the mes-
sages among the six employees. Table 15 shows that the student complied closely to the request
that the keyphrases should appear in the message.   

The data were randomly split into testing and training sets, by randomly selecting, for each
employee, 75% of the messages for training and 25% for testing. Table 13 shows that the train-
ing data have essentially the same statistical characteristics as the testing data. 

Table 16 shows the training and testing set performance of the four algorithms on the email
corpus. Again, NRC’s Extractor is about 30% ahead of the nearest competitor
( ). Eric Brill’s Tagger is close to Verity’s Search 97, and Microsoft’s
Word 97 has the lowest performance. 

Table 13: Number of words per keyphrase for the Email Message corpus. 

Words per Keyphrase

Percent of Keyphrases with Given Number of Words

Training Set
235 Messages

Testing Set
76 Messages

Whole Corpus
311 Messages

1 47.5% 44.3% 46.7%

2 34.0% 34.8% 34.2%

3 12.3% 12.8% 12.4%

4 4.8% 7.1% 5.3%

5 to 8 1.4% 1.0% 1.4%

1 to 8 100.0% 100.0% 100.0%

Table 14: Some statistics for each of the six employees. 

Employee
Number of 
Messages

Average Number of … ± Standard Deviation

Keyphrases per 
Document

Words per 
Keyphrase

Words per 
Document

#1 47 6.6 ± 5.0 2.0 ± 1.1 542 ± 606

#2 41 7.7 ± 6.7 1.7 ± 0.8 328 ± 374

#3 42 4.3 ± 3.8 1.5 ± 0.8 454 ± 698

#4 96 3.6 ± 2.1 1.8 ± 1.0 230 ± 243

#5 41 4.6 ± 4.3 1.6 ± 0.8 453 ± 805

#6 44 3.9 ± 2.5 2.1 ± 1.1 413 ± 674

All Six Employees 311 4.9 ± 4.3 1.8 ± 1.0 376 ± 561

0.225 0.174⁄ 1.293=
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4.5 Aliweb Web Pages
We collected 90 web pages using the Aliweb search engine, a public search engine provided by
NEXOR Ltd. in the UK.7 Most web search engines use a spider to collect web pages for their
index. A spider is a program that gathers web pages by expanding an initial list of URLs by fol-
lowing the hypertext links on the corresponding web pages. Aliweb is unusual in that it does not
use a spider to collect web pages; instead, it has an electronic fill-in form, where people are
asked to enter any URLs that they would like to add to the Aliweb index. Among other things,
this fill-in form has a field for keyphrases. The keyphrases are stored in the Aliweb index, along
with the URLs. 

We did a substring search with Aliweb, using the query string “e” (the most common letter in
English text) and setting the maximum number of matches at 1000. The intent of this search was
to gather a relatively large, random sample of web pages. We looked at each entry in the list of
search results and deleted duplicate entries, entries with no corresponding keyphrases, and
entries with clearly poor keyphrases. We were left with 90 distinct web pages with associated
keyphrases. It is our impression that the web pages were typically submitted to Aliweb by their
authors, so most of the keyphrases were probably supplied by the authors of the web pages. 

Table 17 shows the distribution of words per keyphrase for the web page corpus. No key-
phrases contain more than three words. In this corpus, keyphrases tend to contain fewer words
than in either the journal article corpus or the email corpus. Table 18 shows some statistics for
the corpus. Note that the web page corpus does not have an internal structure, in the sense that
the journal article corpus separates into five journals and the email corpus separates into six
recipients. About 70% of the keyphrases appear in the full text of the corresponding web pages.  

Table 15: Percentage of the keyphrases that appear in the corresponding email message.

Employee Number of Messages Keyphrases in Email

#1 47 97.4%

#2 41 97.5%

#3 42 98.9%

#4 96 97.1%

#5 41 98.9%

#6 44 98.8%

All Six Employees 311 97.9%

Table 16: Performance of the four algorithms on the Email Message corpus. 

Keyphrase Extraction 
Algorithm

Training Set Performance
235 Messages

Testing Set Performance
76 Messages

Precision Recall F-measure Precision Recall F-measure

Microsoft’s Word 97 0.109 0.111 0.110 0.145 0.149 0.147

Eric Brill’s Tagger 0.147 0.205 0.171 0.141 0.196 0.164

Verity’s Search 97 0.143 0.214 0.171 0.145 0.217 0.174

NRC’s Extractor 0.209 
± 0.016

0.268 
± 0.016

0.234 
± 0.008

0.200 
± 0.022

0.258 
± 0.018

0.225 
± 0.018
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In the following experiments, this corpus is used for testing only. Thus there is no division of
the data into testing and training sets. The keyphrases in this corpus seem subjectively to be of
lower quality than the keyphrases in the other corpora. Although they are useful for testing pur-
poses, they do not seem suitable for training. 

Table 19 shows the performance of the four algorithms on the web page corpus. Again
NRC’s Extractor has the best performance, but it is only 3% ahead of Microsoft’s Word 97
( ). The target keyphrases for this corpus are mainly (81% — see Table 17)
single words, which is ideal for Word 97, since it can only generate single word phrases. Verity’s
Search 97 has the third highest score, followed by Eric Brill’s Tagger. 

4.6 NASA Web Pages
We collected 141 web pages from NASA’s Langley Research Center. Their Technology Applica-
tions Group (TAG) has 141 web pages that describe technology they have developed.8 The web
pages are intended to attract the interest of potential industrial partners and customers. Each
page includes a list of keyphrases. 

Table 20 shows the number of words per keyphrase. This corpus has relatively more two-
and three-word keyphrases than the other corpora. Table 21 shows that the documents are rela-
tively short and relatively fewer keyphrases can be found in the bodies of the corresponding doc-
uments. This may explain why the four algorithms perform less well on this collection.  

Table 17: Number of words per keyphrase for the Aliweb Web Page corpus. 

Words per Keyphrase Percent of Keyphrases

1 81.0%

2 16.6%

3 2.4%

1 to 3 100.0%

Table 18: Some statistics for the Aliweb Web Page corpus. 

Description of Statistic Value of Statistic

Average Number of Keyphrases per Document ± Standard Deviation 6.0 ± 3.0

Average Number of Words per Keyphrase ± Standard Deviation 1.2 ± 0.5

Average Number of Words per Document ± Standard Deviation 949 ± 2603

Percentage of the Keyphrases that Appear in the Full Text 69.0%

Table 19: Performance of the four algorithms on the Aliweb Web Page corpus. 

Keyphrase Extraction Algorithm
Corpus: 90 Web Pages

Precision Recall F-measure

Microsoft’s Word 97 0.241 0.201 0.220

Eric Brill’s Tagger 0.128 0.153 0.140

Verity’s Search 97 0.192 0.200 0.196

NRC’s Extractor 0.237 0.218 0.227

0.227 0.220⁄ 1.032=
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We used this corpus for testing only. Table 22 shows the performance of the four algorithms.
NRC’s Extractor has the highest score, followed very closely by Eric Brill’s Tagger. Microsoft’s
Word 97 performed poorly because there were relatively few one-word phrases (34% — see
Table 20). 

4.7 FIPS Web Pages
We have gathered 35 web pages from the US government’s Federal Information Processing Stan-
dards (FIPS).9 These documents define the standards to which US government departments must
conform when purchasing computer hardware and software. Each document includes a list of
keyphrases. 

Table 23 shows the distribution of words per keyphrase in this corpus. There is an unusual
number of four-word keyphrases, because almost every document includes the keyphrase “Fed-
eral Information Processing Standard”. If we ignore this phrase, the distribution is similar to the
distribution in the Email Message corpus. From Table 24, we can see that the documents are rel-
atively long and that many of the keyphrases appear in the body of the corresponding document.  

This corpus was used for testing only. Table 25 shows the performance of the four algo-
rithms. NRC’s Extractor scored 6% above the nearest competitor, Verity’s Search 97
( ). 

Table 20: Number of words per keyphrase for the NASA Web Page corpus. 

Words per Keyphrase Percent of Keyphrases

1 34.1%

2 45.0%

3 16.7%

4 to 7 4.2%

1 to 7 100.0%

Table 21: Some statistics for the NASA Web Page corpus. 

Description of Statistic Value of Statistic

Average Number of Keyphrases per Document ± Standard Deviation 4.7 ± 2.0

Average Number of Words per Keyphrase ± Standard Deviation 1.9 ± 0.9

Average Number of Words per Document ± Standard Deviation 466 ± 102

Percentage of the Keyphrases that Appear in the Full Text 65.3%

Table 22: Performance of the four algorithms on the NASA Web Page corpus. 

Keyphrase Extraction Algorithm
Corpus: 141 Web Pages

Precision Recall F-measure

Microsoft’s Word 97 0.084 0.089 0.086

Eric Brill’s Tagger 0.120 0.179 0.143

Verity’s Search 97 0.109 0.177 0.135

NRC’s Extractor 0.135 0.156 0.145

0.208 0.196⁄ 1.061=
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4.8 Summary of Results
Table 26 summarizes the performance of the four algorithms on the five corpora. Only the test-
ing set results appear in the table. On average, NRC’s Extractor is 18% ahead of the nearest com-
petitor, Verity’s Search 97 ( ). NRC’s Extractor has the highest score on all
five corpora, although the margin is very slim on the NASA Web Page corpus. Verity’s Search 97
is in second place on three corpora, tying with Eric Brill’s Tagger on one of these three. 

5. Discussion
In this section, we give our interpretation of the experimental results. One way to view the
results in Table 26 is to consider the performance of each algorithm relative to NRC’s Extractor,
as we do in Table 27. In this table, we have shaded in grey the second highest performance for
each corpus. We see that Extractor is ahead by a large margin on the Journal Article and Email
Message corpora. These two corpora are most like the training documents (Section 4.2). On the
remaining three corpora, the margin between Extractor and second place is much smaller. These
three corpora are relatively unlike the training documents.

The results show that Extractor performs particularly well when the testing documents are
like the training documents. However, even when the testing documents are unlike the training

Table 23: Number of words per keyphrase for the FIPS Web Page corpus. 

Words per Keyphrase Percent of Keyphrases

1 43.7%

2 31.9%

3 9.2%

4 13.0%

5 2.2%

1 to 5 100.0%

Table 24: Some statistics for the FIPS Web Page corpus. 

Description of Statistic Value of Statistic

Average Number of Keyphrases per Document ± Standard Deviation 9.0 ± 3.5

Average Number of Words per Keyphrase ± Standard Deviation 2.0 ± 1.1

Average Number of Words per Document ± Standard Deviation 7025 ± 6385

Percentage of the Keyphrases that Appear in the Full Text 78.2%

Table 25: Performance of the four algorithms on the FIPS Web Page corpus. 

Keyphrase Extraction Algorithm
Corpus: 35 Web Pages

Precision Recall F-measure

Microsoft’s Word 97 0.246 0.136 0.175

Eric Brill’s Tagger 0.167 0.152 0.159

Verity’s Search 97 0.193 0.199 0.196

NRC’s Extractor 0.241 0.184 0.208

0.206 0.175⁄ 1.177=
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documents, Extractor performs at least as well as the best competing algorithm. Thus it seems
that Extractor is not overfitting the training data.

The results suggest that a wider range of training documents may enable Extractor to
increase its lead over the competing algorithms. The other two learning algorithms (Eric Brill’s
Tagger and Verity’s Search 97) are also likely to benefit from an increased range of training doc-
uments. In our experiments, the three learning algorithms each induced two models, one for the
Journal Article corpus and one for the Email Message corpus. During testing, the size of the
input document determined the selection of the model (Section 4.2). Short documents were pro-
cessed with the Email Message model and long documents were processed with the Journal Arti-
cle model. If we train the three learning algorithms with a wider range of documents, then we
will need a more sophisticated method for selecting the appropriate model. Ideally a single
model would be able to handle all varieties of documents. This is an area for future work.

On the surface, it might seem that our analysis is based on a relatively small sample. We
have a total of 362 testing documents (summing across the five corpora). However, the appropri-
ate level of granularity here is phrases, not documents. Viewed as a supervised learning problem,
the task is to classify each phrase as either keyphrase or non-keyphrase. In Table 28 we show the
size of the testing collection according to three different measures. The second column (corpus
size) lists the number of documents in each corpus. The third column (number of words) lists the

Table 26: Summary of performance of the four algorithms on the five corpora. 

Test Corpus Corpus Size

F-measure

Microsoft’s 
Word 97

Eric Brill’s 
Tagger

Verity’s 
Search 97

NRC’s 
Extractor

Journal Articles
(Testing Set Only)

20 0.127 0.173 0.173 0.223

Email Messages
(Testing Set Only)

76 0.147 0.164 0.174 0.225

Aliweb Web Pages 90 0.220 0.140 0.196 0.227

NASA Web Pages 141 0.086 0.143 0.135 0.145

FIPS Web Pages 35 0.175 0.159 0.196 0.208

Average 72 0.151 0.156 0.175 0.206

Table 27: Performance of the algorithms relative to Extractor. 

Test Corpus

F-measure as Percentage of NRC’s Extractor

Microsoft’s 
Word 97

Eric Brill’s 
Tagger

Verity’s 
Search 97

NRC’s 
Extractor

Journal Articles
(Testing Set Only)

57% 78% 78% 100%

Email Messages
(Testing Set Only)

65% 73% 77% 100%

Aliweb Web Pages 97% 62% 86% 100%

NASA Web Pages 59% 99% 93% 100%

FIPS Web Pages 84% 76% 94% 100%

Average 73% 77% 86% 100%
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number of words in each corpus. This total includes stop words (e.g., “the”, “if”) and counts
each repetition of a word. The fourth column is an estimate of the number of unique phrases in
the documents. It is only an estimate, because the number depends on what we mean by a phrase.
Each of the four keyphrase extraction algorithms contains a different definition of phrase,
implicit in the algorithm. We do not include repetitions of a phrase within a single document, but
we do include repetitions of a phrase across multiple documents. We estimate the number of
unique phrases as 25% of the number of (non-unique) words. Table 28 shows that our analysis is
actually based on a relatively large sample size, by the current standards of the machine learning
research community.  

6. Related Work
In this section, we discuss some related work. Although there are several papers that discuss
automatically extracting important phrases, none of these papers treat this problem as supervised
learning from examples. 

Krulwich and Burkey (1996) use heuristics to extract significant phrases from a document.
The heuristics are based on syntactic clues, such as the use of italics, the presence of phrases in
section headers, and the use of acronyms. Their motivation is to produce phrases for use as fea-
tures when automatically classifying documents. Their algorithm tends to produce a relatively
large list of phrases, so it has low precision, and thus low F-measure. 

Muñoz (1996) uses an unsupervised learning algorithm to discover two-word keyphrases.
The algorithm is based on Adaptive Resonance Theory (ART) neural networks. Muñoz’s algo-
rithm tends to produce a large list of phrases, so it has low precision, and thus low F-measure.
Also, the algorithm is not applicable to one-word or more-than-two-word keyphrases. 

Steier and Belew (1993) use the mutual information statistic to discover two-word key-
phrases. This approach has the same limitations as Muñoz (1996), when considered as a key-
phrase extraction algorithm: it produces a low precision list of two-word phrases. Steier and
Belew (1993) compare the mutual information of word pairs within specific topic areas (e.g.,
documents concerned with labour relations) and across more general collections (e.g., legal doc-
uments). They make the interesting observation that certain phrases that would seem to be highly
characteristic of a certain topic area (e.g., “union member” would seem to be characteristic of
documents concerned with labour relations) actually have a higher mutual information statistic

Table 28: Various ways of looking at the size of the testing data. 

Test Corpus Corpus Size
Total Number of 
Words (Including 

Duplicates)

Total Number of 
Phrases (Excluding 

Duplicates)

Journal Articles
(Testing Set Only)

20 87,000 21,750

Email Messages
(Testing Set Only)

76 28,600 7,150

Aliweb Web Pages 90 85,400 21,350

NASA Web Pages 141 65,700 16,425

FIPS Web Pages 35 246,000 61,500

Total 362 512,700 128,175
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across more general collections (e.g., “union member” has a higher mutual information across a
general legal collection than within the topic area of labour relations). 

Several papers explore the task of producing a summary of a document by extracting key
sentences from the document (Luhn, 1958; Edmundson, 1969; Marsh et al., 1984; Paice, 1990;
Paice and Jones, 1993; Johnson et al., 1993; Salton et al., 1994; Kupiec et al., 1995; Brandow et
al., 1995; Jang and Myaeng, 1997). This task is similar to the task of keyphrase extraction, but it
is more difficult. The extracted sentences often lack cohesion because anaphoric references are
not resolved (Johnson et al., 1993; Brandow et al., 1995). Anaphors are pronouns (e.g., “it”,
“they”), definite noun phrases (e.g., “the car”), and demonstratives (e.g., “this”, “these”) that
refer to previously discussed concepts. When a sentence is extracted out of the context of its
neighbouring sentences, it may be impossible or very difficult for the reader of the summary to
determine the referents of the anaphors. Johnson et al. (1993) attempt to automatically resolve
anaphors, but their system tends to produce overly long summaries. Keyphrase extraction avoids
this problem because anaphors are not keyphrases.10 Also, a list of keyphrases has no structure;
unlike a list of sentences, a list of keyphrases can be randomly permuted without significant con-
sequences.11 

Most of these papers on summarization by sentence extraction describe algorithms that are
based on manually derived heuristics. The heuristics tend to be effective for the intended
domain, but they often do not generalize well to a new domain. Extending the heuristics to a new
domain involves a significant amount of manual work. A few of the papers describe learning
algorithms, which can be trained by supplying documents with associated target summaries
(Kupiec et al., 1995; Jang and Myaeng, 1997). Learning algorithms can be extended to new
domains with less work than algorithms that use manually derived heuristics. However, there is
still some manual work involved, because the training summaries must be composed of sen-
tences that appear in the document, which means that standard author-supplied abstracts are not
suitable. An advantage of keyphrase extraction is that standard author-supplied keyphrases are
suitable for training a learning algorithm, because the majority of such keyphrases appear in the
bodies of the corresponding documents. Kupiec et al. (1995) and Jang and Myaeng (1997) use a
Bayesian statistical model to learn how to extract key sentences. A Bayesian approach may be
applicable to keyphrase extraction. 

Another body of related work addresses the task of information extraction. An information
extraction system seeks specific information in a document, according to predefined guidelines.
The guidelines are specific to a given topic area. For example, if the topic area is news reports of
terrorist attacks, the guidelines might specify that the information extraction system should iden-
tify (i) the terrorist organization involved in the attack, (ii) the victims of the attack, (iii) the type
of attack (kidnapping, murder, etc.), and other information of this type that can be expected in a
typical document in the topic area. ARPA has sponsored a series of Message Understanding
Conferences (MUC-3, 1991; MUC-4, 1992; MUC-5, 1993; MUC-6, 1995), where information
extraction systems are evaluated with corpora in various topic areas, including terrorist attacks
and corporate mergers. 

Most information extraction systems are manually built for a single topic area, which
requires a large amount of expert labour. The highest performance at the Fifth Message Under-
standing Conference (MUC-5, 1993) was achieved at the cost of two years of intense program-
ming effort. However, recent work has demonstrated that a learning algorithm can perform as
well as a manually constructed system (Soderland and Lehnert, 1994). Soderland and Lehnert
(1994) use decision tree induction as the learning component in their information extraction sys-
tem. We may view the predefined guidelines for a given topic area as defining a template to be
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filled in by the information extraction system. In Soderland and Lehnert’s (1994) system, each
slot in the template is handled by a group of decision trees that have been trained specially for
that slot. The nodes in the decision trees are based on syntactical features of the text, such as the
presence of certain words. 

Information extraction and keyphrase extraction are at opposite ends of a continuum that
ranges from detailed, specific, and domain-dependent (information extraction) to condensed,
general, and domain-independent (keyphrase extraction). The different ends of this continuum
require substantially different algorithms. However, there are intermediate points on this contin-
uum. An example is the task of identifying corporate names in business news. This task was
introduced in the Sixth Message Understanding Conference (MUC-6, 1995), where it was called
the Named Entity Recognition task. The competitors in this task were evaluated using the F-mea-
sure. The best system achieved a score of 0.964, which indicates that named entity recognition is
easier than keyphrase extraction (Krupka, 1995). This system used hand-crafted linguistic rules
to recognize named entities.12

Other related work addresses the problem of automatically creating an index (Fagan, 1987;
Salton, 1988; Ginsberg, 1993; Nakagawa, 1997; Leung and Kan, 1997). Leung and Kan (1997)
provide a good survey of this work. There are two general classes of indexes: indexes that are
intended for human readers to browse (often called back-of-book indexes) and indexes that are
intended for use with information retrieval software (search engine indexes). Search engine
indexes are not suitable for human browsing, since they usually index every occurrence of every
word (excluding stop words, such as “the” and “of”) in the document collection. Back-of-book
indexes tend to be much smaller, since they index only important occurrences of interesting
words and phrases. 

Search engine indexes often contain single words, but not multi-word phrases. Several
researchers have experimented with extending search engine indexes with multi-word phrases.
The result of these experiments is that multi-word phrases have little impact on the performance
of search engines (Fagan, 1987; Croft, 1991). They do not appear to be worth the extra effort
required to generate them. 

Since we are interested in keyphrases for human browsing, back-of-book indexes are more
relevant than search engine indexes. Leung and Kan (1997) address the problem of learning to
assign index terms from a controlled vocabulary. This involves building a statistical model for
each index term in the controlled vocabulary. The statistical model attempts to capture the syn-
tactic properties that distinguish documents for which the given index term is appropriate from
documents for which it is inappropriate. Their results are interesting, but the use of a controlled
vocabulary makes it difficult to compare their work with the algorithms we examine here. We
studied a small sample of controlled index terms in the INSPEC database, and we found that
very few of these terms appear in the bodies of the corresponding documents.13 It seems that
algorithms that are suitable for automatically generating controlled index terms are substantially
different from algorithms that are suitable for automatically extracting keyphrases. It is also
worth noting that a list of controlled index terms must grow every year, as the body of literature
grows, so Leung and Kan’s (1997) software would need to be continuously trained.

Nakagawa (1997) automatically extracts simple and compound nouns from technical manu-
als, to create back-of-book indexes. Each compound noun is scored using a formula that is based
on the frequency of its component nouns in the given document. In his experiments, Nakagawa
(1997) evaluates his algorithm by comparing human-generated indexes to machine-generated
indexes. He uses van Rijsbergen’s (1979) E-measure, which is simply 1 minus the F-measure
that we use in our experiments. His E-measure, averaged over five different manuals, corre-
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sponds to an F-measure of 0.670. This suggests that back-of-book indexes are easier to generate
than keyphrases. Two factors that complicate the comparison are that Nakagawa (1997) uses Jap-
anese text, whereas we use English text, and Nakagawa’s (1997) human-generated indexes were
generated with the assistance of his algorithm, which tends to bias the results in favour of his
algorithm. 

The main feature that distinguishes a back-of-book index from a keyphrase list is length. As
Nakagawa (1997) observes, a document is typically assigned  keyphrases, but a back-
of-book index typically contains  index terms. Also, keyphrases are usually intended to
cover the whole document, but index terms are intended to cover only a small part of a docu-
ment. A keyphrase extraction algorithm might be used to generate a back-of-book index by
breaking a long document into sections of one to three pages each. A back-of-book index gener-
ation algorithm might be used to generate keyphrases by selecting index terms that appear on
many pages throughout the book. Another distinguishing feature is that a sophisticated back-of-
book index is not simply an alphabetical list of terms. There is often a hierarchical structure,
where a major index term is followed by an indented list of related minor index terms. 

7. Conclusion
We argued in the Introduction that there are many applications for keyphrases. However, a quick
estimate suggests that less than half of all journals ask their authors to supply keyphrases. On the
web, keyphrase are very rare. Some web pages use the META tag in HTML to provide key-
phrases, but these phrases are typically intended to be read only by automated web crawlers, col-
lecting pages for search engines. In general, the META tag is used to provide a long list of
weakly relevant terms, designed to increase the likelihood that the given page will appear near
the top of the hit list for any weakly related query. These are not keyphrases in the sense that we
mean here; they are not suitable for many of the applications we considered in the Introduction. 

Since most documents do not currently have associated keyphrases, and it is generally not
economical to add keyphrases by hand, there is a need for automatic keyphrase extraction algo-
rithms. We believe that NRC’s Extractor, while not perfect, is performing at a level that makes it
suitable for many of the applications that we listed. This report provides evidence that, if you
need automatic keyphrase extraction, Extractor is the best choice. 

Notes
1. Microsoft and Word 97 are trademarks or registered trademarks of Microsoft Corporation.

Verity and Search 97 are trademarks or registered trademarks of Verity Inc.
2. We used an implementation of the Porter (1980) stemming algorithm written in Perl, by Jim

Richardson, at the University of Sydney, Australia. This implementation includes some
extensions to Porter’s original algorithm, to handle British spelling. It is available at http://
www.maths.usyd.edu.au:8000/jimr.html. For the Lovins (1968) stemming algorithm, we
used an implementation written in C, by Linh Huynh. This implementation is part of the MG
(Managing Gigabytes) search engine, which was developed by a group of people in Australia
and New Zealand. The MG code is available at http://www.kbs.citri.edu.au/mg/. 

3. These part-of-speech tagging conventions were developed for the Penn Treebank Project.
This project is the work of the Linguistic Data Consortium, which is based at the University
of Pennsylvania. More information is available at http://www.ldc.upenn.edu/ldc/. 

4. Eric Brill’s part-of-speech tagger is written in C. It is available at http://www.cs.cmu.edu/afs/
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cs/project/ai-repository/ai/areas/nlp/parsing/taggers/brill/0.html and also at ftp://
ftp.cs.jhu.edu/pub/brill/Programs/. 

5. A demonstration version of NRC’s Extractor (patent pending) is available at http://
ai.iit.nrc.ca/II_public/extractor/. The demonstration version has been trained already; it does
not allow the user to make any adjustments. Extractor has been licensed to Tetranet Software
Inc. For more information about Tetranet Software, see http://www.tetranetsoftware.com/.

6. Thanks to Elaine Sin of the University of Calgary for generating the keyphrases and for her
help with the experiments with the email corpus. 

7. The Aliweb search engine is available at http://www.nexor.com/public/aliweb/search/doc/
form.html. 

8. The NASA Langley web pages are available at http://tag-www.larc.nasa.gov/tops/
tops_text.html. 

9. The FIPS web pages are available at http://www.itl.nist.gov/div897/pubs/.
10. There may be some exceptions, such as the use of the phrase “the Mob” to refer to an inter-

national crime organization. 
11. Some journals ask their authors to order their keyphrases from most general to most specific.

In this report, we have ignored the order of the keyphrases. For most of the applications we
have considered here (Section 1), the order is not important. NRC’s Extractor attempts to
order the keyphrases it produces from most important to least important. 

12. It is now available as a commercial product, called NetOwl Extractor, from IsoQuest. See
http://www.isoquest.com/. 

13. The INSPEC database is the leading English bibliographic database for scientific and techni-
cal literature in physics, electrical engineering, electronics, communications, control engi-
neering, computers and computing, and information technology. It is produced by the
Institution of Electrical Engineers. Records in the INSPEC database have fields for both con-
trolled vocabulary index terms (called descriptors) and free index terms (called identifiers).
More information is available at http://www.iee.org.uk/publish/inspec/inspec.html. 
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