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Abstract

A summary of brain theory is given so far as it is contained within the
framework of Localization Theory. Di�culties of this \conventional the-
ory" are traced back to a speci�c de�ciency: there is no way to express
relations between active cells (as for instance their representing parts of
the same object). A new theory is proposed to cure this de�ciency. It
introduces a new kind of dynamical control, termed synaptic modulation,
according to which synapses switch between a conducting and a non-
conducting state. The dynamics of this variable is controlled on a fast
time scale by correlations in the temporal �ne structure of cellular signals.
Furthermore, conventional synaptic plasticity is replaced by a re�ned ver-
sion. Synaptic modulation and plasticity form the basis for short-term
and long-term memory, respectively. Signal correlations, shaped by the
variable network, express structure and relationships within objects. In
particular, the �gure-ground problem may be solved in this way. Synaptic
modulation introduces exibility into cerebral networks which is necessary
to solve the invariance problem. Since momentarily useless connections
are deactivated, interference between di�erent memory traces can be re-
duced, and memory capacity increased, in comparison with conventional
associative memory.

�Originally published July 1981 as Internal Report 81-2, Dept. of Neurobiology, Max-

Planck-Institute for Biophysical Chemistry, 3400 G�ottingen, W.-Germany
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1 Introduction

The purpose of this paper is to point out a speci�c de�ciency in existing brain
theory and to propose a way in which this gap could be �lled. Although it
leaves open a number of technical questions and presents more a program than
an accomplished theory, at least a language is developed to describe processes
from the cellular to the cognitive level.

Searching for the function of the brain in all generality may be regarded as a
venture bound to fail in view of the diversity of function of even a single brain.
It is clear that any answer to the question can only be of a very general kind,
much as a \general theory of painting" can only be a description of the process
by which pigments are prepared and applied to canvas with a brush, and could
say nothing about art, subject, style and interpretation.

There is every reason to believe in the existence of general principles govern-
ing the function of the brain. Cerebral anatomy is surprisingly homogeneous in
spite of the diversity of functional modalities represented in its di�erent parts.
The rapid cultural development of man has created �elds of mental activity
for which the brain cannot have been prepared by phylogeny in any detailed
way. Both arguments seem to force the conclusion that the brain is governed
by general principles of organization.

2 Conventional Brain Theory

The literature on brain theory is vast and cannot be summarized here. This
chapter concentrates on a set of ideas which is fairly consistent in itself and with
experiments. My account passes over most of the rich and sometimes ingeneous
detail to which these ideas have been worked out in the literature. However, I
try to bring out points where the ideas fail.

2.1 Localization Theory

2.1.1 The Macroscopic Level

Observation of behavioural defects caused by localized lesions of the brain has
�rmly established that di�erent parts of the brain are preoccupied with di�erent
modalities, topics of mental activity [Luria, 1973]. Examples are vision, audi-
tion, motor control, basic emotions and drives (e.g. aggression, pleasure and
hunger), various aspects of speech, and long-term planning of action. The abil-
ity to lay down long-term memory can be destroyed by a speci�c local lesion;
however, already existing long-term memory is not a�ected thereby. Memory
traces and the ability to recall seem to be localized together with the modalities
to which they refer.

Several kinds of hierarchy can be construed on the basis of the modalities.
For instance, sleep-waking regulation, drives, emotions and planning all exert
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global control over the rest of the mind. However, I will treat all localized
topics as on the same level. The term hierarchy will be reserved to forms of
cooperation of localized objects.

There are aspects of the mind's function which can not be localized in parts
of the brain. Among these are consciousness and reason.

2.1.2 The Microscopic Level

In recent decades localization theory has been re�ned down to the microscopic
level. The information carrying units are thought to be nerve cells. These
produce signals in the form of short (1 msec) electro-chemical pulses, which can
be recorded with the help of �ne electrodes.

How are these signals to be interpreted? For the more central stages of the
brain neurophysiology has answered this question in an operational way. In a
vast majority of experiments signals are evaluated in terms of a peri-event time
histogram. An event is constituted by a stimulus presented to the brain or a
response evoked from the brain. The time shortly before and after the event is
divided into a raster of small intervals (typically 1 to 10 msec). The event is
repeated and the mean number of spikes falling into each interval is recorded.
The mean frequency reacts to the event, if at all, by a short increase or decrease.
The art of the experimenter consists in �nding an event which inuences the
activity of the cell he is recording from. In this way a topic can be assigned to
the cell. A typical topic is \an edge of light with a particular spectral component
moving in a particular direction over a point of the retina".

The success of neurophysiology with this type of experiment has been tremen-
dous. It is true, not all of brain has been mapped in this way, and in fact it may
not be practical to do so, because some of the events may be di�cult to �nd.
Nevertheless, many scientists are ready to extrapolate the microscopic version
of localization theory to all of the central nervous system. In this ultimate form
localization theory can be summarized as \one cell - one topic": cells are the
atoms of meaning.

2.1.3 The Brain as a Projection Screen

The topology of the periphery is preserved in the central representations, e.g.
neighboring points of a sensory surface project to neighboring points on a central
sheet of cells. To each point of a sense organ (retina, cochlea, skin) there cor-
responds a small region centrally, often called hypercolumn. Single cells in that
region are specialized to particular combinations of quality values describing the
point of the sensory surface (e.g. spectral distribution, direction of movement,
stereo-depth).

A single peripheral surface is represented by several central �elds, which may
vary in their emphasis on di�erent qualities, and which usually are connected
by topologically ordered �bre projections.
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Again, this picture has to be extrapolated to cover all of brain. It presents
an experimental challenge to �nd the precise terms of this extrapolation. Let
us suppose it will turn out to be possible. Then the physiological-anatomical
picture is that of a screen on which patterns appear corresponding to input,
output and internal processing (e.g. emotional, planning), similar to the moving
pictures on a colour television screen.

2.2 The Problem of Nervous Integration

2.2.1 The General Question

The picture of the brain as a projection screen is very suggestive, and in its prin-
cipal traits it is well founded in experimental observation. However, the picture
poses a problem, that of nervous integration: in what way do the di�erent pat-
terns of activity interact? To be sure, the machinery for cellular interactions is
conspicuously there: each cell is contacted on its dendritic and somatic mem-
brane by many synapses through which its membrane potential can be raised
or lowered upon arrival of nerve impulses. The axonal �bres and branches for
the transport of impulses from cells to synapses �ll the larger part of the brain's
volume. The nervous integration question more precisely asks how this machin-
ery is organized. The problem calls for new concepts, and at present it cannot
be attacked experimentally.

One can train or ask a subject to react to the presentation of an apple by
pressing a button: on command the subject can organize its brain so that upon
the appearance of a certain class of patterns in the visual modality another
pattern of a certain structure is created in the motor modality. This simple
everyday example alone combines in it several complex organization processes
which will now be named.

2.2.2 Representation of Structured Objects

In our cultural world we form symbols of a higher order by the juxtaposition
(in time or space) of symbols of a lower order, e.g. words out of letters or
phonemes. According to localization theory neurons are the basic symbols in
the brain. Their position is �xed and cannot be used to form groupings. Another
code is required to represent associtation of cells into patterns forming symbols
on a higher level.

When we analyse a complex visual scene it is important to break it down
into patterns which are simple enough so that we can hope to recognize them,
e.g. identify them with objects we saw before. A single pattern in turn has to
be broken down into subpatterns, possibly through several stages, e.g. man -
arm - hand - �nger - joint (cf. [Sutherland, 1968]). It should be possible to
group neurons into such a hierarchy of patterns in a exible way, without the
introduction of new hardware for new patterns.
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2.2.3 Invariance

It is an everyday experience that there are objects of a relatively �xed structure,
which a�ect our senses in an enormously variable way. E.g. the picture of an
apple can vary in perspective and in position and size on the retina, depending
on the relative coordinates of eye and apple. It is important to reduce this
variability to an invariant representation of the intrinsic structure of the object,
in order to be able to generalize, i.e. draw the same conclusions from the per-
ception of an object, irrespective of variations in its appearance [cf. Sutherland,
1968]. An analogous discussion applies to motor patterns.

2.2.4 Memory

There must be a physical basis for the gradual acquisition of information. We
usually discuss it under two aspects. According to one the brain changes to
acquire new abilities. This will be the subject of the subsequent paragraph.
The other is the ability of the brain to recall complex patterns which were
active at an earlier time. With this memory in the narrow sense, recall should
be evoked by an activity pattern or an input which are su�ciently close to the
original pattern.

2.2.5 Self-Organization

Self-organization refers to the ability of the brain to organize structures and
activity patterns. The term \organize" implies that the process is directed
toward some useful goal, which still has to be de�ned. A goal we already
mentioned is the retention of earlier states of activity. In this way the brain can
become independent of external sources of information and can build models
for phenomena. Other goals will be de�ned in later sections.

The ability to organize itself sets the brain in sharp contrast to the computer,
which relies entirely on a human programmer. It also is the basis of the reliability
of the brain, being able to \repair" deviations from an optimal con�guration.
Self-organization puts heavy constraints on possible functional schemes for the
brain.

2.2.6 Control of Action

The metaphor of the brain as a projection screen assigns a passive role to it. In
reality we know that the brain is spontaneously active: The \projector" is an
integral part of it, to stay with the metaphor. Accordingly, a solution to the
nervous integration problem has to include a scheme for the control of processes
and the global integration of action.
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2.3 Proposed Solutions

Localization theory, section 2.1, proposes a basic frame into which any functional
scheme for the brain has to be �tted. It poses the nervous integration problem,
some aspects of which have been presented in 2.2. This section discusses some
potential solutions which have been proposed in the literature, and points out
some problems which they do not solve.

2.3.1 Synaptic Plasticity

A synaptic connection can be characterized by the size of the postsynaptic
conductance transient (PCT) which is produced in the postsynaptic cell upon
arrival of a nerve impulse in the presynaptic �bre. PCT size may slowly change
under the control of the neural signals on the presynaptic and the postsynaptic
side. This leads to a feedback situation: PCT size (together with the presy-
naptic signal) has inuence on the postsynaptic signal, which in turn controls
the change of the PCT. If this feedback is positive and if the changes impressed
on the PCT are permanent (non-decaying) one speaks of synaptic plasticity.
The formation of new synapses may be included in the de�nition of synaptic
plasticity [Ari�ens Kappers et al., 1936]. In the case of an excitatory synapse
the EPCT (excitatory PCT) is increased (or a synapse established) after co-
incidence of neural activity on the presynaptic and postsynaptic side. In the
framework of localization theory this is a straight-forward implementation of the
idea of an association and of Pavlows conditioned reex. It is usually assumed
that plastic synaptic changes need seconds to become established and hours to
consolidate (show full e�ect and stabilize). Synaptic plasticity has been shown
experimentally to exist [Bliss and Gardner-Medwin, 1973, Baranyi and Feher,
1981], although it is, in the presence of controlling signals, intrinsically di�cult
to demonstrate its non-decaying nature.

The instability which is caused by positive feedback has to be controlled
somehow. Several schemes have been proposed: an upper limit to the synaptic
weight (PCT size for a single pulse); limitation of the sum of all synaptic weights
converging on a cell or diverging from a cell; and stabilization of the mean level
of activity in the postsynaptic cell. The latter says that if the time average (over,
say, several hours) of cell activity exceeds a certain value either all excitatory
synapses converging onto the cell are reduced in weight by a certain factor (and
if this average is too low the synapses are increased in weight), or the inhibitory
synapses are increased in weight.

Synaptic plasticity is thought to be the basis of memory. The positive feed-
back involved in it leads to the kind of instability that is required for pattern
generation and self-organization. In this sense synaptic plasticity is analogous
to self-reproduction in biological evolution.
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2.3.2 Feature Detectors

In the context of theoretical discussions within the frame of localization theory
a cell in the sensory part of the brain is termed a feature detector, feature being
the term for the event by which the cell is triggered [see e.g. Sutherland, 1968].
Feature detectors may di�er in level. On the lowest level they respond to the
signal of a peripheral sensory cell. On the highest conceivable level feature
detectors respond to the appearance of entire objects [Barlow, 1972]. They are
then referred to as cardinal cells. Feature detectors of intermediate level are
found experimentally (a typical feature has been described in 2.1.2).

Fairly speci�c feature detectors are proposed in many models of perception
as a basis for the discrimination between complex patterns. The postulated
level of feature detectors is regulated by a trade-o�. The higher the level (the
more speci�c the cells) the smaller the overlap of the sets of cells responding
to di�erent patterns and the easier the task of discriminating between them.
High-level features, on the other hand, mean large numbers of cells, less exi-
bility (because speci�c trigger features must be adapted to particular pattern
universes) and low duty cycle for each particular cell.

Many models employ cardinal cells because they seem to solve the problem
indicated in 2.2.2, representation of complex objects. In reality that problem is
not solved by cardinal cells. Either a cardinal cell is able to represent a whole
class of objects. Then the individual object cannot be represented in detail,
because the signal of a single cardinal cell is too crude. Or there has to be a
cardinal cell for each pattern (a person with a new facial expression constituting
a new pattern!). The number of cardinal cells required would then be forbidding
(even if the invariance problem 2.2.3 had been solved somehow), and it would be
impossible to recognize new patterns which di�ered from familiar ones merely in
detail. In addition, a cardinal cell would have to be silent (possibly for decades)
until its pattern appeared again, but there is every reason to believe that a cell
which is forced to stay silent for a day (e.g. by dea�erentation) will change its
synaptic make-up to become active again.

From this discussion it follows that high-level feature detectors do not solve
any of the nervous integration problems. Low-level feature detectors, on the
other hand, are an experimental fact and have to be the building blocks of any
theory under the roof of localization theory.

2.3.3 Cell Assemblies

Stimulation of some part of the brain will switch on many cells simultaneously.
It therefore appears natural in the context of localization theory to regard sets
of simultaneously activated nerve cells as the basic internal objects. The ner-
vous integration problem requires that such sets should not just be passively
activated by stimuli, that they should rather be dynamical units, integrated by
interactions. The cell assembly [Hebb, 1949] is a model idea describing a certain

9



system of such interactions.
A cell assembly is a set of neurons cross-connected such that the whole

set is brought to become simultaneously active upon activation of appropriate
subsets, which have to be su�ciently similar to the assembly to single it out
from overlapping others. In view of the uctuating nature of cellular signals
activation of cells in an assembly is simultaneous only on a coarse time scale,
longer than, say, 50 msec.

Assembly reconstitution, or its completion from parts, has been proposed as
the fundamental process of brain function. Important special cases would be the
attachment of abstract symbolic representations to sensory patterns (recogni-
tion), the reactivation of supplementary information stored by past experience,
and the generation of a response pattern which has previously been associated
with a stimulus. According to this view, the action of the brain is controlled
by a succession of such completion processes, alternating with the (partial) de-
cay of assemblies (due to some delayed disfacilitation) leaving residues which,
together with new stimuli, form the germs for other assemblies.

Analysis of long periods of brain activity would reveal a hierarchy of sub-
patterns which appear as part of many assemblies. The dynamics of assembly
completion possibly could be interpreted as interaction among subassemblies,
analogous to excitation and inhibition exchanged between single cells. Sub-
assembly interactions would have to be realized with the help of the synaptic
interactions of the constituent cells.

It is an unsolved question whether assembly interactions with these speci�-
cations are possible [see Legendy, 1967]. However, the assembly concept has a
more fundamental aw. When a particular assembly is active, there is no basis
on which it could be analysed into subassemblies: it just consists of a mass of
simultaneously active cells. (The above analysis into subassemblies was only
possible in a Gedankenexperiment.) This must lead to serious ambiguities. For
instance, when we see a visual pattern, it is not only necessary to know which
collection of features apply to it, but also in which way they are grouped. Even
if the feature set is so complete that it can only be combined in one way into
an image it is important to know this combination. (When we see two people
in the street we usually don't confuse which jacket is worn together with which
trouser by one of them.) In particular, it must be possible to represent the
result of a successful �gure-ground discrimination.

2.3.4 Associative Memory

Assemblies are supposed to be formed by synaptic plasticity. A pair of simul-
taneously stimulated cells establishes or strengthens its synaptic connection (in
case there is a �ber bridging their distance). If this happens to many pairs
of cells in a repeatedly activated pattern an assembly can be formed. Several
detailed schemes for this process have been proposed and analyzed under the
name of associative memory. Analysis has been made possible by simplifying
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assumptions (e.g. linearity, only one exchange of interactions, small overlap). It
has been shown that many overlapping assemblies can be stored and retrieved
in the same network without too much interference between them.

The lack of internal structure in assemblies leads to a serious di�culty of
associative memories: each memory trace recalls a �xed subset of cells without
possible variation apart from noise. However, cognitive psychology makes it ob-
vious that realistic memory traces often correspond to a network of subpatterns
connected in a exible way to �t a particular situation.

2.3.5 Visual Perception, Perceptrons

Visual perception presents two outstanding problems, �gure-ground discrimina-
tion and invariants extraction. The perceptron approach [Rosenblatt, 1961] to
perception, which makes use of most of the ideas reviewed so far, demonstrates
quite explicitely the inadequacies of those ideas to solve the two problems men-
tioned.

Perceptrons are meant to be models for sensory subsystems of the brain.
A typical perceptron consists of threshold units (neurons) of three kinds, S,
A and R, i.e. sensory, association and response units. These are arranged in
layers which are sequentially connected: S ! A! R. Cross-connections within
a layer, or even backward connections may also exist. The A-units play the
role of feature detectors. The A ! R connections are modi�able by synaptic
plasticity.

The prominent feature of a perceptron is its ability to reorganize itself in
response to the repeated activation of a certain subset s of S-units such that
subsequently a speci�c R-unit �res precisely when s is presented.

The invariance problem calls for a single R-unit to respond to the presen-
tation of a pattern p in any position in S. Rosenblatt proposed to solve the
problem by the introduction of a second layer A0 of feature detectors, sand-
wiched between A and R: S ! A ! A0 ! R. A unit a0 in A0 responds to
the presentation of a certain feature in arbitrary position within S. Unit a0

is enabled to do so by the presence of units ai in A, i = 1; : : : ; Na0 , each of
which responds to the particular feature in a position xi in S. All units ai have
a connection to a0, which �res if at least one cell of the set faig is activated.
Many di�erent feature detectors analogous to a0 are present in A0. The pattern
p will activate the same subset of A0, independent of its position in S. A spe-
ci�c R-unit can now be trained to react to this subset. Activity in a unit of A0

makes a statement about the presence of a particular subpattern (or feature)
of p. In order to generalize over position in S information about the position
of the subpattern is discarded. If the features are su�ciently complex it may
be possible in principle to recover the relationships of overlap and reconstruct
the full pattern p, in a way analogous to solving a jigsaw puzzle. This recon-
struction, however, is nowhere done in a perceptron, and the recognition of p
has to be done on the basis of the uncorrelated feature set represented by the
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active units in A0. This is only possible if the features represented in A0 are of
su�ciently high level, which means that they are very numerous, or specialized
to a particular universe of patterns in S, or both. The machinery needed, par-
ticularly in A, is gigantic (as is demonstrated by a recent simulated version of
a perceptron [Fukushima, 1980]). It is evident that an enormous improvement
over the perceptron could be made with the help of a scheme by which the
overlap conditions of subpatterns would be expressed.

An R-unit can supress all a0 units not belonging to its own trigger set if
appropriate inhibitory back-couplings R! A0 are present. Rosenblatt proposed
to solve the selective-attention problem in this way. He recognized, however,
that this is no solution to the general �gure-ground problem, since learning
and recognition of a �gure have to precede the suppression of its background.
He admitted that new concepts were needed for the problem of �gural unity
[Rosenblatt, 1961, p.555]. Again, this calls for a scheme by which cells in A0

could express their relatedness in terms of separate �gures.

3 The Correlation Theory of Brain Function

3.1 Modi�cations to Conventional Theory

This section introduces i) a scheme for the interpretation of cellular signals
which is a re�nement of the one given in 2.1.2, and ii) a short-term analogue of
synaptic plasticity.

3.1.1 Correlations between Cellular Signals

In paragraph 2.1.2 I discussed the experimental procedure by which the corre-
lation of a cellular signal to an event is detected. The averaging in the peri-
event-histogram method is important to get rid of an apparently random time
structure within the cellular response. This time structure will now become
important.

Consider the spike trains emitted by two cells in the central nervous system.
These signals may be evaluated in terms of a correlation 1 . It is supposed to
measure the similarity between the two signals and should at least discriminate
between synchrony and asynchrony in their temporal �ne structure (with a
resolution of 2 or 5 msec). It has to be assumed that the trivial state in which
all cells are globally correlated with each other is suppressed by a system of
inhibitory connections which permits only a small fraction of all cells to be
active at any one time.

1The term 'correlation' is not meant to imply a speci�c mathematical formulation.
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3.1.2 Synaptic Modulation

The synaptic connection between brain cells i and j is characterized by a
strength wij . It is a measure for the size of the PCT evoked in cell i upon
arrival of a spike from cell j. I here postulate that the weight wij of an exci-
tatory synapse depends on two variables with di�erent time-scale of behaviour,
aij and sij . The set fsijg constitutes the permanent network structure. Its
modi�cation (synaptic plasticity) is slow and is the basis for long-term memory.
The new dynamic variable aij , termed state of activation of synapse ij, changes
on a fast time-scale (fractions of a second) in response to the correlation be-
tween the signals of cells i and j. With no signals in i and j, aij decays towards
a resting state a0, within times typical for short-term memory. With strong
correlation between the signals the value aij changes such that wij increases
(activation). With uncorrelated signals aij changes such that wij decreases to
zero (inactivation). This behaviour of the variable aij will be referred to here
as synaptic modulation. It can change the value of aij signi�cantly within a
fraction of a second. Not all synapses from a given cell to other cells can grow
at the same time, since the inhibitory system referred to in 3.1.1 prevents those
target cells from all �ring simultaneously; also the synapses received by a cell
compete with each other, for the same reason. The physical basis for synaptic
modulation is not clear; it might correspond to the accumulation or depletion
of some chemical substance at a strategic location in or near the synapse. The
relevant postsynaptic signal is here taken to be the cell's output spike train, but
it may also be a more local dendritic signal. As a simple example one could
assume wij = aijsij with 0 � aij � 1 and a resting state a0 within the interval
(0; 1).

3.1.3 Re�ned Plasticity

The variables fsijg are controlled by what I shall call re�ned synaptic plasticity:
strong correlation between the temporal �ne structure in the signals of cells i
and j causes sij to grow; this growth may be thought to be limited in the usual
way (e.g. by sum-rules). Absence of correlation does not directly reduce sij .

The analogy between synaptic modulation and re�ned plasticity is apparent.
Both are controlled by correlations in the signals of cell pairs in a positive
feedback fashion. They di�er in time-scale of decay (seconds for aij , decades
to permanent for sij), and of build-up; and they di�er in the way they are
controlled. The aij react only to the two locally available signals and are both
increased and decreased by correlations and their absence. The sij are only
increased by local signals and are decreased in response to the growth of other
synapses.
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3.2 Elementary Discussion

3.2.1 Sources of Correlations

Correlations between the signals of cells can be caused by time structure in
sensory signals exciting the cells. However, there is a more important source of
correlations. Time structure in cellular signals can be created spontaneously,
e.g. by a tendency of cells to form bursts of spikes. Correlations arise if this
time structure is transmitted to other cells by excitation or inhibition.

3.2.2 E�ects of Correlations

One e�ect of the correlation between signals in cells i and j was already men-
tioned: activation of the synaptic weight wij . Speci�c connection patterns
(e.g.reex arcs) can be created in this way, and a pluripotent network can be
turned temporarily into a specialized machine.

Secondly, a correlation between the signals of cells i and j enables them to
positively interact to excite a third cell k (if wki, wkj 6= 0): the individual signals
may not be able to transcend the threshold of cell k, whereas simultaneously
arriving signals may. Two subnetworks with uncorrelated activity patterns may
coexist without interfering.

Thirdly, correlations control (re�ned) synaptic plasticity. The absence of
correlations between two activity objects, even if they sometimes coexist within
the same span of a second, keeps them from developing mutual synapses.

3.2.3 Correlation Dynamics

The dynamical system introduced so far for the cellular signals and temporary
synaptic strengths forms a basis for organization. The correlation between the
signals in cells i and j and the states of activation aij and aji of their common
synapses form a positive feedback loop, driving aij and aji away from the resting
state a0, and the signal pair away from a structureless uncorrelated state. In
this way correlations can stabilize their own existence and cease to be transitory
and shaky statistical epiphenomena. Di�erent synapses on one cell compete with
each other, as was pointed out above, and certain sets of synapses cooperate with
each other. For instance, the direct pathway from cell i to cell j cooperates with
the indirect pathway from i to a cell k to cell j. These dynamical interactions
between synapses and corresponding signals tend to stabilize certain optimal
connectivity patterns (together with their corresponding signal patterns). These
can be characterized locally as having sparse connections (to avoid competition),
which are arranged so as to have optimal local cooperation between them.

The slow component sij of synaptic strength is plastically modi�ed only by
strong correlations, i.e. mainly when connectivity forms an optimal pattern.
Therefore the structure of the permanent network tends to be a superposition
of optimal connectivity patterns. When input to the network activates certain
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cells (possibly in a correlated fashion), a dynamical process of organization sets
in, as a result of which synapses forming an optimal network are fully activated
and all other synapses are deactivated.

3.3 Network Structures

It is not clear how optimal connectivity patterns can be characterized globally.
This chapter proceeds on the basis of the conjecture that they have a topological
structure to them, the neighbourhoods of which may correspond to overlapping
sets of co-active cells. (Mathematical rigour is not attempted in the notation.)

3.3.1 The Topological Network

Let S be a set of n cells, E an appropriate space of low dimensionality, m a map
assigning to each cell of S a point in E, and p a natural number, p � n. The
topologically structured network ~S = (S;m;E; p) is constructed by connecting
each cell of S with its p nearest neighbors in E by excitatory synapses. I will
refer to ~S simply as a topological network.

A topological network embedded in ordinary space is a very common idea (cf.
e.g. [Beurle, 1955]). The point made here is that there is no need for a network
to stay with this natural embedding. This has the important consequence that
there is a huge number of topological networks on the same set S, even if E, p
and the set of assigned points in E are kept �xed. Namely, instead of m one
can consider Pm, with any permutation P of the assigned points in E. See �g.
1 for an example.

3.3.2 The Correlate of a Topological Network

Before one can deduce the dynamical behaviour of the network activity much
more detail has to be speci�ed. However, we are here only interested in certain
aspects of the dynamics and a few assumptions su�ce.

Let synaptic weights be constant for the moment. Since an activated excita-
tory synapse between two cells creates correlations in their signals, \neighbors"
in a topological network are correlated. The topological aspect is important
since on the one hand the topological network is cooperative: each synapse is
helped by others in establishing a correlation (e.g. 1-3 and 1-2-3 in �g. 1a
cooperate); on the other hand, the network can still be decomposed into many
weakly coupled subnetworks, in contrast to globally cross-connected networks.

Two kinds of signal pattern can exist in a topological network. In one there
are waves running through the network (see e.g. [Beurle, 1955], for an example
see �g. 1). The di�use network of inhibition keeps the cells from �ring in global
simultaneity. The other kind of pattern stresses the analogy to the spin-lattice
of a ferromagnet [Little, 1974]: a cell randomly switches between an active and
a silent state. In doing so it is inuenced by its \neighbors". If a majority
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of neighbors is active, the cell will also be more likely to �re, if a majority of
neighbors is silent, the cell will more likely be silent. The strength of coupling
between the behaviour of the cell and its environment can be characterized by
a parameter T , analogous to the temperature of the spin lattice. For T = 0 the
coupling is rigid: all cells in the network switch up and down simultaneously. For
in�nite T there is no coupling and cells are independent. We are interested here
in intermediate values of T , for which a cell is correlated with its neighbors and
this correlation decreases over a characteristic \distance" which is a fraction of
the \diameter" of the network. With either kind of cellular activity the structure
of the network is expressed in the signals by correlations. Such a signal structure
will be called a correlate.

Now allow the synaptic activities faijg to vary. Consider a set C of cells
which are excited by input activity. Suppose C is part of several sets of cells
S0; S00; : : : which are internally connected by topological networks ~S0; ~S00; : : :. If
these topologies are independent and all synapses are in the resting state, C
is globally coupled in a non-topological fashion. The connectivity in C is then
probably unstable. A stable state can be reached after one of the topological
networks, say ~S0, has been activated and the others have been inactivated. In
order for this to happen, the complement of C in S0 has to be invaded, to �ll
the holes left by C in the topology of ~S0. After the network with the topology
of ~S0 has been activated, activity can no longer invade the rest of the other sets
S00; : : :, because the p-environments of their cells, even if they are active in S0,
never �re synchronously.

Correlate reconstruction is the fundamental process of correlation theory. It
must take place on the fast time scale of thought processes. Its synergetics is a
complicated matter and needs further detailed work. An important special case
is discussed in the next paragraph.

3.3.3 Projection between Topological Networks

Consider two structurally identical networks ~S1 and ~S2 on disjoint sets S1 and
S2 of n cells each. The two sets are connected to each other by a one-to-one
projection R of activated synapses connecting cells in corresponding position,
so that R corresponds to an isomorphism. This de�nes on S1 [ S2 again a
topological structure which can carry a correlate, with correlations at short
distance in ~S1 and ~S2, and between cells in S1 and S2 which correspond to
each other according to R. This special kind of topological correlate can be
approached from di�erent starting con�gurations, as will be discussed now.
3.3.3.1 Consider �rst the case with R in the resting state and correlates corre-
sponding to ~S1 and ~S2 active in S1 and S2 but not mutually correlated. R will
have a weak synchronizing inuence on pairs of corresponding cells in ~S1 and
~S2. The so induced correlations will activate the synapses of R, and strengthen
the S1 { S2 correlations, until the stationary state is reached with fully acti-
vated R and the activity strongly correlated between S1 and S2. On the other
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hand, if on S2 a network with a considerably di�erent topological structure were
activated, R would be deactivated.

The case is very reminiscent of the basic two-cells-one-synapse situation:
correlation in (internal structure of) the correlates on S1 and S2 leads to R-
activation, lack of correlation to deactivation. In this sense S1 and S2 can be
regarded as composite analoga to single cells.
3.3.3.2 Let �R be a system of synapses connecting each cell of S1 with each
cell of S2. Let ~S1 and ~S2 be isomorphic topological networks on S1 and S2.
The synapses of �R initially are in their resting state. A very similar system,
referring to an ontogenetic problem, was simulated in [Willshaw and von der
Malsburg, 1976] with two-dimensional E, and was treated analytically for one-
dimensional E in [H�aussler and v.d. Malsburg, 1983]. There, it was shown that
�R can dynamically reduce to a one-to-one projection between the isomorphically
corresponding cells in ~S1 and ~S2. The system is able to spontaneously break
the symmetry between several possible projections.
3.3.3.3 Several topological networks ~S2, ~S

0

2
, ~S00

2
; : : : may exist in S2 (in addition

to ~S1 and �R). Before a topological correlate can be established on S1[S2, several
decisions have to be made: between ~S2, ~S

0

2
, ~S00

2
; : : : and between possible one-to-

one mappings corresponding to one of the structures on S2. These decisions have
to be made simultaneously. This is likely to cause chaos instead of a speci�c
correlate. However, if symmetries between the various structures are slightly
broken already in the inital state, an ordered stationary state may be reached
securely, as is made likely by extrapolation from experience with a case similar
to 3.3.3.2.

3.3.4 Composite Elements

In section 3.1 I have introduced the basic machinery of correlation theory in
terms of cells, correlations of their signals, synapses and their modulation. The
discussion of 3.3.3 has prepared the way to the use of a very similar language on
a higher level. The idea consists in considering sets of topologically connected
cells instead of single cells as network elements. The sets may then be termed
composite elements. Likewise the ensemble of cellular signals of a set may be
regarded as a composite signal, and the ensemble of �bres connecting two com-
posite elements as a composite connection. The correlation between two cellular
signals was de�ned in terms of synchrony and asynchrony between spike trains.
Correlation between the signals of two composite elements has to be de�ned
as a structural correspondence between the composite signals in terms of the
composite connection between the elements. Each single synapse between two
composite elements should be modulated by a globally evaluated correlation be-
tween the composite signals. This is made possible by the fact that a temporal
correlation in the signals locally available to the synapse can only be established
in the context of a global correlation between the elements, as was discussed in
3.3.3.1.
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Composite elements can again form networks: Si, Sj ; : : :, with composite
connections Rij . For a correlate between the composite elements to form it is
necessary that the di�erent composite connections be locally consistent with
each other. Introduce an arbitrary but �xed numbering of cells in each element.
A one-to-one projection Rij is then equivalent to a permutation matrix Pij in
which each non-zero element corresponds to a synapse. In a triplett of elements
Si, Sj , Sk the permutation Pik must be the same as PijPjk in order to be
consistent. Stated di�erently, the composite permutation matrix corresponding
to a closed chain of connections must be unity: PijPjkPki = 1. (The condition
can be relaxed for chains of elements which are longer than the correlation
length. This opens the door to the whole complexity and richness of non-trivial
�ber bundle or gauge �eld structures.) Also on this new level the dynamical
interactions between signals and synapses stabilize certain preferred connectivity
patterns and correlations, and again it may be conjectured that they have a
topological structure.

In applications it may be necessary to introduce super-composite elements.
Paragraph 3.6.4 will give an example. The elaboration of particular structures
is, however, a complex dynamical and mathematical problem.

3.3.5 The Synergetic Control of Action

How can the dynamical behaviour of the brain's network structure be charac-
terized globally? Suppose the state of the brain at time t could be understood
as a superposition of structures, termed modes, with the following properties:
A mode is a subnetwork of active cells and synapses which, if left to itself,
would reproduce its form, possibly change its amplitude. (Decomposition into
modes has been rigorously carried out in a neuronal system in [H�aussler and v.d.
Malsburg, 1983].) To predict the state of the brain at time t +�t, decompose
its state at t into modes, let each of them grow or decay for the interval �t,
and superpose the results again. With the help of a global control parameter it
often can be achieved that only one or a few modes grow and all others decay.
It is conceivable that such global control exists in the brain. If only one mode
grows it soon dominates the state of the system. If several modes are related by
a symmetry they grow or decay with the same speed. This is the reason why
symmetry breaking, i.e. the selection of one of the related modes, is di�cult to
achieve.

The distinguishing feature which allows a mode to grow fast is maximal
local self-ampli�cation and optimal cooperation of locally converging dynamical
inuences, e.g. correlation between signals converging on one cell.

If growth of a mode is su�ciently slow there is time for the exchange of
signals between all parts of the network. All locally available information is
then integrated into the one global decision - growth or decay. After a mode
has grown and established itself for some time, conditions may cease to be
favourable for it, either because the mode has prepared the way for a successor
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mode which starts to compete successfully, or because the environment has
changed, or simply because of some kind of fatigue. Thus the brain is ruled by
a succession of modes. This view emphasizes the analogy to many other self-
organizing systems [Haken, 1978], and would put the brain into sharp contrast
to the computer and other man-made systems with detailed central control.

Memory may be thought of as the ability of the brain to change its network so
as to improve the success of modes which were once active. In the extreme case
an entire global mode which once dominated the brain's state for a short moment
can be reestablished. A physical basis for this ability is synaptic plasticity, which
reinforces those networks which are strongly activated.

3.4 Applications of Correlation Theory

3.4.1 Visual Elements

Light stimulation of one retinal point can directly a�ect several thousand neu-
rons in visual cortex. Together they form a composite element of lowest level,
a primary visual element. Each neuron is speci�cally sensitive to a particular
combination of quality values characterizing the stimulus: level of brightness or
darkness, spectral distribution, spatial distribution of light within a receptive
�eld, stereo depth, direction and speed of movement. Visual cortex contains
multiple representations of the retina. These are interconnected by di�usely
retinotopic �ber projections. Primary visual elements may be composed of cells
in several visual areae and even in thalamus. The part of the brain formed by
primary visual elements will here be termed V .

Consider a particular visual element while the eyes are slowly scanning over
a scene. When a light edge crosses the receptive �eld of the element, a subset of
cells is activated simultaneously. The subset describes the quality of the edge of
light. This simultaneous excitation triggers activation of synapses and forma-
tion of a correlate within the active subset of the element under consideration.
A subnetwork results which now represents a composite feature detector. Its
signal expresses a composite quality which can be recognized even from mix-
tures of signals from di�erent visual elements. Confusion is excluded by signal
correlations within a set of �bres coming from one primary visual element.

Visual elements have been introduced here as those collections of cells which
are a�ected from one retinal point. One could possibly also consider somewhat
larger patches of cortex (and thalamus) as elements. Those larger elements
would then be capable of forming correlates corresponding to patches of visual
texture. There is no need for the brain's \hardware" to contain complex feature
detector cells. Only cells responding to rather simple stimuli are required, from
which complex composite feature detectors can be \manufactured on the spot"
by activation of synaptic networks.
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3.4.2 Figure-Ground Discrimination

Suppose all visual elements in the primary region V are integrated by a �ber
system which connects feature sensitive cells in one element with cells speci�c
for the same local quality in many other elements. Suppose two elements so
interconnected are stimulated by a similar composite quality and correlates have
formed in both of them, so that the situation described in 3.3.3.1 is given. In due
course the connection between the elements will be activated and the composite
signals of the elements will correlate with each other. On the other hand, if the
two elements were stimulated by radically di�erent composite qualities, mutual
synapses would be deactivated and the signals would decouple.

Suppose a visual scene contains a region F characterized by local qualities
which change continuously from point to point inside F and which change dis-
continuously across the boundary of F . (A prominent role among these qualities
will be played by di�erential velocity caused by perspective movement or object
displacement.) The mechanism just described will set up a network of activated
synapses and a correlate which �lls the region of primary visual cortex excited
by the image of F . All elements taking part in it will signal this fact by mu-
tual local correlations. There will be no correlations across the boundary of the
network.

In this way the scene is decomposed into a patchwork of �gures. Moreover,
a �gure is decomposed into a hierarchy of parts, the strongest correlations sig-
nalling a�liation to one part of the �gure, weaker ones a�liation to adjacent
parts, and so on. This decomposition of the visual scene into a hierarchy of
correlates starts already prior to recognition of patterns, a stage of the process
which was termed \preattentive vision" by B. Julesz [1981].

3.4.3 Invariant Image Representation

The correlation structure described in the last paragraph has to be built up
anew for each image �xation. Another part of the visual system, to which I
will refer as I , can accumulate visual information over longer periods of time
and independently of retinal image location. A physical prerequisite for this
is a �ber system which connects each element of V with each element of I .
(This strong assumption can later be relaxed considerably.) If all these �bers
were activated at the same time a great jumble of signals would converge on
the elements in I . It is, however, possible to deactivate most connections and
activate only topologically ordered one-to-one projections between V and I .

I assume that the elements in V and in I are tied together by topological net-
worksNV and NI , respectively. (This is a statement about permanent weights.)
The topology is the natural one of two-dimensional visual space. Consider for
simplicity a situation in V with just two active correlates F and G. F refers to
�gure and G to ground. Correlations in both F and G are topologically struc-
tured by activated subnetworks of NV . The components of NV connecting F
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with G are deactivated. Initially there may only be spontaneous activity in I ,
the correlations of which are topologically structured by NI . Connections from
F and G which converge on one element of I carry noncorrelated signals and
cannot cooperate to cause excitation, correlation or synaptic activation. If one
considers I and just the F -part of V as two super-elements, the situation is that
of 3.3.3.2. As was pointed out there, a stationary state will be reached in which
a one-to-one projection is activated which connects neighboring elements in F

to neighboring elements in I . If symmetries are not broken by other inuences,
the scale and orientation of the F ! I projection will be such that the image
of F �ts best into I . At the same time the correlate structure of the intra-
and inter-element networks in F is transferred to the corresponding elements in
I . (This is analogous to the transfer of retinal markers to the tectum in [v.d.
Malsburg and Willshaw, 1977].)

The simulations of [Willshaw and von der Malsburg, 1979] have shown that
the simultaneous presence of two independent correlates, like F and G, can lead
to a �nal state with two independent mappings of the kind described, one for
F and one for G. The network I can then tune its correlate to F or G.

New mappings between V and I have to be set up for each new image
�xation. This is enormously facilitated by relevant structure in I built up during
previous �xations. Relative image distortions between �xations are digested by
distortions in the projections which are established. Over the course of many
�xations more and more information about a �gure, although arriving through
di�erent parts of the retinae, can be gradually accumulated in I .

After a mapping between V and I has been activated, information can be
transferred from I back to V . The a�erent information can thus be scrutinized
by the retrograde activation of composite feature correlates.

In distinction to the perceptron approach to the invariance problem, the
geometrical structure of the �gure is explicitly represented in I . There is no
need to recover it from the distribution of active feature detectors (cf. 2.3.5).

3.4.4 Interpretation of an Image

Before an image can be recognized it must be brought into contact with ideas of
shapes and objects stored in memory. Let us invoke a part M of the brain. To
a neurophysiologist M would appear similar to I . However, it would be domi-
nated by speci�c connection patterns which have been layed down previously by
synaptic plasticity and which correspond to abstract schemata of objects. These
can be revived by resonance with structures in I to carry correlates. Recognition
between structures in I and in M is possible on the basis of a correspondence of
detailed network structure, which in turn is expressed in terms of correlations in
signals. The situation was discussed in 3.3.3.3. Several relevant memory traces
may be activated simultaneously or consecutively.

The representation of an object in I has to be fairly insensitive to image
size, position, orientation and (slight) distortion. It therefore lacks information
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about these parameters and it is necessary for structures such as M to have
access to the primary image in V . This is possible with the help of full direct
�ber systems connecting M with V . These can be easily structured during
a �xation because all elements of an image in V are functionally labelled by
correlations with the corresponding elements in I . The original image can be
scrutinized by the selective set-up of part-networks referring to parts of it. A
full interpretation of an image is constituted by a correlate in a super-network
composed of many super-elements such as V , I and M , partly belonging to
other modalities of the brain.

Memory in its direct form precisely reestablishes correlates which were previ-
ously active. The observed great exibility of memory traces could be explained
if memory in this extreme form were restricted to certain substructures of the
brain, like the M mentioned above. For instance, we know that the memory
trace corresponding to a human face leaves unspeci�ed all accidental aspects,
e.g. perspective, illumination and expression. The trace has to be comple-
mented by particular correlates in other areae, like V and I , before it can be
compared with a real image. This exibility cannot be accounted for with cell
assemblies which cannot be analyzed into parts.

4 Discussion

4.1 The Text Analogy

The relationship between correlation theory and conventional brain theory may
be clari�ed with the analogy to the way our cultural world makes use of sym-
bols. When we write text we employ a set of basic symbols, letters or ideograms.
Out of these we form higher symbols, words, sentences, paragraphs. We do so
by producing many copies of the basic symbols and arranging these in spatial
patterns. According to localization theory there is a �xed set of basic symbols
with �xed locations in the brain. According to conventional theory higher level
symbols are formed by the simultaneous activity of many of these. This is anal-
ogous to summarizing a paragraph with the help of letter statistics. According
to conventional synaptic plasticity experience is accumulated in a way analogous
to a measurement of the probability with which letters appear simultaneously
in large pieces of text (large enough to represent the amount of information
which we hold momentarily in our mind). Conventional theory tries to mend
the obvious de�ciency by introducing more and more letters and ideograms.
This, however, creates more problems than it solves.

In correlation theory higher symbols are constructed out of lower ones with
the help of correlations and modulating synapses. The full hierarchy of patterns
is thereby represented. The re�ned plasticity of correlation theory is analogous
to measurement of the probabilities of letters or words to be adjacent. Dynam-
ical selection of synergetic networks is analogous to a grammar which allows
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only strings of letters with a certain structure to be formed. Correlation theory
thus allows for much more complete information to be stored, and used for the
reconstruction of previously active patterns, than does conventional theory.

Another point may be clari�ed with the text-analogy. Microscopic local-
ization theory (2.1.2) attributes to each cell its own meaning. Also a letter or
ideogram has its own meaning. However, if a symbol is placed in a certain
context, its meaning is enormously re�ned or even completely changed. The
crude meaning attributed to a cell by the peri-event-histogram of neurophysiol-
ogy can, according to correlation theory, become re�ned; e.g. a primary visual
cell may, in a particular moment, signify the red component in the image of the
planet Mars in the night sky, not as interpreted by the proverbial little green
man sitting in our brain, but due to the dynamical integration of the cell into a
complex network.

4.2 The Bandwidth Problem

Important elementary thought processes take place within 200 to 400 msec.
This sets an upper limit to the interval in which correlations can be measured.
A lower limit to the time resolution with which signals can be observed is set
to several milliseconds by di�erences in transmission delays. Since in addition
noise must be tolerated, a bandwidth of 100 Hz for the cellular signal seems
to be an optimistic estimate. With this bandwidth not too many signals can
be distinguished in an observation time shorter than 200 msec. On the other
hand, the discussion in section 3.4 has demonstrated how important it is that
the activity patterns express highly di�erentiated structures in terms of signal
correlations. It is, however, not necessary that all this structure be expressed in
parallel within short time intervals (of, say, 200 msec) by stationary correlations.
For instance, two cells may have signi�cantly anticorrelated signals for a short
period. All synaptic pathways between them and to common target cells will
then be inactivated. If the inactivated state of synapses is rather insensitive
to uncorrelated signals, there is then no need for continued expression of the
anticorrelation in the signals of the two cells. In short, the e�ects of earlier
correlations are stored in short-term memory. From an undi�erentiated initial
state in which every part is cross-coupled with every other a highly di�erentiated
state can thus be reached in a sequential manner. In each step some parts of the
network are decoupled from each other so that later no confusion between their
signals can arise. The price to be paid is the time necessary for this sequential
process and the path-dependence of the �nal state.

Synaptic plasticity can be regarded as a means to store past signal correla-
tions on a more permanent basis, so that the signals are freed from the necessity
to make certain distinctions. The time required to reach certain �nal states is
thereby reduced. This increased e�ciency is partly paid for by a restriction in
generality. Composite elements have more complicated signals than single cells
and can express correlation structures much more e�ciently. They are enabled
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to do so by their special connectivity patterns. In an extreme case a nervous sys-
tem (or subsystem) is completely specialized by its permanent network structure
and no further synaptic modulation is necessary for the completion of its tasks.
This is the case studied by what was called here conventional brain theory.

4.3 Facing Experiment

There is an enormous body of empirical knowledge about the brain, gathered
in such diverse �elds as clinical observation, anatomy, neurophysiology, psy-
chophysics and cognitive psychology. Correlation theory must be judged mainly
as an attempt at integrating the heterogeneous perspectives o�ered by the var-
ious methods into one coherent picture.

Localization theory, although strongly supported by experiment, created
unrest because it posed the nervous integration problem, which has not been
solved by conventional theory. In this situation many scientists have resigned
from inquiring into the brain's function or have contented themselves with philo-
sophical answers. Correlation theory tries to make sense of localization theory
and proposes a solution to the nervous integration problem.

Neurophysiology tells us that cellular signals uctuate. Since this temporal
�ne structure is not locked to the stimulus it is often taken as a sign of unreli-
ability. According to correlation theory such rapid modulation of the signal is
essential for brain function.

According to cognitive psychology and common observation there is a short-
term memory with a life-time of many seconds. Cellular signals have a temporal
correlation length considerably shorter than 100 msec. Synaptic plasticity on the
other hand is too slow. Synaptic modulation introduces a dynamical variable as
a basis for short-term memory which could have the correct characteristic time
constant.

The most convincing support for the theory will have to be found on the mi-
croscopic level: demonstration of organized correlations, synaptic modulation,
and synaptic plasticity controlled by precise correlations.

The theory requires validation of its claims also on another, the functional,
level. Elementary processes can be simulated on computers and analyzed math-
ematically. More complex processes will have to be demonstrated with the help
of specialized machines.

4.4 Conclusion

The brain and its function present us with a tangle of interrelated problems
none of which can be solved, or even be precisely formulated, on its own. In
this situation a concept of global brain organisation is needed which partitions
the integral problem into de�ned technical questions. Correlation theory may
be regarded as such a global scheme.
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Figure Caption
Figure 1. Two topological networks on the same set S of 12 cells. E

is the two-dimensional plane, p = 4, and the mapping m assigns the cells in
natural order to equidistant points on a circle. a) shows the resulting topological
network ~S1 = (S;m;E; p). b) shows ~S1, however with a permutation P applied
to cell positions. In c) the second topological network ~S2 = (S; Pm;E; p) is
added. d) and e) show cellular activity (correlates) in the form of travelling
waves as shaped by ~S1 (left side of graphs), or ~S2 (right side). Line segments
symbolize short bursts of activity. In d) the order of cells on the ordinate is as
in a), in e) the order is as in b) and c). Each correlate activates its own network
and deactivates the other. Simulations of cell activity and synaptic modulations
have shown that ~S1 or ~S2 can be dynamically recovered from the superposition,
c), (v.d. Malsburg and H�aussler).
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